Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых светодиодов. Достигается тем, что интенсифицированная испарительная система охлаждения светодиодного модуля состоит из высокотеплопроводного основания, выполненного из металла, металлокерамики или материала, имеющего структуру изолированных проводников внутри металла, с установленными на нем светодиодами, к которому примыкает наполнитель из микропористого материала с миниканалами, расположенными под светодиодами перпендикулярно плоскости их установки так, что части теплопроводящего основания, примыкающие к торцам миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена, интенсифицируемую за счет радиального оребрения, представляющего собой микроканалы треугольного сечения, отношение глубины к ширине которых на периферии составляет 1, в центре - 2. 6 з.п. ф-лы, 2 ил.

 

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры.

С внедрением светодиодов связаны перспективы развития целого ряда направлений: сигнальных световых и осветительных приборов на транспорте, оборудования для световой архитектурно-декоративной подсветки и рекламы и др. Одним из важнейших социально-экономических эффектов масштабного использования светодиодных технологий является возможность радикального сокращения затрат электроэнергии на освещение, составляющих по различным оценкам до 18-20% всех затрат произведенной электроэнергии. Длительность безотказной работы, оптическая мощность излучения, цветовая температура и другие выходные характеристики светодиодов тесно связаны с температурой р-n перехода, что делает разработку системы охлаждения важным этапом создания светодиодных систем.

Известна плоская тепловая труба [US 3613778, 19.10.1971, B64G 1/50; B64G 1/58; F28D 15/02], заполненная пористым металлическим фитилем или сеткой в паровом канале.

Толщина фитиля способствует увеличению теплопередающей способности тепловой трубы. Однако с ростом толщины фитиля увеличивается его термическое сопротивление в радиальном направлении, что препятствует росту теплопередающей способности трубы в целом и снижает допустимую максимальную плотность теплового потока в испарителе.

Известно устройство для охлаждения электронных компонентов [US 4975803, 04.12.1990, Н05К 7/20], которое имеет сэндвич конструкцию и представляет собой заключенные в металлический корпус (параллелепипед) множество пластин, параллельных плоскости установки электронных компонентов и выполненных из пористого материала с диагональными микроканалами, причем микроканалы соседних пластин имеют противоположные направления. Пористое ядро с микроканалами заполнено жидким теплоносителем. Тепло передается на торцевые части корпуса, где находится радиатор.

В такой конструкции отвод тепла в основном на торцевую часть не обеспечивает эффективную теплоотдачу к радиатору. Эффективная теплопроводность насыщенного жидкостью пористого материала в направлении, перпендикулярном плоскости установки электронных компонентов, существенно меньше, чем в направлении, параллельном плоскости установки электронных компонентов.

Наиболее близким по технической сущности к заявляемой системе является устройство охлаждения тепловыделяющих компонентов модуля радиоэлектронной аппаратуры [RU 2403692, 29.04.2009, Н05К 1/00, Н05К 7/20], состоящее из теплоотводящего основания, печатных плат и установленных на них электрорадиоэлементов. Теплоотводящее основание выполнено из микропористого материала с микроканалами и заполнено жидким теплоносителем. Микроканалы расположены в теплоотводящем основании в двух ортогональных направлениях, параллельных плоскости печатной платы. Тепло передается на торцевую часть теплоотводящего основания.

Однако отвод тепла в основном на торцевую часть теплоотводящего основания не обеспечивает эффективную теплоотдачу к радиатору, примыкающему к плоскости печатной платы.

Задачей настоящего изобретения является обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых светодиодов.

Поставленная задача решается тем, что в интенсифицированной испарительной системе охлаждения светодиодного модуля, состоящей из основания с установленными на нем светодиодами, к которому примыкает слой теплоотводящего наполнителя из микропористого материала с каналами, заполненного жидким теплоносителем, согласно изобретению основание, на котором установлены светодиоды, выполнено из высокотеплопроводного материала, к теплопроводящему основанию примыкает наполнитель из микропористого материала, который находится в объеме, ограниченном теплопроводящим основанием и радиатором, поверхность которого покрыта тонким слоем непористого теплопроводного материала, в микропористом наполнителе под светодиодами перпендикулярно плоскости установки светодиодов расположены миниканалы, причем они расположены так, что части теплопроводящего основания, примыкающие к торцам миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена, интенсифицируемую за счет радиального оребрения, представляющего собой микроканалы треугольного сечения, отношение глубины к ширине которых на периферии составляет 1, а в центре - 2.

