Способ доводки опытного турбореактивного двигателя



Способ доводки опытного турбореактивного двигателя
Способ доводки опытного турбореактивного двигателя

Владельцы патента RU 2551248:

Открытое акционерное общество "Уфимское моторостроительное производственное объединение" (ОАО "УМПО") (RU)

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ТРД. В программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ТРД. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ТРД, а именно тяги, и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на стадии доводки опытного ТРД. 3 з.п. ф-лы, 2 ил., 4 табл., 1 пр.

 

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям.

Известен двухконтурный, двухвальный турбореактивный двигатель (ТРД), включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный разделительный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва: «Наука», 2011 г., стр.41-46, рис.1.24).

Известен турбореактивный двигатель, который выполнен двухконтурным, он содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивное сопло, а также систему управления с командными и исполнительными органами (Шульгин В.А., Гайсинский С.Я. Двухконтурные турбореактивные двигатели малошумных самолетов. М., изд. Машиностроение, 1984, стр.17-120).

Известен способ испытаний при доводке авиационных турбореактивных двигателей, заключающийся в измерении параметров по режимам работы двигателя и приведении их к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий (Ю.А. Литвинов, В.О. Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. Москва: Машиностроение, 1979, 288 с, стр.136-137).

Известен способ испытаний авиационных двигателей типа турбореактивных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 A1, опубл. 10.08.2004).

Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая надежность оценки тяги двигателя в широком диапазоне режимов и региональных температурно-климатических условий эксплуатации вследствие неотработанности программы приведения конкретных результатов испытаний, выполняемых в различных температурных и климатических условиях к результатам, отнесенным к стандартным условиям атмосферы известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя в зависимости от принятых программ, адекватных полетным циклам, характерным для конкретного назначения разрабатываемого турбореактивного двигателя, что осложняет возможность приведения экспериментальных параметров испытаний к параметрам, соответствующим условиям стандартной атмосферы.

Задача изобретения заключается в разработке способа доводки опытного турбореактивного двигателя, совокупность технических решений которого обеспечивает улучшение тяги и повышение достоверности эксплуатационных характеристик для разных температурно-климатических условий различных регионов и режимов эксплуатации двигателя, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на этапе доводки опытных ТРД при повышении репрезентативности результатов испытаний для полного диапазона перечисленных ситуаций применительно к полетным циклам двигателя в учебных и боевых условиях в различных регионах и сезонных периодах эксплуатации.

Поставленная задача решается тем, что в способе доводки опытного турбореактивного двигателя согласно изобретению доводке подвергают опытный двигатель, выполненный двухконтурным, двухвальным, при этом доводку двигателя производят поэтапно, для чего разрабатывают программу и алгоритмы доводочных испытаний опытного ТРД; на каждом этапе подвергают испытаниям на соответствие заданным параметрам статистически репрезентативное количество, преимущественно, от одного до пяти экземпляров и проводят обследование состояния каждого испытанного из упомянутого количества экземпляров опытного двигателя; для анализа и оценки состояния при необходимости производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного двигателя, обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль, в том числе компрессор низкого давления (КНД) с входным направляющим аппаратом (ВНА), содержащим силовые радиальные стойки, состоящие из неподвижного полого и управляемого подвижного элементов и равномерно разнесенные в плоскости входного сечения с угловой частотой размещения стоек в диапазоне (3,0÷4,0) ед./рад, а также ротор с валом, содержащим, предпочтительно, не более четырех рабочих колес с системой лопаток; газогенератор, включающий сборочные узлы - промежуточный корпус, компрессор высокого давления, основную камеру сгорания и турбину высокого давления; последовательно расположенные за газогенератором соосно установленные турбину низкого давления; смеситель; фронтовое устройство, форсажную камеру сгорания и всережимное поворотное реактивное сопло, включающее поворотное устройство, предпочтительно, разъемно прикрепленное неподвижным элементом к форсажной камере сгорания, и регулируемое реактивное сопло, аналогично прикрепленное к подвижному элементу поворотного устройства с возможностью выполнения поворотов для изменения направления вектора тяги; а также установленный над основной камерой сгорания во внешнем контуре модуль воздухо-воздушный теплообменник, при необходимости обследуя любой не менее чем из шестидесяти трубчатых блок-модулей последнего, кроме того, обследуют и производят необходимую доводку коробки приводов двигательных агрегатов (КДА) и объединяющих указанные модули электрическую, пневматическую, гидравлические - топливную и масляную системы, включая при необходимости замену датчиков, командных блоков, исполнительных механизмов и кабелей систем диагностики и автоматического управления двигателем; при этом подвергают доводке опытный ТРД, ось вращения указанного поворотного устройства реактивного сопла которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°, предпочтительно на (32÷34)° по часовой стрелке (вид по н.п.) для правого двигателя и на угол не менее 30°, предпочтительно на (32÷34)° против часовой стрелки (вид по н.п.) для левого двигателя; причем в программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ТРД; для этого подвергают испытанию не менее чем один, для репрезентативности, предпочтительно, три-пять опытных двигателей; испытания опытного двигателя проводят на различных режимах, параметры которых соответствуют параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, производят замеры и осуществляют приведение полученных значений параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части ТРД при изменении атмосферных условий, при этом предварительно создают математическую модель ТРД, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти идентичных ТРД, а затем по математической модели определяют параметры двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях ТРД.

