Способ выставки осевого зазора в газодинамическом подвесе оси вращения ротора гиромотора

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве гиромоторов с газодинамическим подвесом оси вращения ротора, состоящего из двух полусферических опорных узлов, каждый из которых содержит опору и фланец. Технический результат - расширение функциональных возможностей. Для этого в известном способе выставки зазора в газодинамическом подвесе оси вращения ротора гиромотора после предварительной сборки гиромотора с установкой опор на оси вращения ротора, фиксации опор гайками, определения величины перемещения опор в каждом из двух полусферических опорных узлов, разборки гиромотора, съема материала с внутренней базовой поверхности опор в каждом из двух полусферических опорных узлов, осуществляют окончательную сборку гиромотора с установкой опор на оси вращения ротора, фиксацию опор гайками с моментом затяжки равным Мрас. При этом после предварительной сборки гиромотора и установки опор с гайками на оси осуществляют их затяжку моментом Мдоп>М>Мрас, выдерживают в этом состоянии не менее 24 часов, уменьшают момент фиксации до нуля, повторно фиксируют опоры моментом затяжки равным Мрас, после чего измеряют расстояния между внешними базовыми плоскостями опор и между внешними базовыми плоскостями фланцев. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве гиромоторов с газодинамическим подвесом оси вращения ротора, состоящим из двух полусферических опорных узлов, каждый из которых содержит опору и фланец [Гиродвигатели // под редакцией И.Н. Орлова // М.: Машиностроение, 1983, с.38].

Известен способ сборки опоры на газовой смазке [АС СССР №609132, 1984], в котором для выставки рабочего зазора предусматривается количественная оценка величины зазора по частоте собственных колебаний ротора. Недостатком способа является то, что он обладает высокой трудоемкостью, так как реализуется в уже собранном гироскопе.

Наиболее близким по технической сущности и достигаемому положительному эффекту к заявленному изобретению является способ выставки рабочего зазора газодинамической полусферической опоры [АС СССР №1840673, 1985], который принимается за прототип. В способе-прототипе выполняются следующие технологические операции:

1. Предварительная сборка гиромотора с установкой опор на оси вращения ротора.

2. Фиксация опор на оси гайками с моментом затяжки, равным Мрас, определенным, исходя из надежности фиксации опор при всех заданных внешних воздействиях.

3. Установка гиромотора в положение, при котором ось вращения ротора вертикальна.

4. Определение суммарного осевого зазора δос между сферическими рабочими поверхностями опор и фланцев при перемещении оси с опорами по вертикали до механического контакта поочередно с верхним и нижним фланцем.

5. Определение величины съема материала с внутренней базовой поверхности опор на величину, определяемую формулой:

,

где:

Δ1, Δ2 - величина съема материала с внутренней базовой поверхности опор,

δос - измеренный суммарный осевой зазор,

δ - требуемый суммарный осевой зазор.

6. Разборка гиромотора.

7. Съем материала с внутренней базовой поверхности опор на величину, рассчитанную по поз.5.

8. Окончательная сборка гиромотора с установкой опор на оси вращения ротора в новое положение, определяемое величиной съема материала.

9. Фиксация опор на оси гайками с моментом затяжки, равным Мрас.

Недостатком способа является малая точность выставки осевого зазора между рабочими сферическими поверхностями опор и фланцев. Указанный недостаток обусловлен:

- Неравнозначностью замены линейного перемещения от касания опор и фланцев в верхней и нижней точке перемещением от центра сферы верхнего до центра сферы нижнего фланца из-за имеющейся неопределенности места касания вверху и внизу, а также имеющейся фактической разницей (в пределах поля допуска на детали) величин радиусов опор и фланцев, формирующих верхний и нижний сферический аэродинамический зазор в опоре.

- Возможностью изменения осевого зазора при циклических внешних воздействиях. Затяжка резьбового соединения ось-гайка тарированным моментом Мрас. создает в резьбовом соединении концентраторы напряжений, весьма близкие к пределу текучести материала. Как известно, концентраторы напряжений, близкие к пределу текучести, имеют неизбежную тенденцию к релаксации. Релаксации концентраторов напряжений особенно способствует и провоцирует ее течение имеющаяся при эксплуатации широкая гамма внешних воздействий, связанных с запуском и остановкой гиромотора, его вибрацией от остаточной динамической неуравновешенности и внешними вибронагрузками при испытаниях, значительными (+70°C÷50°C) термическими нагрузками при проведении тех же испытаний. Релаксация концентраторов напряжений приводит к переходу упругой деформации сжатия в резьбе в пластическую, что однозначно дает в итоге изменение осевого зазора.

