Сигнализация расширенных форматов кадров mpdu, a-mpdu и a-msdu

Изобретение относится к системам связи. Технический результат заключается в обеспечении разрешения более длинных MPDU в A-MPDU. Предложены способы для сигнализации расширенных размеров для форматов кадров протокольного блока данных (MPDU) управления доступом к среде (MAC), агрегированного MPDU (A-MPDU) и агрегированного сервисного блока данных (A-MSDU) MAC. Указание максимальной длины A-MPDU выражается в виде поля порядка максимальной длины с использованием трех битов в элементе возможности сверхвысокой пропускной способности (VHT). 7 н. и 25 з.п. ф-лы, 13 ил.

 

По настоящей патентной заявке испрашивается приоритет согласно предварительной патентной заявке США № 61/372,548, озаглавленной "Сигнализация для расширенных форматов кадров MPDU, A-MPDU и A-MSDU", поданной 11 августа 2010 г.; и предварительной патентной заявке США № 61/374,894, озаглавленной "Сигнализация для расширенных форматов кадров MPDU, A-MPDU и A-MSDU", поданной 18 августа 2010 г.; переуступленных настоящему патентообладателю, раскрытия которых полностью включены в настоящий документ посредством ссылки.

Область техники, к которой относится изобретение

Некоторые аспекты настоящего раскрытия относятся, в общем, к беспроводной связи, и в частности, к сигнализации информации о форматах кадров протокольного блока данных (MPDU) управления доступом к среде (MAC), агрегированного MPDU (A-MPDU) или агрегированного сервисного блока данных (A-MSDU) MAC.

Уровень техники

Чтобы решить проблему увеличения требований по ширине полосе, которые накладываются на систему беспроводной связи, разрабатываются различные схемы для обеспечения возможности множеству пользовательских терминалов осуществлять связь с одной точкой доступа путем совместного использования канальных ресурсов, при этом достигая высоких пропускных способностей. Технология множественного входа или множественного выхода (MIMO) представляет один такой подход, который недавно появился в качестве распространенного способа для систем связи следующего поколения. MIMO-технология была задействована в нескольких появляющихся стандартах беспроводной связи, таких как стандарт Института инженеров по электротехнике и радиоэлектронике (IEEE) 802.11. IEEE 802.11 обозначает набор стандартов радиоинтерфейса беспроводной локальной сети (WLAN), разработанных рабочей группой IEEE 802.11 для связи ближнего действия (например, от десятков метров до нескольких сотен метров).

Беспроводная MIMO-система задействует некоторое количество (NT) передающих антенн и некоторое количество (NR) принимающих антенн для передачи данных. MIMO-канал, формируемый NT передающими и NR принимающими антеннами, может быть разложен на NS пространственных потоков, где, всех практических целей, NS<=min{NT,NR}. NS пространственных потоков может использоваться для передачи NS независимых потоков данных для достижения большей общей пропускной способности.

В беспроводных сетях с одной точкой доступа и множеством станций одновременные передачи к различным станциям могут осуществляться на множестве каналов как в восходящем, так и в нисходящем направлениях.

Раскрытие изобретения

Некоторые аспекты настоящего раскрытия обеспечивают способ беспроводной связи. Способ, в общем, включает в себя генерирование кадра, содержащего по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше или равное 4095 байт, максимальная длина A-MPDU содержит значение больше 64 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт; и передачу кадра.

Некоторые аспекты настоящего раскрытия обеспечивают способ беспроводной связи. Способ, в общем, включает в себя генерирование кадра, содержащего группу из одного или нескольких подкадров, для одной передачи, причем по меньшей мере один из подкадров содержит указание длины по меньшей мере одного из подкадров и причем это указание содержит более 12 бит; и передачу кадра.

Некоторые аспекты настоящего раскрытия обеспечивают устройство для беспроводной связи. Устройство, в общем, включает в себя цепь, сконфигурированную для генерирования кадра, содержащего по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше или равное 4095 байт, максимальная длина A-MPDU содержит значение больше 64 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт; и передатчик, сконфигурированный для передачи кадра.

Некоторые аспекты настоящего раскрытия обеспечивают устройство для беспроводной связи. Устройство, в общем, включает в себя цепь, сконфигурированную для генерирования кадра, содержащего группу из одного или нескольких подкадров, для одной передачи, причем по меньшей мере один из подкадров содержит указание длины по меньшей мере одного из подкадров и причем это указание содержит более 12 бит; и передатчик, сконфигурированный для передачи кадра.

Некоторые аспекты настоящего раскрытия обеспечивают устройство для беспроводной связи. Устройство, в общем, включает в себя средство для генерирования кадра, содержащего по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше или равное 4095 байт, максимальная длина A-MPDU содержит значение больше 64 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт; и средство передачи кадра.

Некоторые аспекты настоящего раскрытия обеспечивают устройство для беспроводной связи. Устройство, в общем, включает в себя средство для генерирования кадра, содержащего группу из одного или нескольких подкадров, для одной передачи, причем по меньшей мере один из подкадров содержит указание длины по меньшей мере одного из подкадров и причем это указание содержит более 12 бит; и средство передачи кадра.

Некоторые аспекты настоящего раскрытия обеспечивают компьютерно-программный продукт для беспроводной связи. Компьютерно-программный продукт, в общем, включает в себя машиночитаемый носитель, имеющий инструкции, исполняемые для генерирования кадра, содержащего по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше или равное 4095 байт, максимальная длина A-MPDU содержит значение больше 64 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт; и для передачи кадра.

Некоторые аспекты настоящего раскрытия обеспечивают компьютерно-программный продукт для беспроводной связи. Компьютерно-программный продукт, в общем, включает в себя машиночитаемый носитель, имеющий инструкции, исполняемые для генерирования кадра, содержащего группу из одного или нескольких подкадров, для одной передачи, причем по меньшей мере один из подкадров содержит указание длины по меньшей мере одного из подкадров и причем это указание содержит более 12 бит; и для передачи кадра.

Некоторые аспекты обеспечивают точку доступа для беспроводной связи. Точка доступа, в общем, включает в себя по меньшей мере одну антенну, цепь, сконфигурированную для генерирования кадра, содержащего по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше или равное 4095 байт, максимальная длина A-MPDU содержит значение больше 64 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт; и передатчик, сконфигурированный для передачи кадра посредством по меньшей мере одной антенны.

Некоторые аспекты обеспечивают точку доступа для беспроводной связи. Точка доступа, в общем, включает в себя по меньшей мере одну антенну, цепь, сконфигурированную для генерирования кадра, содержащего группу из одного или нескольких подкадров, для одной передачи, причем по меньшей мере один из подкадров содержит указание длины по меньшей мере одного из подкадров и причем это указание содержит более 12 бит; и передатчик, сконфигурированный для передачи кадра посредством по меньшей мере одной антенны.

Краткое описание чертежей

Для того, чтобы вышеперечисленные признаки настоящего раскрытия могли быть всецело поняты, более подробное описание осуществления изобретения, сущность которого кратко приведена выше, может выполняться со ссылками на аспекты, некоторые из которых иллюстрируются на приложенных чертежах. Однако следует заметить, что приложенные чертежи иллюстрируют только некоторые примерные аспекты раскрытия изобретения и, следовательно, не должны рассматриваться как ограничивающие его объем, поскольку описание может допускать другие столь же эффективные аспекты.

Фиг. 1 изображает схему сети беспроводной связи в соответствии с некоторыми аспектами настоящего раскрытия.