Испытания ТРД могут проводить с измерением параметров его работы на различных режимах, параметры которых соответствуют по величине и предельным значениям параметров полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти двигателей, а затем по математической модели определяют параметры двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях, и с учетом полученных данных выполняют последующий цикл испытаний с нагружением двигателя, в процессе которого оценивают изменение параметров.

Доводке могут подвергать опытный двигатель, ВНА КНД которого содержит, предпочтительно, двадцать три радиальные стойки, соединяющие наружное и внутреннее кольца ВНА с возможностью передачи нагрузок от внешнего корпуса двигателя на переднюю опору, причем, по меньшей мере, часть стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД.

Доводке могут подвергать опытный ТРД, площадь фронтальной проекции входного проема Fвх. пр ВНА КНД которого, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе внутренним контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружнего кольца ВНА в плоскости входного проема.

Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в разработке способа доводки турбореактивного двигателя с улучшенными эксплуатационными характеристиками, а именно тягой и повышенной надежностью указанных характеристик ТРД за счет более достоверного и корректного приведения экспериментально полученных параметров двигателя к параметрам, соответствующим стандартным атмосферным условиям, а также в повышении репрезентативности результатов испытаний, проводимых на этапе доводки опытных ТРД, для полного диапазона полетных циклов в различных климатических условиях. Это достигают тем, что в соответствии с изобретением перед проведением испытаний создают математическую модель двигателя. Проводят испытания репрезентативного количества двигателей из партии опытно произведенных ТРД по разработанной программе и спектру режимов испытаний. По результатам испытаний корректируют математическую модель, посредством которой на базе последующих испытаний при конкретных температурах определяют параметры двигателя при стандартных атмосферных условиях и различных температурах. Приведение измеренных значений параметров конкретных испытаний к стандартным осуществляют посредством поправочных коэффициентов.

Технический результат, достигаемый изобретением, позволяет упростить последующие испытания, повысить корректность и расширить репрезентативность оценки важнейших характеристик, в первую очередь, тяги с корректным распространением репрезентативных оценок на широкий диапазон региональных и сезонных условий последующей летной эксплуатации двигателей.

Сущность изобретения поясняется чертежами, где:

на фиг.1 изображен турбореактивный двигатель, продольный разрез;

на фиг.2 - входной направляющий аппарат КНД, вид сверху.

В способе доводки турбореактивного двигателя доводке подвергают опытный двигатель, выполненный двухконтурным, двухвальным. Доводку двигателя производят поэтапно, для чего разрабатывают программу и алгоритмы доводочных испытаний опытного ТРД. На каждом этапе подвергают испытаниям ТРД на соответствие заданным параметрам статистически репрезентативное количество, преимущественно, от одного до пяти экземпляров двигателей и проводят обследование состояния каждого испытанного из упомянутого количества экземпляров опытного двигателя. Для анализа и оценки состояния ТРД при необходимости производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного двигателя. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль.