Задачей настоящего изобретения является совершенствование технологического процесса производства гироскопов с газодинамическим подвесом оси вращения ротора гиромотора.

Достигаемый технический результат - повышение точности выставки осевого зазора между рабочими сферическими поверхностями опор и фланцев в газодинамическом подвесе оси вращения ротора гиромотора и, как следствие, повышение его равномерности.

Поставленная задача решается тем, что в известном способе выставки осевого зазора в газодинамическом подвесе оси вращения ротора гиромотора, состоящего из двух полусферических опорных узлов, каждый из которых содержит опору и фланец, включающем предварительную сборку гиромотора с установкой опор на оси вращения ротора, фиксацию опор гайками, определение величины перемещения опор в каждом из двух полусферических опорных узлов, разборку гиромотора, съем материала с внутренней базовой поверхности опор в каждом из двух полусферических опорных узлов, окончательную сборку гиромотора с установкой опор на оси вращения ротора, фиксацию опор гайками с моментом затяжки равным Мрас, после предварительной сборки гиромотора с установкой опор с гайками на оси осуществляют их затяжку моментом Мдоп>М>Мрас, выдерживают в этом состоянии не менее 24-х часов, изменяют момент затяжки до значения равного нулю, затем увеличивают до Мрас, после чего измеряют расстояния между внешними базовыми плоскостями опор и между внешними базовыми плоскостями фланцев, а величину перемещения опор в каждом опорном узле определяют по формуле:

,

где:

Δ1, Δ2 - величина перемещения опор на оси вращения ротора до совмещения центра ее сферической рабочей поверхности с центром сферической рабочей поверхности фланца в каждом из двух полусферических узлов,

K=M+k1+k2,

k1, k2 - положение центра сферической поверхности опоры относительно ее внешней базовой поверхности.

И=L+h1+h2,

L - расстояние между внешними базовыми поверхностями фланцев,

h1, h2 - положение центра сферической поверхности фланца относительно ее внешней базовой поверхности.

М - расстояние между внешними базовыми поверхностями опор,

Предлагаемое изобретение поясняется чертежами фиг.1 и 2.

На фиг.1 приведена принципиальная схема гиромотора.

На фиг.2 приведена схема измерений для совмещения центров сферических рабочих поверхностей опоры и фланца. На фиг.2 ось вращения ротора гиромотора не показана.

На фиг.1 и 2 приняты следующие обозначения:

1 - ось вращения ротора гиромотора (деталь конструкции),

2, 4 - опоры газодинамического подвеса,

3, 5 - фланцы газодинамического подвеса,

6 - гайки, фиксирующие опоры 2 и 4 на оси 1,

7 - ротор гиромотора,

8 - винты для сборки ротора с фланцами 3 и 5,

A, Б - внутренняя базовая поверхность опор 2 и 4,

B, Г - внешняя базовая поверхность опор 2 и 4,

Е, Д - внешняя базовая поверхность фланцев 3, 5

OO2, OO4 - центры сферических рабочих поверхностей опор 2 и 4,

ОФ3, ОФ5 - центры сферических рабочих поверхностей фланцев 3 и 5,

М - расстояние между внешними базовыми поверхностями Г и В опор 2 и 4,

k1, k2 - положение центров OO2, OO4 сферических рабочих поверхностей опор 2 и 4 относительно внешних базовых поверхностей Г и В,

L - расстояние между внешними базовыми поверхностями Е и Д фланцев 3 и 5,

h1, h2 - положение центров ОФ3, ОФ5 сферических рабочих поверхностей фланцев 3 и 5 относительно внешних базовых поверхностей Е и Д.

Реализация предлагаемого способа осуществляется при выполнении следующей последовательности технологических операций:

1) Предварительная сборка гиромотора (фиг.1) с установкой опор 2 и 4 на оси 1 вращения ротора 7.