Фиг. 2 изображает структурную схему иллюстративной точки доступа и пользовательских терминалов в соответствии с некоторыми аспектами настоящего раскрытия.

Фиг. 3 изображает структурную схему иллюстративного беспроводного устройства в соответствии с некоторыми аспектами настоящего раскрытия.

Фиг. 4 изображает поле параметров агрегированного протокольного блока данных управления доступом к среде (MAC) (A-MPDU) в элементе возможности высокой пропускной способности (HT) в стандарте Института инженеров по электротехнике и радиоэлектронике (IEEE) 802.11n.

Фиг. 5 изображает формат подкадра A-MPDU в стандарте IEEE 802.11n.

Фиг. 6 изображает иллюстративные операции для сигнализации размера кадра, которые могут выполняться беспроводным узлом (например, точкой доступа), в соответствии с некоторыми аспектами настоящего раскрытия.

Фиг. 7 изображает иллюстративные соотношения между максимальными значениями длины MPDU и значениями длины агрегированного сервисного блока данных (A-MSDU) MAC в соответствии с некоторыми аспектами настоящего раскрытия.

Фиг. 8 изображает предложенный элемент возможности сверхвысокой пропускной способности (VHT) в соответствии с некоторыми аспектами настоящего раскрытия.

Фиг. 9 изображает поле длины кадров в элементе VHT-возможности в соответствии с некоторыми аспектами настоящего раскрытия.

Фиг. 10A и 10B изображают два иллюстративных поля длины кадров в элементе VHT-возможности в соответствии с некоторыми аспектами настоящего раскрытия.

Фиг. 11 изображает иллюстративные операции для сигнализации расширенных форматов кадров MPDU, A-MPDU и A-MSDU в соответствии с некоторыми аспектами настоящего раскрытия.

Фиг. 12 изображает иллюстративную сеть, содержащую базовую станцию и пользовательское оборудование в соответствии с некоторыми аспектами настоящего раскрытия.

Осуществление изобретения

Различные аспекты из некоторых аспектов настоящего раскрытия описаны ниже. Следует понимать, что описанные идеи могут осуществляться во многих разнообразных формах и что любая отдельная структура, функция или и то, и другое, из раскрываемых здесь, приводится только в качестве иллюстрации. На основе описанных идей специалист в данной области техники должен понимать, что любой раскрываемый здесь аспект может осуществляться независимо от любых других аспектов и что два или более из этих аспектов могут быть объединены каким-либо образом. К примеру, устройство может осуществляться или способ может применяться на практике с использованием любого количества аспектов, изложенных здесь. Кроме того, такое устройство может осуществляться или такой способ может применяться на практике с использованием других структур, функциональных возможностей или структур и функциональных возможностей в дополнение к или помимо одного или нескольких из аспектов, изложенных здесь. Более того, отдельный аспект может содержать по меньшей мере один элемент из отдельного пункта формулы изобретения.

Используемое здесь слово "иллюстративный" означает "служащий в качестве примера, частного случая или иллюстрации". Любой аспект, описанный здесь как "иллюстративный", не обязательно должен толковаться как предпочтительный или имеющий преимущества перед другими аспектами. Также используемый здесь термин "традиционные станции", в общем, обозначает узлы беспроводной сети, которые поддерживают стандарт Института инженеров по электротехнике и радиоэлектронике (IEEE) 802.11n или более ранние версии стандарта IEEE 802.11.

Методики многоантенной передачи, описанные здесь, могут использоваться в комбинации с различными беспроводными технологиями, такими как множественный доступ с кодовым разделением (CDMA), мультиплексирование с ортогональным частотным разделением (OFDM), множественный доступ с временным разделением (TDMA), множественный доступ с пространственным разделением (SDMA) и так далее. Множество пользовательских терминалов может одновременно передавать/принимать данные по различным (1) каналам ортогонального кода для CDMA, (2) временным слотам для TDMA или (3) подполосам для OFDM. CDMA-система может осуществлять IS-2000, IS-95, IS-856, широкополосный CDMA (W-CDMA) или некоторые другие стандарты. OFDM-система может осуществлять IEEE 802.11 или некоторые другие стандарты. TDMA-система может осуществлять GSM или некоторые другие стандарты. Эти различные стандарты известны в данной области техники.

Иллюстративная MIMO-система

Фиг. 1 изображает MIMO-систему 100 множественного доступа с точками доступа и пользовательскими терминалами. В целях упрощения только одна точка 110 доступа показана на Фиг. 1. Точкой доступа (AP), в общем, является стационарная станция, которая осуществляет связь с пользовательскими терминалами и также может называться базовой станцией или некоторыми другими терминами. Пользовательский терминал может быть стационарным или мобильным и также может называться мобильной станцией, станцией (STA), клиентом, беспроводным устройством или некоторыми другими терминами. Пользовательским терминалом может быть беспроводное устройство, такое как сотовый телефон, "электронный помощник" (PDA), переносное устройство, беспроводной модем, ноутбук, персональный компьютер и т.д.

Точка 110 доступа может осуществлять связь с одним или несколькими пользовательскими терминалами 120 в любой заданный момент по нисходящей и восходящей линиям связи. Нисходящей линией связи (т.е. прямой линией связи) является линия связи от точки доступа к пользовательским терминалам, а восходящей линией связи (т.е. обратной линией связи) является линия связи от пользовательских терминалов к точке доступа. Пользовательский терминал также может осуществлять одноранговую связь с другим пользовательским терминалом. Системное управляющее средство 130 подключается к точкам доступа и обеспечивает для них координацию и управление.

Система 100 задействует множество передающих и множество принимающих антенн для передачи данных по нисходящей и восходящей линиям связи. Точка 110 доступа оборудуется некоторым количеством Nap антенн и представляет множественный вход (MI) для нисходящих передач и множественный выход (MO) для восходящих передач. Набор Nu выбранных пользовательских терминалов 120 в совокупности представляет множественный выход для нисходящих передач и множественный вход для восходящих передач. В некоторых случаях может быть желательно, чтобы выполнялось условие Nap≥Nu≥1, если потоки символов данных для Nu пользовательских терминалов не мультиплексируются по коду, частоте или времени каким-либо образом. Nu может быть больше Nap, если потоки символов данных могут мультиплексироваться с использованием различных кодовых каналов с CDMA, непересекающихся множеств подполос с OFDM и так далее. Каждый выбранный пользовательский терминал передает пользовательские данные к и/или принимает пользовательские данные от точки доступа. В общем, каждый выбранный пользовательский терминал может быть оборудован одной или множеством антенн (т.е. Nut≥1). Nu выбранных пользовательских терминалов могут иметь одинаковое или различное количество антенн.

MIMO-системой 100 может быть система дуплексной связи с временным разделением (TDD) или система дуплексной связи с частотным разделением (FDD). Для TDD-системы нисходящая и восходящая линии связи совместно используют одну и ту же полосу частот. Для FDD-системы нисходящая и восходящая линии связи используют различные полосы частот. MIMO-система 100 также может задействовать единственную несущую или множество несущих для передачи. Каждый пользовательский терминал может быть оборудован единственной антенной (например, для уменьшения издержек) или множеством антенн (например, когда возможны дополнительные издержки).