ТРД содержит не менее восьми модулей - от компрессора 1 низкого давления до всережимного поворотного реактивного сопла. КНД включает входной направляющий аппарат 2, а также ротор с валом 3, содержащим, предпочтительно, не более четырех рабочих колес 4 с системой лопаток 5. ВНА 2 содержит силовые радиальные стойки 6, состоящие из неподвижного полого и управляемого подвижного элементов. Радиальные стойки 6 равномерно разнесены в плоскости входного сечения с угловой частотой размещения стоек в диапазоне (3,0÷4,0) ед./рад.

Газогенератор включает сборочные узлы, а именно промежуточный корпус 7, компрессор 8 высокого давления, основную камеру 9 сгорания и турбину 9 высокого давления. За газогенератором последовательно расположены и соосно установлены турбина 11 низкого давления, смеситель 12, фронтовое устройство 13, форсажная камера 14 сгорания и всережимное поворотное реактивное сопло. Указанное сопло включает поворотное устройство 15, предпочтительно, разъемно прикрепленное неподвижным элементом к форсажной камере 14 сгорания, и регулируемое реактивное сопло 16, аналогично прикрепленное к подвижному элементу поворотного устройства 15 с возможностью выполнения поворотов для изменения направления вектора тяги.

Над основной камерой 9 сгорания во внешнем контуре ТРД установлен модуль воздухо-воздушный теплообменник 17, при необходимости обследуя любой не менее чем из шестидесяти трубчатых блок-модулей последнего. Кроме того, обследуют и производят необходимую доводку коробки приводов двигательных агрегатов (на чертежах не показано) и объединяющих указанные модули электрическую, пневматическую, гидравлические - топливную и масляную системы, включая при необходимости замену датчиков, командных блоков, исполнительных механизмов и кабелей систем диагностики и автоматического управления двигателем.

Подвергают доводке опытный ТРД, ось вращения поворотного устройства 15 реактивного сопла которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°, предпочтительно на (32÷34)° по часовой стрелке (вид по направлению полета) для правого двигателя и на угол не менее 30°, предпочтительно, на (32÷34)° против часовой стрелки (вид по направлению полета) для левого двигателя.

В программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий (ВКУ) на изменение эксплуатационных характеристик опытного ТРД. Для этого подвергают испытанию не менее чем один, для репрезентативности, предпочтительно три-пять опытных двигателей. Испытания опытного двигателя проводят на различных режимных параметрах. Параметры соответствуют параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей. Производят замеры и осуществляют приведение полученных значений параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части турбореактивного двигателя при изменении атмосферных условий. При этом предварительно создают математическую модель турбореактивного двигателя. Корректируют модель по результатам стендовых испытаний репрезентативного количества от трех до пяти идентичных ТРД. Затем по математической модели определяют параметры ТРД при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах. Фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха. Приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент. Поправочный коэффициент отражает зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях ТРД.

Вариантно испытания ТРД проводят с измерением параметров его работы на различных режимах, параметры которых соответствуют по величине и предельным значениям параметров полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей. Осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Также при этом предварительно создают математическую модель двигателя и корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти двигателей. По математической модели определяют параметры двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах. Фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха. Приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях. С учетом полученных данных выполняют последующий цикл испытаний с нагружением двигателя, в процессе которого оценивают изменение параметров.

Доводке подвергают опытный двигатель, ВНА 2 КНД 1 которого содержит, предпочтительно, двадцать три радиальные стойки 6, соединяющие наружное и внутреннее кольца 18 и 19 соответственно ВНА 2 с возможностью передачи нагрузок от внешнего корпуса 20 двигателя на переднюю опору. По меньшей мере, часть стоек 6 совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД.

Доводке подвергают опытный ТРД, площадь фронтальной проекции входного проема Fвх. пр ВНА 2 КНД 1 которого, геометрически определяющая поперечное сечение входного устья воздухозаборного канала 21, ограниченного на большем радиусе внутренним контуром наружного кольца 18 ВНА 2, а на меньшем радиусе внутренним контуром внутреннего кольца 19 ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока 22 и радиальных стоек 6, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружного кольца 18 ВНА в плоскости входного проема.

Пример реализации испытания опытного турбореактивного двигателя

Испытаниям подвергают репрезентативную группу из трех-пяти ТРД. При этом используют предварительно разработанную математическую модель двигателя. Испытания указанной группы ТРД проводят при температуре tВХ=0°C, Ва=745 мм рт.ст.