2) Фиксация опор 2 и 4 на оси 1 гайками 6 с моментом М затяжки, значение которого находится в пределах Мдоп>М>Мрас, где Мрас определяется, как и в способе-прототипе, исходя из надежности фиксации опор при всех заданных внешних воздействиях. Мдоп - момент затяжки, при котором напряжения в резьбовом соединении становятся равны пределу текучести σт.

3) Выдержка в этом состоянии не менее 24-х часов. При этом происходит процесс релаксации концентраторов напряжений в резьбовом соединении и сглаживание микронеровностей на поверхности гаек 6, внутренней базовой поверхности В, Г опор 2 и 4, и на соответствующих им базовых поверхностях оси 1 ротора 7. Время выдержки определено по методике [Федосьев П.И. и др. Курс сопротивления материалов // М.: Машгиз, 1996, с.440], заключающейся в определении скорости прохождения 95% релаксационных изменений напряженных состояний материала 40ХНЮ-ВИ [ТУ 14-2740 -79, НИИ черн. мет. им. Бардина].

4) Изменение момента затяжки до М=0. При этом снимаются все концентраторы напряжений и фиксируются положения всех контактных поверхностей в соединении, деформация которых перешла из упругой формы в пластическую.

5) Увеличение момента до Мрас. При этом, поскольку контактные поверхности уже релаксировались под действием большего момента, предпосылки к последующей релаксации под действием меньшего момента существенно уменьшаются.

6) Измерение расстояния М между внешними базовыми плоскостями В и Г опор 2 и 4 и расстояния L между внешними базовыми поверхностями Е и Д фланцев 3 и 5.

7) Определение величин перемещений Δ1 и Δ2 опор 2 и 4 вдоль оси 1 вращения ротора 7 в каждом из двух полусферических опорных узлов, необходимых для совмещения центров ОО2, OО4 сферических рабочих поверхностей опор 2 и 4 с центрами ОФ3, ОФ5 сферических рабочих поверхностей фланцев 3 и 5 по выше приведенной формуле:

,

при этом величины k1, k2 и h1, h2 определяются соответственно при изготовлении опор и фланцев.

8) Разборка гиромотора.

9) Совмещение центров OO2, OO4 сферических рабочих поверхностей опор 2 и 4 с центрами ОФ3, ОФ5 сферических рабочих поверхностей фланцев 3 и 5 путем перемещения опор 2 и 4 вдоль оси 1 вращения ротора 7 путем съема материала с внутренних базовых поверхностей А и Б опор 2 и 4 на величины определенные по пункту 6.

10) Окончательная сборка гиромотора с установкой опор 2 и 4 на оси 1 вращения ротора 7.

11) Фиксация опор 2 и 4 гайками 6 с моментом затяжки, равным Мрас.

При реализации предлагаемого способа, точность выставки осевого зазора в газодинамическом подвесе оси вращения ротора гиромотора, по сравнению со способом, принятым за прототип, повышается. Повышение происходит за счет использования прямых измерений положений центров сфер опор 2, 4 и фланцев 3, 5 и операций по их совмещению, а не косвенных измерений, как в прототипе, а также за счет исключения вероятности изменения зазора в процессе последующей эксплуатации гироскопа путем изменения усилий затяжки и порядка фиксации опор на оси.

На предприятии предлагаемый способ проверен. Получены положительные результаты. В настоящее время разрабатывается техническая документация для использования предлагаемого технического решения при производстве поплавковых двухстепенных гироскопов.

1. Способ выставки осевого зазора в газодинамическом подвесе оси вращения ротора гиромотора, состоящего из двух полусферических опорных узлов, каждый из которых содержит опору и фланец, включающий предварительную сборку гиромотора с установкой опор на оси вращения ротора, фиксацию опор на оси гайками, определение величины перемещения опор в каждом из двух полусферических опорных узлов, разборку гиромотора, съем материала с внутренней базовой поверхности опор в каждом из двух полусферических опорных узлов, окончательную сборку гиромотора с установкой опор на оси вращения ротора, фиксацию опор гайками с моментом затяжки, равным Мрас, отличающийся тем, что после предварительной сборки гиромотора и фиксации опор гайками измеряют расстояния между внешними базовыми плоскостями опор и между внешними базовыми плоскостями фланцев, а величину перемещения опор в каждом опорном узле определяют по формуле:
,
где:
Δ1, Δ2 - величина перемещения опор на оси вращения ротора до совмещения центра ее сферической рабочей поверхности с центром сферической рабочей поверхности фланца в каждом из двух полусферических узлов,
K=M+k1+k2,
k1, k2 - положение центра сферической поверхности опоры относительно ее внешней базовой поверхности,
H=L+h1+h2,
L - расстояние между внешними базовыми поверхностями фланцев,
h1, h2 - положение центра сферической поверхности фланца относительно ее внешней базовой поверхности.
М - расстояние между внешними базовыми поверхностями опор.