Фиг. 2 изображает структурную схему точки 110 доступа и двух пользовательских терминалов 120m и 120x в MIMO-системе 100. Точка 110 доступа оборудуется Nap антеннами 224a-224ap. Пользовательский терминал 120m оборудуется Nut,m антеннами 252ma-252mu, и пользовательский терминал 120x оборудуется Nut,x антеннами 252xa-252xu. Точка 110 доступа является передающим объектом для нисходящей линии связи и принимающим объектом для восходящей линии связи. Каждый пользовательский терминал 120 является передающим объектом для восходящей линии связи и принимающим объектом для нисходящей линии связи. Используемый здесь "передающий объект" является независимо управляемым устройством или устройством, способным передавать данные по частотному каналу, а "принимающий объект" является независимо управляемым устройством или устройством, способным принимать данные по частотному каналу. В следующем описании нижний индекс "dn" обозначает нисходящую линию связи, нижний индекс "up" обозначает восходящую линию связи, Nup пользовательских терминалов выбираются для одновременной передачи по восходящей линии связи, Ndn пользовательских терминалов выбираются для одновременной передачи по нисходящей линии связи, Nup может быть равно или не равно Ndn, и Nup и Ndn могут постоянными значениями или могут изменяться для каждого интервала планирования. Управление пучком или какая-либо другая методика пространственной обработки может использоваться в точке доступа и пользовательском терминале.

В восходящей линии связи, на каждом пользовательском терминале 120, выбранном для восходящей передачи, процессор 288 данных передачи принимает данные трафика от источника 286 данных и управляющие данные от управляющего средства 280. Процессор 288 данных передачи обрабатывает (например, кодирует, чередует и модулирует) данные трафика {dup,m} для пользовательского терминала на основе кодирующих и модуляционных схем, ассоциированных со скоростью, выбранной для пользовательского терминала, и обеспечивает поток символов данных {sup,m}. Пространственный процессор 290 передачи выполняет пространственную обработку над потоком символов данных {sup,m} и обеспечивает Nut,m потоков символов передачи для Nut,m антенн. Каждый передающий блок (TMTR) 254 принимает и обрабатывает (например, конвертирует в аналоговые, усиливает, фильтрует и преобразует с повышением частоты) соответственный поток символов передачи для генерирования восходящего сигнала. Nut,m передающих блоков 254 обеспечивают Nut,m восходящих сигналов для передачи от Nut,m антенн 252 к точке 110 доступа.

Планирование некоторого количества Nup пользовательских терминалов может осуществляться для одновременной передачи по восходящей линии связи. Каждый из этих пользовательских терминалов выполняет пространственную обработку над этим потоком символов данных и передает свой набор потоков символов передачи по восходящей линии связи к точке доступа.

В точке 110 доступа, Nap антенн 224a-224ap принимают восходящие сигналы от всех Nup пользовательских терминалов, осуществляющих передачу по восходящей линии связи. Каждая антенна 224 обеспечивает принятый сигнал соответственному принимающему блоку (RCVR) 222. Каждый принимающий блок 222 выполняет обработку, дополнительную к обработке, выполняемой передающим блоком 254, и обеспечивает принимаемый поток символов. Пространственный процессор 240 приема выполняет принимающую пространственную обработку над Nap принимаемых потоков символов от Nap принимающих блоков 222 и обеспечивает Nup восстановленных восходящих потоков символов данных. Принимающая пространственная обработка выполняется в соответствии с обращением матрицы корреляции каналов (CCMI), минимальной среднеквадратической ошибкой (MMSE), успешным подавлением помех (SIC) или какими-либо другими методиками. Каждый восстановленный восходящий поток символов данных {sup,m} является некоторой оценкой потока символов данных {sup,m}, переданного соответственным пользовательским терминалом. Процессор 242 данных приема обрабатывает (например, демодулирует, восстанавливает последовательность и декодирует) каждый восстановленный восходящий поток символов данных {sup,m} в соответствии со скоростью, используемой для этого потока, для получения декодированных данных. Декодированные данные для каждого пользовательского терминала могут обеспечиваться коллектору 244 данных для сохранения и/или управляющему средству 230 для дополнительной обработки.

В нисходящей линии связи, в точке 110 доступа процессор 210 данных передачи принимает данные трафика от источника 208 данных для Ndn пользовательских терминалов, для которых запланирована нисходящая передача, управляющие данные от управляющего средства 230 и, возможно, другие данные от планировщика 234. Различные типы данных могут быть отправлены по различным каналам переноса. Процессор 210 данных передачи обрабатывает (например, кодирует, чередует и модулирует) данные трафика для каждого пользовательского терминала на основе скорости, выбранной для пользовательского терминала. Процессор 210 данных передачи обеспечивает Ndn нисходящих потоков символов данных для Ndn пользовательских терминалов. Пространственный процессор 220 передачи выполняет пространственную обработку над Ndn нисходящих потоков символов данных и обеспечивает Nap потоков символов передачи для Nap антенн. Каждый передающий блок (TMTR) 222 принимает и обрабатывает соответственный поток символов передачи для генерирования нисходящего сигнала. Nap передающих блоков 222 обеспечивают Nap нисходящих сигналов для передачи от Nap антенн 224 к пользовательским терминалам.

На каждом пользовательском терминале 120, Nut,m антенн 252 принимают Nap нисходящих сигналов от точки 110 доступа. Каждый принимающий блок (RCVR) 254 обрабатывает принятый сигнал от ассоциированной антенны 252 и обеспечивает принимаемый поток символов. Пространственный процессор 260 приема выполняет принимающую пространственную обработку над Nut,m принимаемых потоков символов от Nut,m принимающих блоков 254 и обеспечивает восстановленный нисходящий поток символов данных {sdn,m} для пользовательского терминала. Принимающая пространственная обработка выполняется в соответствии с CCMI, MMSE или какой-либо другой методикой. Процессор 270 данных приема обрабатывает (например, демодулирует, восстанавливает последовательность и декодирует) восстановленный нисходящий поток символов данных для получения декодированных данных для пользовательского терминала.

На каждом пользовательском терминале 120, Nut,m антенн 252 принимают Nap нисходящих сигналов от точки 110 доступа. Каждый принимающий блок (RCVR) 254 обрабатывает принятый сигнал от ассоциированной антенны 252 и обеспечивает принимаемый поток символов. Пространственный процессор 260 приема выполняет принимающую пространственную обработку над Nut,m принимаемых потоков символов от Nut,m принимающих блоков 254 и обеспечивает восстановленный нисходящий поток символов данных {sdn,m} для пользовательского терминала. Принимающая пространственная обработка выполняется в соответствии с CCMI, MMSE или какой-либо другой методикой. Процессор 270 данных приема обрабатывает (например, демодулирует, восстанавливает последовательность и декодирует) восстановленный нисходящий поток символов данных для получения декодированных данных для пользовательского терминала.

Фиг. 3 изображает различные компоненты, которые могут задействоваться в беспроводном устройстве 302, которое может задействоваться внутри системы 100. Беспроводное устройство 302 является примером устройства, которое может конфигурироваться для выполнения различных способов, описанных здесь. Беспроводное устройство 302 может быть точкой 110 доступа или пользовательским терминалом 120.

Беспроводное устройство 302 может включать в себя процессор 304, который управляет работой беспроводного устройства 302. Процессор 304 также может называться центральным процессором (CPU). Память 306, которая может включать в себя как постоянное запоминающее устройство (ROM), так и оперативное запоминающее устройство (RAM), обеспечивает инструкции и данные процессору 304. Часть памяти 306 также может включать в себя энергонезависимое оперативное запоминающее устройство (NVRAM). Процессор 304, как правило, выполняет логические и арифметические операции на основе программных инструкций, сохраненных внутри памяти 306. Инструкции в памяти 306 могут быть исполняемыми для осуществления описанных здесь способов.