Согласно изобретению теплопроводящее основание интенсифицированной испарительной системы охлаждения светодиодного модуля выполнено из металла или металлокерамики, при этом радиальное оребрение нанесено непосредственно на теплопроводящее основание.

Согласно изобретению теплопроводящее основание интенсифицированной испарительной системы охлаждения светодиодного модуля выполнено из материала, имеющего структуру изолированных проводников внутри металла, например, изготовленного по технологии ALOX™. В этом случае между теплопроводящим основанием интенсифицированной испарительной системы охлаждения светодиодного модуля и микропористым наполнителем может быть установлена металлическая накладка, на которую в областях, примыкающих к торцам миниканалов, нанесено радиальное оребрение.

Наличие объема, заполненного микропористым материалом, облегчает задачу его наполнения необходимым объемом жидкости, а наличие миниканалов с интенсифицирующей поверхностью теплообмена на торцах, расположенной в максимальной близости к р-n переходам светодиодов, обеспечивает высокое значение отводимых тепловых потоков от каждого из светодиодов.

На фиг.1 изображена система охлаждения светодиодного модуля. Где: 1 - теплопроводящее основание, 2 - светодиоды, 3 - наполнитель из микропористого материала, 4 - ребра радиатора, 5 - миниканалы, 6 - интенсифицирующая поверхность теплообмена.

На фиг.2 показан вид интенсифицирующей поверхности теплообмена с радиальным треугольным оребрением (вид со стороны миниканала).

В предлагаемой конструкции система охлаждения светодиодного модуля состоит из теплопроводящего основания 1, на которое установлены светодиоды 2, с другой стороны к теплопроводящему основанию примыкает наполнитель из микропористого материала 3. Микропористый наполнитель 3 находится в объеме, ограниченном теплопроводящим основанием 1 и ребрами радиатора 4. Поверхность радиатора 4, который может быть выполнен из пористого материала, покрыта тонким слоем непористого теплопроводного материала. Миниканалы 5 расположены в микропористом наполнителе 3 под светодиодами перпендикулярно плоскости установки светодиодов. Части теплопроводящего основания, являющиеся торцами миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена 6 (поверхность, интенсифицирующую кипение и испарение), интенсифицируемую за счет радиального оребрения, фиг.2. Оребрение интенсифицирующей поверхности теплообмена 6 представляет собой радиальные микроканалы треугольного сечения. Отношение глубины к ширине каждого из радиальных микроканалов на периферии составляет 1, а в центре - 2.

Размеры микроканалов интенсифицирующей поверхности теплообмена меньше размеров пор наполнителя из микропористого материала, что создает необходимый капиллярный напор. Дополнительный капиллярный напор создается также за счет того, что размеры микроканалов интенсифицирующей поверхности уменьшаются по направлению к центру тепловыделяющего светодиода, что особенно важно при высоких тепловых потоках.

В процессе функционирования интенсифицированной испарительной системы охлаждения светодиодного модуля светодиоды выделяют тепло (зона нагрева), которое передается на торцы миниканалов. Зона охлаждения системы представляет собой поверхность радиатора. Для того, чтобы обеспечить передачу тепла, выделяемого светодиодами, в зону охлаждения, микропористый наполнитель 3 с миниканалами 5, находящийся в объеме, ограниченном теплопроводящим основанием 1 и ребрами радиатора 4, заполнен жидким теплоносителем, например водой. Микропористый наполнитель 3 насыщен теплоносителем в жидкой фазе, а в миниканалах 5 теплоноситель находится в паровой фазе. Теплоноситель осуществляет передачу тепла из зоны нагрева светодиода в зону охлаждения за счет скрытой теплоты парообразования. Тепло, поступающее в зону нагрева от светодиодов, вызывает испарение теплоносителя. На поверхности 6, интенсифицирующей кипение и испарение за счет радиального оребрения, кипение начинается при существенно меньших температурах перегрева, а коэффициент теплоотдачи значительно выше, чем на гладкой поверхности.

Возникающая при этом разность давлений побуждает пар двигаться из зоны нагрева в зону охлаждения, где пар конденсируется, отдавая при этом скрытую теплоту парообразования. В результате постоянного испарения количество жидкости в зоне нагрева уменьшается, и поверхность раздела фаз жидкость-пар сдвигается внутрь микропористого наполнителя 3, что вызывает возникновение здесь капиллярного давления. Это капиллярное давление заставляет сконденсировавшуюся в зоне охлаждения жидкость возвращаться обратно в зону нагрева. Таким образом, непрерывно осуществляется перенос тепла из зоны нагрева в зону охлаждения.