2. Способ выставки осевого зазора по п.1, отличающийся тем, что после предварительной сборки гиромотора с установкой опор на оси вращения ротора фиксацию опор на оси гайками осуществляют моментом Мдоп>М>Мрас, выдерживают в этом состоянии не менее 24-х часов, изменяют момент затяжки до нуля, затем увеличивают до Мрас.



 

Похожие патенты:

Изобретение относится к магнитному курсоуказанию и навигации и может быть использовано на летательных аппаратах для определения коэффициентов девиации, описывающих изменения напряженности магнитного поля земли (МПЗ), вносимые летательным аппаратом (ЛА) непосредственно в полете, и компенсации этих изменений при вычислении магнитного курса ψм.

Изобретение относится к области приборостроения и может найти применение в системах ориентации подвижных объектов. Технических результат - повышение надежности и точности.

Изобретение относится к навигационной технике и может быть использовано для контроля гиростабилизированных платформ инерциальной системы космического назначения при заводских и предпусковых испытаниях систем управления ракетоносителей, разгонных блоков, космических и летательных аппаратов.

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях.

Предложенное изобретение относится к средствам калибровки инерциальных датчиков, в частности, в полевых условиях. Предложенный способ калибровки инерциальных датчиков, установленных на рабочем оборудовании, включает в себя сбор данных от одного или более инерциальных датчиков и одного или более температурных датчиков, расположенных вблизи инерциальных датчиков, в период, когда оборудование не работает, и корректировку математической модели температурной систематической ошибки для инерциальных датчиков на основе собранных данных от инерциальных датчиков и температурных датчиков, при этом сбор данных начинают через заранее установленное время после выключения рабочего оборудования, при этом на инерциальные датчики и температурные датчики, образующие сенсорную подсистему, периодически подают питание для сбора данных в период, когда рабочее оборудование не работает.

Изобретение относится к области точного приборостроения и может быть использовано при создании твердотельных волновых гироскопов и систем ориентации и навигации на их основе.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Заявлен способ определения погрешности двухстепенного поплавкового гироскопа, включающий установку гироскопа на неподвижном основании, включение в режим обратной связи датчик угла - усилитель - преобразователь - датчик момента, запуск гиромотора, нагрев гироскопа, измерение тока в цепи датчика момента обратной связи, определение погрешности гироскопа.

Изобретение относится к области измерительной техники, в частности к испытательному оборудованию для калибровки приборов системы навигации и топопривязки. В установочной площадке внутренней рамы динамического двухосного стенда размещены цилиндрические секторы со сквозными пазами, выполненными по дугам окружности концентрично наружной и внутренней поверхностям.

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру, допускающую закрепление гиромотора экваториальной либо полярной осями вдоль оси подвеса, средство измерения вибраций в виде первого магнитоэлектрического датчика, обмотки которого закреплены в корпусе устройства в поле магнитов, установленных на оси подвеса, и состыкованы через измерительный усилитель со средством измерения сигнала и усилителем мощности, нагрузкой которого являются обмотки второго магнитоэлектрического датчика, установленного соосно с первым датчиком, подвес выполнен в виде вала, соединенного с камерой и вертикально установленного в подшипниках корпуса, расположенного на подставке; токоподводы гиромотора выполнены в виде трех пружин, противоположные концы которых через контактные платы стыкуются с камерой и корпусом стенда.

Изобретение относится к способу изготовления газодинамического подшипника поплавкового гироскопа. Осуществляют формообразование фланца и опоры с полусферическими встречно обращенными рабочими поверхностями.

Изобретение относится к области приборостроения и может найти применение в системах юстировки бесплатформенных инерциальных систем ориентации. Технический результат - повышение точности. Для этого определение котировочных углов рассогласования между измерительными осями бесплатформенной инерциальной системой ориентации и строительными осями объекта осуществляют без использования специальных измерительных приспособлений. А именно, юстировочные углы формируются на основе измерительных данных от инерциальной системы ориентации в двух контрольных положениях. 3 ил.