Беспроводное устройство 302 также может включать в себя корпус 308, который может включать в себя передатчик 310 и приемник 312 для обеспечения возможности передачи и приема данных между беспроводным устройством 302 и удаленным пунктом. Передатчик 310 и приемник 312 могут объединяться в приемопередатчик 314. Множество передающих антенн 316 может присоединяться к корпусу 308 и электрическим образом объединяться с приемопередатчиком 314. Беспроводное устройство 302 также может включать в себя (не показано) множество передатчиков, множество приемников и множество приемо-передатчиков.

Беспроводное устройство 302 также может включать в себя средство 318 обнаружения сигналов, которое может использоваться с целью обнаружения и измерения уровня сигналов, принятых приемопередатчиком 314. Средство 318 обнаружения сигналов может обнаруживать такие сигналы в качестве полной энергии, энергии на поднесущую на символ, спектральной плотности мощности и других сигналов. Беспроводное устройство 302 также может включать в себя цифровой сигнальный процессор (DSP) 320 для использования в обработке сигналов.

Различные компоненты беспроводного устройства 302 могут объединяться друг с другом посредством шинной системы 322, которая может включать в себя шину питания, шину управляющего сигнала и шину сигнала состояния в дополнение к шине данных.

Специалистам в данной области техники будет понятно, что методики, описанные здесь, могут, в общем, применяться в системах, использующих схемы множественного доступа любого типа, такие как SDMA, OFDMA, CDMA, SDMA и их комбинации.

Некоторые аспекты настоящего раскрытия обеспечивают методики для сигнализации расширенных размеров для форматов кадров протокольного блока данных (MPDU) управления доступом к среде (MAC), агрегированного MPDU (A-MPDU) и агрегированного сервисного блока данных (A-MSDU) MAC. Первая методика предлагает модификации над текущей спецификацией стандарта IEEE 802.11n для обеспечения возможности использования более длинных MPDU в A-MPDU. Эта методика все так же использует формат сигнализации IEEE 802.11n и задействует зарезервированные биты для переноса новой информации. Вторая методика предлагает новый механизм сигнализации для переноса расширенных размеров для MPDU, A-MPDU и A-MSDU посредством элемента возможности сверхвысокой пропускной способности (VHT).

Некоторые аспекты настоящего раскрытия могут задействовать Разделитель A-MPDU-подкадров для сигнализации длины MPDU. Длина MPDU может сигнализироваться как параметр согласования. В дополнение, текущие размеры A-MSDU и A-MPDU могут быть расширены, и приемник может уведомляться о новых размерах посредством специального механизма сигнализации.

Увеличение длины MPDU в A-MPDU на один или два бита может обеспечить возможность более длинных агрегированных данных (например, A-MPDU), при этом сохраняя механизм подтверждения блоков (BA) в стандарте IEEE 802.11n. К примеру, один дополнительный бит в MPDU может увеличить максимальный размер MPDU до 8 К, что может давать в результате A-MPDU с максимальным размером 512 килобайт (КБ). К примеру, в системе с четырьмя пространственными потоками, передачей 80 МГц, квадратурной амплитудной модуляцией (QAM) 64 и кодовой скоростью 5/6, время передачи может быть равно 3,6 миллисекунд (например, 64×8 К×8 /(4×5×234)×4e-6=3,6 мс). Для более высоких скоростей передачи данных максимальная продолжительность может быть короче. В качестве примера, два дополнительных бита в MPDU могут давать в результате MPDU с максимальным размером 16 К, что может давать в результате A-MPDU с максимальным размером 1 Мбайт, что, в свою очередь, может обеспечить возможность более длинных блоков данных протокола физического уровня (PPDU).

Результат (например, расстояние Хэмминга) кода циклического контроля по избыточности (CRC) может сохраняться для пакетных длин вплоть до 11450 байт. Для более длинных пакетов расстояние Хэмминга может быть меньше. Следовательно, путем задействования согласуемой максимальной длины MPDU, которая ограничивает максимальный размер MPDU значением 11450 октетов, эффективность CRC-кодов может сохраняться.

В некоторых сценариях, MPDU могут заполняться A-MSDU. Максимальный размер A-MSDU уже является согласуемым в стандарте IEEE 802.11n, но третий размер может добавляться к возможным размерам A-MSDU, если поле длины MPDU увеличивается на два бита. С другой стороны, максимальный размер MSDU не относится к эффективности агрегирования, поскольку A-MSDU уже может обеспечить возможность достичь желаемого уровня агрегирования.

В настоящее время, следующие длины определяются в стандарте IEEE 802.11n для MPDU, A-MSDUs и A-MPDUs: максимальная длина MPDU, равная 4095 байт, согласуемые длины A-MSDU 3839 или 7935 байт, согласуемые длины A-MPDU 8, 16, 32, 64 КБ. Для некоторых аспектов, максимальная длина MPDU может быть увеличена до 8191, 11450 или 16384 байт, максимальная длина A-MSDU может быть увеличена до 11450 (или 11195), 16127 или 15871 байт, и максимальная длина A-MPDU может быть увеличена до 128, 256, 512 или 1024 КБ.

Для некоторых аспектов предложенные значения для MSDU, MPDU, A-MPDU и A-MSDU могут быть согласуемыми, чтобы обеспечить возможность обратной совместимости. Согласуемые размеры также могут давать в результате варианты осуществления с различными возможностями.

Для некоторых аспектов размер MSDU может быть увеличен, чтобы поддерживать джамбо-кадры. Однако может быть необязательно повышать размер MSDU для достижения улучшенного агрегирования, поскольку A-MSDU могут уже использоваться для агрегирования. Для некоторых аспектов максимальная длина MSDU может включать в себя 2304 или 9000 байт и может быть согласуемой.

Для некоторых аспектов порядок согласуемой максимальной длины A-MPDU может быть в диапазоне от 0 до 7 для поддержания до восьми различных размеров, таких как размеры, которые ранее поддерживались в стандарте IEEE 802.11n, в дополнение к новым предложенным размерам (например, 128, 256, 512, 1024 КБ). Фиг. 4 изображает поле параметров A-MPDU в элементе возможности высокой пропускной способности (HT) в стандарте IEEE 802.11n. Как изображено, некоторые из зарезервированных битов (например, биты B5-B7) могут использоваться для сигнализации новых размеров для максимальной длины A-MPDU. Порядок максимальной длины A-MPDU может быть увеличен путем задействования зарезервированного бита из поля параметров A-MPDU в элементе HT-возможности (такого как B5) в качестве старшего значащего бита (MSB) порядка максимальной длины A-MPDU для поддержания до восьми различных размеров.

Фиг. 5 иллюстрирует формат подкадра A-MPDU в стандарте IEEE 802.11n. Как изображено, MPDU-разделитель может включать в себя несколько полей, таких как длина MPDU, CRC, характеристика разделителя и несколько зарезервированных битов. A-MPDU-подкадр может включать в себя MPDU-разделитель, MPDU, наполнение и другие поля. Для некоторых аспектов два бита могут добавляться к MPDU-разделителю в указании длины A-MPDU-подкадра, к примеру, в качестве MSB (например, в положениях B2 и B3). Следует заметить, что любой из битов B2 или B3 может быть MSB нового, расширенного MPDU-разделителя.