Дополнительный капиллярный напор возникает за счет того, что размеры микроканалов интенсифицирующей поверхности теплообмена существенно меньше размеров пор наполнителя из микропористого материала и еще уменьшаются по направлению к центру тепловыделяющего светодиода, что особенно важно при высоких тепловых потоках.

При осушении микроканалов в центральной части интенсифицирующей поверхности капиллярный напор возрастает, обеспечивая более интенсивный подвод жидкости к окрестности светодиода и соответственно более высокие значения отводимых тепловых потоков.

Таким образом, обеспечение высокоэффективного отвода тепла от полупроводниковых светодиодов при минимальном значении сопротивления теплопередачи достигается тем, что интенсивное кипение и испарение жидкости происходит вблизи р-n перехода светодиодов на интенсифицированной оребренной поверхности, размеры микроканалов которой существенно меньше пор микропористого материала, что обеспечивает высокий капиллярный напор.

Также обеспечение высокоэффективного отвода тепла от полупроводниковых светодиодов при минимальном значении сопротивления теплопередачи достигается за счет высокого значения эффективной теплопроводности вдоль каналов (тепловых труб), которое более чем на два порядка превосходит теплопроводность современных печатных плат.

Одной из технических проблем использования тепловых труб является необходимость заполнения каждой трубы точно определенным объемом жидкости при одновременном вакуумировании. Предложенная конструкция требует одноразового заполнения жидкостью и менее чувствительна к вариациям первоначального объема жидкости.

Работоспособность предложенной конструкции системы охлаждения светодиодного модуля подтверждается экспериментальными данными и выполненными оценками и расчетами.

1. Интенсифицированная испарительная система охлаждения светодиодного модуля, состоящая из основания с установленными на нем светодиодами, к которому примыкает слой теплоотводящего наполнителя из микропористого материала с каналами, заполненного жидким теплоносителем, отличающаяся тем, что основание выполнено из высокотеплопроводного материала, примыкающий к теплопроводящему основанию наполнитель из микропористого материала находится в объеме, ограниченном теплопроводящим основанием и радиатором, поверхность которого покрыта тонким слоем непористого теплопроводного материала, в микропористом наполнителе под светодиодами перпендикулярно плоскости установки светодиодов расположены миниканалы, причем они расположены так, что части теплопроводящего основания, примыкающие к торцам миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена, интенсифицируемую за счет радиального оребрения, представляющего собой микроканалы треугольного сечения.

2. Интенсифицированная испарительная система охлаждения светодиодного модуля по п. 1, отличающаяся тем, что отношение глубины к ширине радиальных микроканалов интенсифицирующей поверхности теплообмена на периферии составляет 1, в центре - 2.

3. Интенсифицированная испарительная система охлаждения светодиодного модуля по п. 1, отличающаяся тем, что теплопроводящее основание выполнено из металла или металлокерамики.

4. Интенсифицированная испарительная система охлаждения светодиодного модуля по пп. 1 или 3, отличающаяся тем, что радиальное оребрение нанесено непосредственно на теплопроводящее основание.

5. Интенсифицированная испарительная система охлаждения светодиодного модуля по п. 1, отличающаяся тем, что теплопроводящее основание выполнено из материала, имеющего структуру изолированных проводников внутри металла.

6. Интенсифицированная испарительная система охлаждения светодиодного модуля по пп. 1 или 5, отличающаяся тем, что между теплопроводящим основанием и микропористым наполнителем установлена металлическая накладка.

7. Интенсифицированная испарительная система охлаждения светодиодного модуля по п. 6, отличающаяся тем, что радиальное оребрение нанесено на металлическую накладку.



 

Похожие патенты:

Изобретение относится к области радиоаппаратостроения и может использоваться при конструировании корпусов радиоэлектронной аппаратуры. Технический результат - упрощение конструкции вентиляционного блока за счет снижения трудоемкости изготовления вентиляционной панели при повышенной эффективности экранирования, а также упрощение способа изготовления вентиляционных пластин.

Изобретение относится к системам охлаждения и теплоотвода, например к устройствам для охлаждения компонентов электронной аппаратуры. Технический результат - повышение энергоэффективности системы охлаждения.