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру с возможностью закрепления гиромотора экваториальной либо полярной осями вдоль вертикальной оси подвеса, первый и второй магнитоэлектрические датчики, установленные соосно в корпусе стенда, измерительный усилитель, усилитель мощности, нагрузкой которого является обмотка второго датчика, и токоподводы, противоположные концы которых через контактные платы соединены с камерой и корпусом. При этом обмотка первого датчика соединена через измерительный усилитель со средством измерения сигнала, подвес соединен с камерой и установлен в подшипниках корпуса, токоподводы выполнены в виде пружин с возможностью изменения коэффициента жесткости. Дополнительно в конструкцию введен узкополосный фильтр, выходом соединенный с входом усилителя мощности, а входом соединенный с выходом измерительного усилителя, при этом фильтр обеспечивает усиление либо подавление отдельной гармоники сигнала с выхода измерительного усилителя. Технический результат заключается в повышении точности контроля вибраций гиромотора. 4 ил.

Изобретение относится к области приборостроения и может быть использовано для определения температурных зависимостей характеристик трехосного лазерного гироскопа (ЛГ) и маятниковых акселерометров (МА) в составе инерциальных измерительных блоков (ИИБ). Технический результат - расширение функциональных возможностей. Для этого на стенде ИИБ с трехосным ЛГ и тремя МА, оснащенными датчиками вращения, на каждом такте измерений определяют количество импульсов для каждого из трех датчиков вращения ЛГ, пропорциональное проекции вектора угла поворота ЛГ за один такт измерений на каждую из трех осей чувствительности ЛГ, определяют средние за один такт измерений значения напряжений на выходе трех МА, пропорциональные проекциям вектора кажущегося линейного ускорения на оси чувствительности МА, и средние за один такт измерений значения температуры на каждом из трех датчиков вращения трехосного ЛГ и трех МА, по которым определяют температурные зависимости всех масштабных коэффициентов ЛГ и МА. 2 ил.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов с газодинамическим подвесом оси вращения ротора гиромотора. Технический результат - повышение точности. Для этого в известном способе определения погрешности двухстепенного поплавкового гироскопа с газодинамическим подвесом ротора гиромотора путем измерения его выходного сигнала при повороте гироскопа относительно вектора силы тяжести вокруг входной и выходной осей на 360°, при ориентации оси поворота в одном направлении, преимущественно по полуденной линии, вращение гироскопа относительно вектора силы тяжести вокруг каждой оси производят при двух частотах вращения ротора.

Изобретение относится к области измерения и может быть использовано при метрологических исследованиях навигационных приборов, использующих сигналы с вращающегося трансформатора. Технический результат заключается в расширении функциональных возможностей за счет введения режима обеспечения измерения уровня помехоустойчивости. Устройство для измерения уровня помехоустойчивости навигационных приборов, использующих сигналы с вращающегося трансформатора, содержит углозадающий узел, вал которого кинематически связан с вращающимся трансформатором и является кинематическим входом устройства и источник переменного тока. При этом дополнительно введен анализатор сигнала, подключенный к синусной и косинусной обмоткам вращающегося трансформатора, являющегося выходом устройства, трансформатор, через первичную обмотку которого источник переменного напряжения подключен к обмотке возбуждения вращающегося трансформатора, соединенные последовательно формирователь сигнала помех и буфер, выход которого подключен к вторичной обмотке трансформатора. Предложенное устройство используется для измерения уровня помехоустойчивости интегрированной системы резервных приборов. 1 ил.

Изобретение относится к гироскопической технике, а именно к способам коррекции дрейфа гироскопа с ротором на сферической шарикоподшипниковой опоре. Сущность изобретения заключается в том, что способ коррекции дрейфа гироскопа с двухфазным бесколлекторным двигателем постоянного тока, содержащего статор, ротор на сферической шарикоподшипниковой опоре, датчики угла и датчики момента, включает этапы вращения ротора, измерения дрейфа и его коррекцию, при этом коррекцию дрейфа проводят непосредственно в процессе его измерения путем компенсации постоянной составляющей электрического тока в разных обмотках статора. Устройство для коррекции дрейфа гироскопа с двухфазным бесколлекторным двигателем постоянного тока содержит сумматоры и регулировочные резисторы, сигналы с которых позволяют компенсировать постоянные составляющие электрических токов в фазных обмотках статора. Технический результат - снижение трудоемкости изготовления и повышение точности гироскопического прибора. 2 н.п. ф-лы, 2 ил.