В качестве примера существующее поле разделителя MPDU в стандарте IEEE 802.11n задействует 12 бит для передачи размера A-MPDU-подкадра. Для некоторых аспектов один или несколько битов могут добавляться в поле разделителя MPDU для возможности указывать более длинные MPDU-размеры (например, добавление двух дополнительных бит к MPDU-разделителю может давать в результате 14-битное поле разделителя MPDU, которое поддерживает MPDU-размеры от 0 до 16383 бит). Для некоторых аспектов дополнительные биты могут представлять MSB MPDU-разделителя, но могут располагаться в положении младшего значащего бита (LSB) разделительного поля MPDU.

Фиг. 6 изображает иллюстративные операции 600 для сигнализации размера кадра, которые могут выполняться беспроводным узлом (например, точкой доступа), в соответствии с некоторыми аспектами настоящего раскрытия. На этапе 602 беспроводной узел генерирует кадр, содержащий группу из одного или нескольких подкадров, для одной передачи, причем по меньшей мере один из подкадров содержит указание длины по меньшей мере одного из подкадров и причем это указание содержит более 12 бит. Для некоторых аспектов кадр может быть A-MPDU-кадром, а подкадры могут быть A-MPDU-подкадрами. Для некоторых аспектов указание может быть выражено в поле разделителя (например, в MPDU-разделителе), которое может включать в себя один или несколько дополнительных бит вдобавок к 12 битам. На этапе 604 беспроводной узел передает кадр.

Для некоторых аспектов согласуемые максимальные значения длины MPDU (например, 4095, 8191, 11450 байт) могут быть определены путем добавления подполя максимальной длины MPDU в поле параметров A-MPDU. В качестве примера, максимальная длина MPDU может быть указана посредством двух бит следующим образом: 00=4095; 01=8191; 10=11450; 11=16383.

Для другого аспекта согласуемые максимальные значения длины MPDU могут быть определены в поле параметров A-MPDU, которое включается в Элемент HT-возможности. К примеру, два зарезервированных бита, таких как B6 и B7, могут использоваться для указания 00=3839; 01=7935; 02=11194; 03=16384.

Для некоторых аспектов согласуемые максимальные значения длины MPDU также могут выводиться на основе длины A-MSDU с предопределенным взаимооднозначным соответствием, как изображено в таблице на Фиг. 7.

Фиг. 7 изображает иллюстративные соотношения между максимальными значениями длины MPDU и значениями A-MSDU. Как изображено в таблице, каждая длина A-MSDU может соответствовать максимальной длине MPDU. Для некоторых аспектов, если согласуемые максимальные значения длины MPDU определяются как на Фиг. 7, один из зарезервированных бит (например, B6) в поле параметров A-MPDU может использоваться для указания максимальной длины MSDU (например, B6=0→2304 байт, B6=1→9000 байт).

Для некоторых аспектов согласуемые максимальные значения длины A-MSDU, включающие в себя текущие значения (например, 3839, 7935) и предложенные новые значения (например, 11194 (или 11450), 16127 или 15871 байт), могут быть определены посредством зарезервированного бита (например, B13) в информационном поле HT-возможностей в качестве MSB для максимальной длины A-MSDU.

Для другого аспекта может быть определен новый элемент возможности сверхвысокой пропускной способности (VHT), который может включать в себя указание максимальных длин MSDU, A-MSDU, MPDU и A-MPDU. Новый элемент возможности может быть определен посредством идентификация элемента (ID), что не используется прошлыми спецификациями (например, 75). Новый элемент возможности может включать в себя одно или несколько из новых предложенных полей, таких как порядок максимальной длины A-MPDU (или максимальная длина A-MPDU), максимальная длина A-MSDU и максимальная длина MSDU.

Для некоторых аспектов, ID элемента, которая относится к HT-возможностям (например, 45), может быть использована повторно для указания модифицированной, другой длины в поле длины (в настоящее время 26), соответствующей кадру, который включает в себя одно или несколько из предложенных новых полей, таких как порядок максимальной длины A-MPDU (или максимальная длина A-MPDU), максимальная длина A-MSDU и максимальная длина MSDU.

Фиг. 8 изображает предложенный элемент VHT-возможности в соответствии с некоторыми аспектами настоящего раскрытия. Предложенный элемент VHT-возможности может включать в себя идентификационное поле 802, поле 804 длины, поле 806 длины кадров и другие поля. Поле 806 длины кадров может включать в себя одно или несколько следующих полей: поле 808 порядка максимальной длины A-MPDU, поле 810 максимальной длины A-MSDU, поле 812 максимальной длины MSDU и другие поля. Предложенный элемент VHT-возможности может определять одну или несколько возможностей, особым образом относящихся к VHT (IEEE 802.11ac). К примеру, порядок максимальной длины A-MPDU и максимальная длина A-MSDU могут присутствовать в качестве возможности. Максимальная длина MPDU может быть ограничена 11450 байтами для обеспечения эффективности CRC-кодов.

Фиг. 9 изображает поле 806 длины кадров, содержащее поле 902 порядка максимальной длины A-MPDU и поле 904 максимальной длины A-MSDU в элементе VHT-возможности, в соответствии с некоторыми аспектами настоящего раскрытия. Поле 902 порядка максимальной длины A-MPDU может включать в себя три бита для содержания восьми различных значений (например, 0, 1,..., 7), соответствующих максимальным длинам A-MPDU, равным 2(13+порядок максимальной длины A-MPDU) КБ. Поле 904 максимальной длины A-MSDU может включать в себя два бита для содержания четырех значений (например, 0→3839, l→7935, 2→11195, 3→16127).

Фиг. 10A и 10B изображают два примера полей 806 длины кадров, содержащих поле максимальной длины A-MPDU 1002 и поле 904 максимальной длины A-MSDU в элементе VHT-возможности, в соответствии с некоторыми аспектами настоящего раскрытия. На Фиг. 10A поле максимальной длины A-MPDU определяется как принимающее восемь различных значений, таких как 0→8 КБ, 1→16 КБ, 2→32 КБ, 3→64 КБ, 4→128 КБ, 5→256 КБ, 6→512 КБ и 7→1024 КБ. На Фиг. 10B поле максимальной длины A-MPDU определяется как принимающее другой набор значений, такой как 0→8 КБ, 1→16 КБ, 2→32 КБ, 3→64 КБ, 4→128 КБ, 5→256 КБ, 6→512 КБ и 7→716 КБ.

Для некоторых аспектов поле максимальной длины A-MSDU может включать в себя следующие биты длины A-MSDU: 00: 3839, 01: 7935, 10: 11450 и 11: 16127, 15871 или 11195 Байт. Бит длины MSDU может быть установлен либо в значение "0", либо в значение "1" для указания максимальной длины MSDU, равной текущему значению 2304 байт или 9000 байт, соответственно.

Фиг. 11 изображает иллюстративные операции 1100 для сигнализации расширенных форматов кадров MPDU, A-MPDU и A-MSDU, которые могут выполняться беспроводным узлом (например, точкой доступа), в соответствии с некоторыми аспектами настоящего раскрытия. На этапе 1102 может генерироваться кадр, содержащий по меньшей мере одно из: указание максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указание максимальной длины для агрегированного MPDU (A-MPDU) или указание максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше или равное 4095 байт, максимальная длина A-MPDU содержит значение больше 64 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт. Для некоторых аспектов длина MPDU может быть согласуемой, и длина MPDU может выбираться из одного или нескольких значений, которые меньше либо равны указанному максимальному значению длины MPDU. На этапе 1104 кадр может быть передан приемнику.