Изобретение относится к системе (1) для кондиционирования воздуха внутреннего пространства центра (2) обработки данных, оснащенного электронным оборудованием (3). Технический результат - обеспечение во внутреннем пространстве центра обработки данных наиболее подходящих значений температуры и относительной влажности для его корректной работы в широком диапазоне географических областей с различным климатом.

Изобретение предназначено для воздушной фильтрации. Фильтр для устройства охлаждения кожуха содержит опорную конструкцию, выполненную с возможностью установки в корпусе, прокладку, герметично зацепляющуюся с опорной конструкцией и выполненную с возможностью зацепления с корпусом, фильтрующий материал, опирающийся на опорную конструкцию.

Изобретение предназначено для воздушной фильтрации. Телекоммуникационная станция включает телекоммуникационные электронные компоненты, устройство охлаждения, включающее корпус, внутри которого находятся телекоммуникационные электронные компоненты, В корпусе имеется воздушное впускное отверстие для получения воздуха из внешней среды и фильтрующий элемент, выполненный с возможностью фильтрации воздуха, проходящего через воздушное впускное отверстие.

Изобретение относится к электронному модулю, прежде всего для ручной машины. Технический результат - обеспечение возможности полного и защищенного размещения, соответственно полной и защищенной установки печатной платы в корпусной детали электронного модуля, обеспечение компактной конструкции, оптимального и эффективного охлаждения электронного модуля.

Изобретение относится к системам отвода тепла от компьютерного оборудования, смонтированного внутри серверных или монтажных шкафов, в частности к конденсационному шкафу.

Изобретение относится к конструкции корпуса электронной аппаратуры, а именно малогабаритного бортового электронного блока управления, сбора и обработки данных с высоким энергопотреблением, предназначенного для ответственных применений в жестких условиях эксплуатации, в том числе на орбитальных космических аппаратах и орбитальных космических станциях.

Изобретение относится к системам охлаждения Центров хранения и обработки данных. Техническим результатом является повышение эффективности охлаждения.

Изобретение относится к системам охлаждения для Центров хранения и обработки данных. Техническим результатом является повышение эффективности охлаждения.

Изобретение относится к электронной технике и может быть использовано при создании мощных гибридных интегральных схем СВЧ-диапазона многоцелевого назначения. Технический результат - улучшение электрических характеристик за счет улучшения теплоотвода, повышение технологичности при сохранении массогабаритных характеристик.

Изобретение относится к электротехнике, а именно к системам охлаждения силовых электронных устройств. Технический результат - увеличение эффективности охлаждения путем создания прочной и надежной конструкции охладителя с большой площадью для размещения охлаждаемых элементов, а также упрощение конструкции, улучшение технологичности изготовления, упрощение процесса ремонта при засорении.

Изобретение относится к электротехнике, в частности к устройствам для охлаждения силовых модулей электронной аппаратуры. Технический результат - повышение технологичности и упрощение процесса изготовления, а также сокращение сроков проведения ремонтных и профилактических работ за счет наличия заглушек, обеспечение возможности параллельного и последовательного соединения охладителей для регулирования перепада давления и расхода хладагента.

Изобретение относится к электронной технике и предназначено для обеспечения отвода тепла от тепловыделяющих радиоэлементов и может быть использовано при построении преобразователей, мощных усилителей, выпрямителей и умножителей.

Изобретение относится к способам для рассеивания тепла в многослойных 3-D интегральных схемах (ИС). Путем заполнения воздушного промежутка между слоями многослойного ИС устройства проводящим тепло материалом тепло, генерируемое в одной или более областях внутри одного из слоев, может быть рассеяно в поперечном направлении.
Изобретение относится к способам получения композиционных материалов для теплоотводящих оснований полупроводниковых приборов, в частности, композиционного материала Al-SiC, имеющего металлическое покрытие, и изделиям, полученным с использованием этих материалов.

Изобретение относится к силовой электрической схеме (10) для управления приводным узлом стеклоочистителя автомобиля. .

Изобретение относится к многослойным интегральным схемам, в которых обеспечено рассеивание тепла от проблемных тепловых областей. .

Изобретение относится к технике регулирования температуры в прецизионных электронных устройствах. .

Изобретение относится к охлаждающим устройствам для рассеивания тепла от электронных компонентов в электронных приборах. .

Изобретение относится к охлаждению полупроводниковых устройств, в частности мощных светодиодов. Достигаемый технический результат - возможность охлаждения светодиодов без использования теплостоков, располагаемых обычно с тыльной стороны печатной платы, и без необходимости применения принудительного воздушного охлаждения.
Наверх