По результатам замеров и их статистического обобщения получают значения параметров: усилия тяги двигателя R=985 кгс и частоту вращения n=98,8%.

Для последующей оценки результатов испытаний используют математическую модель двигателя, по которой проводят расчет параметров на различных режимах работы двигателя в диапазоне температур воздуха на входе в двигатель, в том числе и при tВХ=+15°C. Результаты расчета представлены в Табл.1

Таблица 1
tВХ, °C - температура на входе в ТРД -15 0 +15 +30
R, кгс - усилие тяги 1000 980 970 950
n, % - частота вращения 98 99 100 100

Сопоставляют полученные выше данные и вычисляют поправочные коэффициенты путем отношения значения параметра при tВХ=+15°C к значениям параметра в заданном диапазоне температур на входе в двигатель (Табл.2)

Таблица 2
tВХ, °C -15 ±0 +15 +30
KR 0,97 0,99 1 1,021
Kn 1,02 1,01 1 1

Затем определяют параметры при стандартных атмосферных условиях (МСА)

R М С А = R × K R × 760 В а = 985 × 0,99 × 760 745 = 995 к г с ,

nMCA=n×Kn=98,8×1,01=99,79%

и вносят полученные данные в сопроводительную документацию соответствующей группы ТРД.

Используют полученные выше параметры ТРД для вычисления соответствующих параметров применительно к температурно-климатическим условиям конкретных районов эксплуатации двигателей в диапазоне рабочих температур наружного воздуха tВХ=±50°C. Экстремальные для указанного диапазона температур значения параметров ТРД, полученные на основе результатов испытаний с использованием математической модели и данных при стандартных атмосферных условиях (МСА), представлены в Табл.3 и Табл.4.

Таблица 3
tВХ, °C - температура на входе в ТРД -50 -15 0 +15 +20 +50
R, кгс - усилие от тяги 1200 1000 980 970 950 900
n, % - частота вращения 96 98 99 100 100 100
Таблица 4
tВХ, 5°C -50 -15 0 +15 +20 +50
KR 0,81 0,97 0,99 1 1,021 1,078
Kn 1,042 1,02 1,01 1 1 1

Из Табл.3 и Табл.4 видно, что тяга в экстремальном диапазоне температур от (-50)°C до (+50)°C изменяется на одну треть при изменении оборотов на 4%.

Таким образом, изобретение позволяет повысить достоверность результатов испытаний турбореактивных двигателей с учетом принятых программ управления.

Изложенную выше последовательность испытания ТРД применяют для оценки изменения тяги для различных температурно-климатических условий и режимов работы двигателя.

1. Способ доводки опытного турбореактивного двигателя, характеризующийся тем, что доводке подвергают опытный двигатель, выполненный двухконтурным, двухвальным, при этом доводку двигателя производят поэтапно, для чего разрабатывают программу и алгоритмы доводочных испытаний опытного ТРД; на каждом этапе подвергают испытаниям на соответствие заданным параметрам статистически репрезентативное количество от одного до пяти экземпляров и проводят обследование состояния каждого испытанного из упомянутого количества экземпляров опытного двигателя; для анализа и оценки состояния производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного двигателя, обследуют и заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль, в том числе компрессор низкого давления (КНД) с входным направляющим аппаратом (ВНА), содержащим силовые радиальные стойки, состоящие из неподвижного полого и управляемого подвижного элементов и равномерно разнесенные в плоскости входного сечения с угловой частотой размещения стоек в диапазоне (3,0÷4,0) ед./рад, а также ротор с валом, содержащим не более четырех рабочих колес с системой лопаток; газогенератор, включающий сборочные узлы - промежуточный корпус, компрессор высокого давления, основную камеру сгорания и турбину высокого давления; последовательно расположенные за газогенератором, соосно установленные турбину низкого давления; смеситель; фронтовое устройство, форсажную камеру сгорания и всережимное поворотное реактивное сопло, включающее поворотное устройство, разъемно прикрепленное неподвижным элементом к форсажной камере сгорания, и регулируемое реактивное сопло, аналогично прикрепленное к подвижному элементу поворотного устройства с возможностью выполнения поворотов для изменения направления вектора тяги; а также установленный над основной камерой сгорания во внешнем контуре модуль воздухо-воздушный теплообменник, обследуя любой не менее чем из шестидесяти трубчатых блок-модулей последнего, кроме того, обследуют и производят доводку коробки приводов двигательных агрегатов (КДА) и объединяющих указанные модули электрическую, пневматическую, гидравлические - топливную и масляную системы, включая замену датчиков, командных блоков, исполнительных механизмов и кабелей систем диагностики и автоматического управления двигателем; при этом подвергают доводке опытный ТРД, ось вращения указанного поворотного устройства реактивного сопла которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°° по часовой стрелке для правого двигателя и на угол не менее 30° против часовой стрелки для левого двигателя; причем в программу испытаний с последующей доводочной доработкой включают испытания двигателя на определение влияния климатических условий на изменение эксплуатационных характеристик опытного ТРД; для этого подвергают испытанию не менее чем один, для репрезентативности три-пять опытных двигателей; испытания опытного двигателя проводят на различных режимах, параметры которых соответствуют параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, производят замеры и осуществляют приведение полученных значений параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части ТРД при изменении атмосферных условий, при этом предварительно создают математическую модель ТРД, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти идентичных ТРД, а затем по математической модели определяют параметры двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях ТРД.