Фиг. 12 изображает иллюстративную сеть 1200, содержащую базовую станцию и пользовательское оборудование в соответствии с некоторыми аспектами настоящего раскрытия. Базовая станция 1210 может генерировать кадровую структуру посредством компонента 1212 генерирования кадров и передавать кадр пользовательскому оборудованию 1220 посредством компонента 1214 передачи кадров. UE принимает кадр посредством компонента 1222 приема кадров и определяет максимальные размеры для по меньшей мере одного из MPDU, A-MPDU, MSDU и A-MSDU посредством компонента 1224 определения размера MPDU/A-MPDU/MSDU/A-MSDU. Затем UE может обрабатывать принятый кадр с использованием определенного размера (определенных размеров) в обрабатывающем компоненте 1226. Если кадр принимается корректно, UE может отправлять сообщение подтверждения к базовой станции посредством компонента 1228 передачи ACK-сообщения. Базовая станция принимает ACK-сообщение посредством компонента 1216 приема ACK-сообщения и принимает решение, этот кадр или же другой кадр следует передать в следующий временной слот.

Различные операции способов, описанных выше, могут выполняться любыми подходящими средствами, способными выполнять соответствующие функции. Средства могут включать в себя различные аппаратные и/или программные компоненты и/или модули, включая цепь, специализированную интегральную цепь (ASIC) или процессор, но не ограничиваясь перечисленным.

Для некоторых аспектов средство приема содержит приемник, средство передачи содержит передатчик, средство генерирования кадровой структуры содержит цепь, сконфигурированную для генерирования кадровой структуры, а средство определения максимального значения содержит цепь, сконфигурированную для определения максимального значения.

Различные операции способов, описанных выше, могут выполняться любыми подходящими средствами, способными выполнять операции, такими как различные аппаратные и/или программные компоненты, цепи и/или модули. В общем, любые операции, изображаемые на чертежах, могут выполняться соответствующими функциональными средствами, способными выполнять эти операции.

Используемый здесь термин "определение" охватывает широкий спектр действий. К примеру, "определение" может включать в себя расчет, вычисление, обработку, получение, исследование, поиск (например, поиск в таблице, базе данных или других структурах данных), выявление и т.п. Также "определение" может включать в себя прием (например, прием информации), доступ (например, осуществление доступа к данным в памяти) и т.п. Также "определение" может включать в себя решение, отбор, выбор, установление и т.п.

Используемая здесь фраза "по меньшей мере одно из A или B" расценивается как включающая в себя любые комбинации A и B. Иными словами, "по меньшей мере одно из A или B" содержит A или B или A и B.

Различные иллюстративные логические блоки, модули и цепи, описанные в связи с настоящим раскрытием, могут осуществляться или выполняться универсальным процессором, цифровым сигнальным процессором (DSP), специализированной интегральной цепью (ASIC), вентильной матрицей с эксплуатационным программированием (FPGA) или другим программируемым логическим устройством (PLD), цепью на дискретных компонентах или транзисторной логикой, дискретными аппаратными компонентами или любой их комбинацией, выполненной с возможностью выполнения описанных здесь функций. Универсальным процессором может быть микропроцессор, но в качестве альтернативы процессором может быть любой имеющийся в продаже процессор, управляющее средство, микропроцессорное управляющее средство или машина состояний. Процессор также может быть выполнен как комбинация вычислительных устройств, например, комбинация DSP и микропроцессора, множество микропроцессоров, один или несколько микропроцессоров совместно с DSP-ядром или любая другая такая конфигурация.

Этапы способа или алгоритма, описанных в связи с настоящим раскрытием, могут осуществляться непосредственно аппаратными средствами, программным модулем, исполняемым процессором, или их комбинацией. Программный модуль может находиться в носителе данных любой формы из известных в данной области техники. Некоторые примеры носителей данных, которые могут использоваться, включают в себя оперативное запоминающее устройство (RAM), постоянное запоминающее устройство (ROM), флэш-память, EPROM-память, EEPROM-память, реестр, жесткий диск, съемный диск, CD-ROM и так далее. Программный модуль может содержать единственную инструкцию или множество инструкций и может быть распределен по нескольким различным кодовым сегментам, между различными программами и по множеству носителей данных. Носитель данных может объединяться с процессором, чтобы процессор мог считывать информацию с, и записывать информацию на, носитель данных. В качестве альтернативы, носитель данных может быть внутренним устройством по отношению к процессору.

Способы, раскрываемые здесь, содержат один или несколько этапов или действий для достижения описанного способа. Этапы и/или действия способа могут меняться местами друг с другом без выхода за пределы объема, определяемого формулой изобретения. Иными словами, если некоторый конкретный порядок этапов или действий не указан, порядок и/или использование конкретных этапов и/или действий могут быть модифицированы без выхода за пределы объема, определяемого формулой изобретения.

В одном или нескольких иллюстративных аспектах описанные функции могут осуществляться аппаратными средствами, программными средствами, программно-аппаратными средствами или любой их комбинацией. В случае осуществления программными средствами, функции могут сохраняться или передаваться в качестве одной или нескольких инструкций или кода на машиночитаемом носителе. Машиночитаемые носители включают в себя как компьютерные носители данных, так и среды для связи, включающие в себя любой носитель, который обеспечивает возможность переноса компьютерной программы из одного места в другое. Носителями данных могут быть любые доступные носители, к которым компьютер может осуществлять доступ. В качестве примера, и не ограничения, такие машиночитаемые носители могут содержать RAM, ROM, EEPROM, CD-ROM или другой накопитель на оптическом диске, накопитель на магнитном диске или другие магнитные запоминающие устройства или любой другой носитель, который может использоваться для переноса или хранения желаемого программного кода в форме инструкций или структур данных и к которому компьютер может осуществлять доступ. Кроме того, любое соединение должным образом отражается в названии машиночитаемого носителя. К примеру, если программные средства передаются с веб-сайта, сервера или другого удаленного источника с использованием коаксиального кабеля, оптоволоконного кабеля, витой пары, цифровой абонентской линии (DSL) или беспроводных технологий, таких как инфракрасные лучи, радио и микроволны, то коаксиальный кабель, оптоволоконный кабель, витая пара, DSL или беспроводные технологии, такие как инфракрасные лучи, радио и микроволны, включаются в определение носителя. Используемые здесь термины магнитный диск и оптический диск включают в себя компакт-диск (CD), лазерный диск, оптический диск, универсальный цифровой диск (DVD), гибкий диск и Blu-ray-диск, причем магнитный диск, как правило, воспроизводит данные магнитным образом, а оптический диск воспроизводит данные оптическим образом посредством лазера. Таким образом, в некоторых аспектах машиночитаемый носитель может содержать постоянный машиночитаемый носитель (например, материальную среду). В дополнение, в некоторых аспектах машиночитаемый носитель может содержать временный машиночитаемый носитель (например, сигнал). Комбинации вышеупомянутых элементов также должны включаться в объем машиночитаемых носителей.

Таким образом, некоторые аспекты могут содержать компьютерно-программный продукт для выполнения представленных здесь операций. К примеру, такое компьютерно-программный продукт может содержать машиночитаемый носитель с сохраненными (и/или закодированными) на нем инструкциями, причем инструкции выполнены с возможностью исполнения одним или несколькими процессорами для выполнения операций, описанных здесь. Для некоторых аспектов компьютерно-программный продукт может включать в себя упаковочный материал.

Программные средства или инструкции также могут быть переданы через передающую среду. К примеру, если программные средства передаются с веб-сайта, сервера или другого удаленного источника с использованием коаксиального кабеля, оптоволоконного кабеля, витой пары, цифровой абонентской линии (DSL) или беспроводных технологий, таких как инфракрасные лучи, радио и микроволны, то коаксиальный кабель, оптоволоконный кабель, витая пара, DSL или беспроводные технологии, такие как инфракрасные лучи, радио и микроволны, включаются в определение передающей среды.