Изобретение относится к метрологическому обеспечению - калибровке инклинометров, выполненных на основе трехосевого акселерометра. Способ предполагает при калибровке измерение проекций вектора гравитационного ускорения G ¯ на оси акселерометра при его вращении вокруг двух осей, каждый раз в четырех ортогональных положениях. По результатам измерений определяют статическую ошибку каждой оси и отношение коэффициентов чувствительностей по двум парам осей. При использовании инклинометра устанавливают акселерометр на объект исследования, проводят измерения проекций вектора гравитационного ускорения G ¯ на оси акселерометра, компенсируют их статические ошибки, нормируют различия в чувствительности осей акселерометра и вычисляют по простым соотношениям углы наклона объекта по отношению к вектору гравитационного ускорения G ¯ . Технический результат - упрощение способа калибровки акселерометрического трехосевого инклинометра. 3 ил.

Изобретение относится к области приборостроения и может быть использовано при производстве твердотельных волновых гироскопов и систем ориентации и навигации на их основе. При определении масштабного коэффициента твердотельный волновой гироскоп устанавливают на платформу поворотного стола и при работе гироскопа в разомкнутом режиме вращают равномерно платформу поворотного стола в одном направлении, контролируя угол поворота волны резонатора относительно корпуса гироскопа системой его датчиков угла на выбранном угловом промежутке. Затем изменяют направление вращения платформы на противоположное и измеряют изменения углового положения волны на выбранном промежутке, после чего, используя значения скоростей дрейфа волны при прямом и обратном вращении, определяют масштабный коэффициент с помощью аналитического выражения. Изобретение обеспечивает повышение точности определения масштабного коэффициента.

Изобретения относятся к области навигации летательных аппаратов (ЛА) и могут быть использованы для определения контрольных значений параметров пространственно-угловой ориентации ЛА при летных испытаниях пилотажно-навигационного оборудования (ПНО). Технический результат - расширение функциональных возможностей. Для этого при испытаниях ПНО осуществляют прием и обработку измерений инерциальной навигационной системы (ИНС), корректирование данных ИНС автономным средством и радионавигационное корректирование данных ИНС спутниковой навигационной системой (СНС) на основе базовой корректирующей станции (БКС) или контрольной корректирующей станции (ККС), измерения высоты полета воздушным датчиком или системой (ВДС), осуществляют аэрофотосъемку земной поверхности цифровым аэрофотоаппаратом, а также для формирования ортопланов при отсутствии топографических карт - лазерную съемку земной поверхности бортовым лазерным локатором. При этом для комплексной обработки информации (КОИ) в процессе и после полета, а именно, для предварительной обработки измерительной информации в блоке (ПОИИ), обеспечивают формирование векторов измерений (ФВИ) с контролем для защиты фильтра Калмана, оценки погрешностей ИНС (ОП ИНС) при использовании модифицированного фильтра Калмана, вычисления навигационных параметров (ВНП) с одновременным подключением к нему второго выхода блока ПОИИ. 2 н. и 2 з.п.ф-лы, 4 ил.

Группа изобретений относится к установке и работе инерционных датчиков, таких как, например, датчики пространственного положения (гироскопы) или датчики движения (акселерометры) на борту транспортного средства. Техническим результатом является уменьшение погрешности измерений. В способе осуществляют калибровку устройства (S) инерционного датчика, установленного в произвольной позиции на борту транспортного средства (V), на основе формирования (200-500) матрицы (R) преобразования, приспособленной преобразовывать реально измеренные данные динамических параметров транспортного средства (V), найденных в локальной системе (x, y, z) координат, в данные, указывающие динамические параметры транспортного средства (V) в системе (X, Y, Z) координат транспортного средства, причем значение каждого элемента матрицы (R) преобразования модифицируют посредством наложения ограничения ортогональности (600) матрицы. 2 н. и 13 з.п. ф-лы, 6 ил.
Наверх