2. Способ доводки опытного турбореактивного двигателя по п.1, отличающийся тем, что испытания ТРД проводят с измерением параметров его работы на различных режимах, параметры которых соответствуют по величине и предельным значениям параметров полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти двигателей, а затем по математической модели определяют параметры двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях, и с учетом полученных данных выполняют последующий цикл испытаний с нагружением двигателя, в процессе которого оценивают изменение параметров.

3. Способ доводки опытного турбореактивного двигателя по п.1, отличающийся тем, что доводке подвергают опытный двигатель, ВНА КНД которого содержит двадцать три радиальные стойки, соединяющие наружное и внутреннее кольца ВНА с возможностью передачи нагрузок от внешнего корпуса двигателя на переднюю опору, причем часть стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД.

4. Способ доводки опытного турбореактивного двигателя по п.3, отличающийся тем, что доводке подвергают опытный ТРД, площадь фронтальной проекции входного проема Fвх.пр ВНА КНД которого, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе внутренним контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружнего кольца ВНА в плоскости входного проема.



 

Похожие патенты:

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения. В способе эксплуатации ТРД перед каждым запуском двигателя осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически производят профилактические осмотры и обслуживание модулей, узлов и коммуникационных систем.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Гибридный турбореактивный авиационный двигатель содержит камеру сгорания и расположенный вне камеры электрохимический генератор на топливных элементах, связанные входом с источником углеводородного топлива и потоком сжатого в двигателе воздуха, и контроллер.

Гибридный двойной газотурбинный двигатель является аналогом и воздушно-реактивного двигателя, и газовой турбины и представляет из себя турбину в турбине, расположенные соосно, главным отличием которого является то, что воздух (рабочее тело) в конфузорной части не сжимается, а разгоняется и направляется в сопла, где установлена или установлены камеры сгорания и где полученная воздушная смесь (или смеси) расширяется и смешивается между собой и направляется на лопатки ротора, на одном валу с которым может быть установлена дополнительная турбина или генератор.

Изобретение относится к машиностроению. .

Изобретение относится к системам и способам использования алгоритма регулировки динамики горения совместно с камерой сгорания с множеством индивидуальных отсеков.

Изобретение относится к узлам устройств, содержащих средства уплотнения. .

Горелка // 2459146
Изобретение относится к области энергетики. .

Изобретение относится к уплотнительной технике, в частности, для обеспечения непроницаемости зазора между ротором и статором. .

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя (ГТД), при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в порядке замены на очередном ремонтируемом двигателе. При этом капитально отремонтированный двигатель испытывают по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Также представлены способ капитального ремонта партии, а также газотурбинный двигатель, отремонтированный согласно настоящему способу. Изобретение позволяет уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества ГТД и достоверность экспериментально проверенного ресурса и надежности двигателя. 6 н. и 17 з.п. ф-лы, 1 ил.
Наверх