Кроме того, следует понимать, что модули и/или другие подходящие средства для выполнения способов и методик, описанных здесь, могут загружаться и/или иным образом получаться пользовательским терминалом и/или базовой станцией, в зависимости от конкретных условий. К примеру, такое устройство может объединяться с сервером для обеспечения возможности передачи средств для выполнения описанных здесь способов. Альтернативно, различные способы, описанные здесь, могут обеспечиваться посредством средства хранения (например, RAM, ROM, физического носителя данных, такого как компакт-диск (CD) или гибкий диск, и т.д.), чтобы пользовательский терминал и/или базовая станция могли получить различные способы при подключении или обеспечении этих средств хранения устройству. Кроме того, может задействоваться любая другая подходящая методика для обеспечения устройствам описанных здесь способов и методик.

Следует понимать, что формула изобретения не ограничивается точной конфигурацией и компонентами, проиллюстрированными выше. Различные модификации, изменения и вариации могут быть сделаны в структуре, операциях и подробностях способов и устройства, описанных выше, без выхода за пределы объема, определяемого формулой изобретения.

Методики, обеспеченные здесь, могут задействоваться в самых различных приложениях. Для некоторых аспектов методики, представленные здесь, могут быть встроены в станцию точки доступа, терминал доступа, трубку мобильного телефона или беспроводное устройство другого типа с обрабатывающей логикой и элементами для выполнения методик, обеспеченных здесь.

Хотя вышеизложенное направлено на конкретные аспекты настоящего раскрытия изобретения, другие и дополнительные аспекты раскрытия могут быть предложены без выхода за пределы объема изобретения, и его объем определяется нижеследующими пунктами формулы изобретения.

1. Устройство для беспроводной связи, содержащее:
цепь, сконфигурированную с возможностью генерирования кадра, содержащего элемент возможности сверхвысокой пропускной способности (VHT), содержащий по меньшей мере одно из указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше 8191 байт, максимальная длина A-MPDU содержит значение больше 256 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт и причем указание максимальной длины A-MPDU выражается в виде поля порядка максимальной длины A-MPDU с использованием трех битов в элементе возможности VHT; и
передатчик, сконфигурированный с возможностью передачи кадра.

2. Устройство по п. 1, в котором максимальная длина MPDU содержит 11450 или 16383 байт.

3. Устройство по п. 1, в котором максимальная длина A-MPDU содержит 512 или 1024 килобайт.

4. Устройство по п. 1, в котором максимальная длина A-MSDU содержит 11195, 11450, 16127 или 15871 байт.

5. Устройство по п. 1, в котором длина MPDU является согласуемой и длина MPDU может выбираться из одного или нескольких значений, которые меньше либо равны указанному максимальному значению длины MPDU.

6. Устройство по п. 1, в котором максимальная длина MPDU определяется на основе максимальной длины A-MSDU.

7. Устройство по п. 1, в котором цепь дополнительно выполнена с возможностью генерирования кадра, имеющего в нем элемент возможности сверхвысокой пропускной способности (VHT), в соответствии со стандартом Института инженеров по электротехнике и радиоэлектронике (IEEE) 802.11.

8. Устройство по п. 7, в котором один или более битов в элементе возможности VHT используются для сигнализации согласуемого значения максимальной длины MPDU.

9. Способ беспроводной связи, содержащий этапы, на которых:
генерируют кадр, содержащий элемент возможности сверхвысокой пропускной способности (VHT), содержащий по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше 8191 байт, максимальная длина A-MPDU содержит значение больше 256 килобайт, а максимальная длина A-MSDU содержит значение больше 7 935 байт и причем указание максимальной длины A-MPDU выражается в виде поля порядка максимальной длины A-MPDU с использованием трех битов в элементе возможности VHT
и передают кадр.

10. Способ по п. 9, в котором максимальная длина MPDU содержит 11450 или 16383 байт.

11. Способ по п. 9, в котором максимальная длина A-MPDU содержит 512 или 1024 килобайт.

12. Способ по п. 9, в котором максимальная длина A-MSDU содержит 11195, 11450, 16127 или 15871 байт.

13. Способ по п. 9, в котором длина MPDU является согласуемой и длина MPDU может выбираться из одного или нескольких значений, которые меньше либо равны указанному максимальному значению длины MPDU.

14. Способ по п. 9, в котором максимальная длина MPDU определяется на основе максимальной длины A-MSDU.

15. Способ по п. 9, в котором генерирование кадра содержит этап, на котором включают элемент возможности сверхвысокой пропускной способности (VHT) в соответствии со стандартом Института инженеров по электротехнике и радиоэлектронике (IEEE) 802.11.

16. Способ по п. 15, в котором один или более битов в элементе возможности VHT используются для сигнализации согласуемого значения максимальной длины MPDU.

17. Устройство для беспроводной связи, содержащее:
средство для генерирования кадра, содержащего элемент возможности сверхвысокой пропускной способности (VHT), содержащий по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше 8191 байт, максимальная длина A-MPDU содержит значение больше 256 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт и причем указание максимальной длины A-MPDU выражается в виде поля порядка максимальной длины A-MPDU с использованием трех битов в элементе возможности VHT; и
средство передачи кадра.

18. Устройство по п. 17, причем максимальная длина MPDU содержит 11450 или 16383 байт.

19. Устройство по п. 17, в котором максимальная длина A-MPDU содержит 512 или 1024 килобайт.

20. Устройство по п. 17, в котором максимальная длина A-MSDU содержит 11195, 11450, 16127 или 15871 байт.

21. Устройство по п. 17, в котором длина MPDU является согласуемой и длина MPDU может выбираться из одного или нескольких значений, которые меньше либо равны указанному максимальному значению длины MPDU.

22. Устройство по п. 17, в котором максимальная длина MPDU определяется на основе максимальной длины A-MSDU.

23. Устройство по п. 17, в котором средство для генерирования выполнено с возможностью генерирования кадра, имеющего в нем элемент возможности сверхвысокой пропускной способности (VHT), в соответствии со стандартом Института инженеров по электротехнике и радиоэлектронике (IEEE) 802.11.

24. Устройство по п. 23, в котором один или более битов в элементе возможности VНТ используются для сигнализации согласуемого значения максимальной длины MPDU.

25. Машиночитаемый носитель, имеющий сохраненную на нем компьютерную программу для беспроводной связи, причем программа содержит инструкции, исполняемые для:
генерирования кадра, содержащего элемент возможности сверхвысокой пропускной способности (VHT), содержащий по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше 8191 байт, максимальная длина A-MPDU содержит значение больше 256 килобайт, а максимальная длина A-MSDU содержит значение больше 7 935 байт и причем указание максимальной длины A-MPDU выражается в виде поля порядка максимальной длины A-MPDU с использованием трех битов в элементе возможности VHT; и
передачи кадра.

26. Точка доступа для беспроводной связи, содержащая: по меньшей мере одну антенну;
цепь, сконфигурированную с возможностью генерирования кадра, содержащего элемент возможности сверхвысокой пропускной способности (VHT), содержащий по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше 8191 байт, максимальная длина A-MPDU содержит значение больше 256 килобайт, а максимальная длина A-MSDU содержит значение больше 7 935 байт и причем указание максимальной длины A-MPDU выражается в виде поля порядка максимальной длины A-MPDU с использованием трех битов в элементе возможности VHT; и
передатчик, сконфигурированный с возможностью передачи кадра посредством по меньшей мере одной антенны.

27. Устройство для беспроводной связи, содержащее:
цепь, сконфигурированную с возможностью генерирования кадра, содержащего элемент возможности, содержащий по меньшей мере одно из указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (A-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше 8191 байт, максимальная длина A-MPDU содержит значение больше 256 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт и причем указание максимальной длины A-MPDU выражается в виде поля порядка максимальной длины A-MPDU с использованием множества битов в элементе возможности; и
передатчик, сконфигурированный с возможностью передачи кадра.

28. Устройство по п. 27, в котором множество битов в элементе возможности содержит больше двух битов.

29. Устройство по п. 27, в котором множество битов используется для сигнализации согласуемого значения максимальной длины MPDU.

30. Способ беспроводной связи, содержащий этапы, на которых: генерируют кадр, содержащий элемент возможности, содержащий по меньшей мере одно из: указания максимальной длины для протокольного блока данных (MPDU) управления доступом к среде (MAC), указания максимальной длины для агрегированного MPDU (А-MPDU) или указания максимальной длины для агрегированного сервисного блока данных (A-MSDU) MAC, причем максимальная длина MPDU содержит значение больше 8191 байт, максимальная длина А-MPDU содержит значение больше 256 килобайт, а максимальная длина A-MSDU содержит значение больше 7935 байт и причем указание максимальной длины A-MPDU выражается в виде поля порядка максимальной длины A-MPDU с использованием множества битов в элементе возможности; и
передают кадр.

31. Способ по п. 30, в котором множество битов в элементе возможности содержит больше двух битов.

32. Способ по п. 30, в котором множество битов используется для сигнализации согласуемого значения максимальной длины MPDU.



 

Похожие патенты:

Изобретение относится к беспроводной связи. Техническим результатом является повышение вероятности корректного приема UCI и снижения ограничения при планировании передачи данных.

Изобретение относится к области технологий связи. Технический результат состоит в гарантии качества связи для мобильной станции во время осуществления связи в сценарии, таком как домен с коммутацией пакетов, в процессе высокоскоростного перемещения.

Изобретение относится к области сигнализации контекста безопасности. Технический результат - обеспечение сигнализации о поддержке улучшенного контекста безопасности.

Изобретение относится к средствам изменения направления потока. Технический результат заключается в уменьшении времени изменения источника потока сообщений.

Изобретение относится к системам связи. Предоставлены методики и устройства для сигнализации полосы пропускания, которая должна использоваться для беспроводной связи с использованием обмена кадрами RTS/CTS (Запрос на Отправку/Готовность к Приему), предусмотренного для полос пропускания, по меньшей мере, в 20 МГц, 40 МГц, 80 МГц, 160 МГц или выше.

Изобретение относится к системе коммерческой связи, особенно к системе, позволяющей любому лицу или клиенту, использующему компьютер, подключенный к Интернету, установить с коммерческим агентом двунаправленную аудиосвязь и однонаправленную видеосвязь.

Изобретение относится к приемопередающему устройству для обработки протокола управления доступом к среде (MAC), используемого приемопередатчиком. Технический результат состоит в том, что обеспечивается оптимально согласованная антенная система для нательной связи и внешней связи, соответственно, в сети предотвращаются конфликты между информационными полезными нагрузками в радиоканале, пропускная способность передачи данных тем самым повышается, и, в то же время, снижается энергопотребление приемопередатчика.

Изобретение относится к устройству базовой станции и способу связи, используемым для связи со множеством несущих. Техническим результатом является возможность исключить увеличение издержек на сообщение результата распределения при планировании частоты в системе связи с множеством несущих.

Изобретение относится к мобильной связи. Технический результат состоит в повышении качества связи.

Изобретение относится к способу и устройству для управления повторной передачей в оборудовании пользователя, поддерживающем пространственное мультиплексирования восходящей линии связи.

Изобретение относится к области связи и, в частности, к способу, устройству и системе для вставки оповещений (рекламы) в сети проекта долгосрочной эволюции (LTE). Техническим результатом является улучшение для пользователя «очень важная персона» (VIP) представления услуги и повышение гибкости стратегии определения соответствующего оповещения. Предложенный способ вставки оповещения включает в себя: прием запроса услуги, отправленного пользовательским терминалом и перенаправленного сетевым элементом сети радиодоступа (RAN), получение услуги, соответствующей запросу услуги; получение информации пользовательского терминала от сетевого элемента RAN; определение соответствующего оповещения согласно информации пользовательского терминала и абонированной ширины полосы пользовательского терминала; и отправку полученной услуги и определенного оповещения пользовательскому терминалу через сетевой элемент RAN. Варианты осуществления настоящего изобретения применяются для точной вставки оповещений. 3 н. и 10 з.п. ф-лы, 8 ил.

Изобретение относится к области связи. Варианты осуществления настоящего изобретения предоставляют способ реконфигурирования, контроллер радиосети (RNC) и терминал. Способ содержит этапы, на которых: принимают отчет об измерениях, запущенный на основе перехода состояния и отправленный из терминала, при этом отчет об измерениях переносит информацию указания для запуска перехода состояния управления радиоресурсами (RRC); и отправляют сообщение реконфигурирования в терминал, при этом сообщение реконфигурирования содержит: целевое состояние перехода состояния RRC, назначенное для терминала; и/или соответствующую информацию однонаправленного радиоканала, и/или информацию транспортного канала, и/или информацию физического канала, когда терминал находится в целевом состоянии RRC. За счет этого задержка, вносимая в конфигурацию выделенного транспортного канала, уменьшается, а эффективность перехода состояния, выполняемого RNC на терминале, улучшается. 4 н. и 29 з.п. ф-лы, 7 ил.

Изобретение относится к области передачи данных, и более конкретно, к системе и способу для управления ресурсами в гетерогенной сети радиодоступа. Техническим результатом является обеспечение улучшения эффективности использования ресурсов, таких как ресурсы радиоспектра в гетерогенной сети радиодоступа. Предложена система и способ для управления ресурсами в гетерогенной сети, которая включает в себя первичную систему и вторичную систему, и диапазон охвата связью, который разделен на множество областей, система, включающая в себя: модуль управления ресурсом гетерогенной сети выполнен с возможностью сбора и управления статусом использования ресурсов в управляемой области; и модуль управления ресурсом вторичной системы, выполненный с возможностью получения статуса использования ресурсов каждой области из модуля управления ресурсом гетерогенной сети, и для выделения ресурсов во вторичную систему, используя полученный статус использования ресурсов каждой области, в соответствии с приоритетом, определенным на основе эффективности мультиплексирования ресурса между каждой областью и вторичной системой. 6 н. и 35 з.п. ф-лы, 4 табл., 11 ил.

Изобретение относится к мобильной связи. Технический результат заключается в повышении эффективности выбора точки доступа при выполнении автоматического конфигурирования параметров связи. Устройство связи выбирает базовую станцию, с которой должно быть соединено устройство связи для приема параметра связи, и принимает параметр связи из подсоединенной базовой станции или из внешнего устройства, которое осуществляет связь с подсоединенной базовой станцией, при этом в случае, когда обработка по установке параметра связи завершилась неудачно, устройство связи осуществляет поиск другого устройства связи. 3 н. и 8 з.п. ф-лы, 9 ил.

Изобретение относится к области беспроводной связи и предназначено для распространения временной синхронизации канала между абонентскими устройствами, работающими в прямом режиме множественного доступа с разделением по времени (TDMA). Способ включает в себя: прием из второго из абонентских устройств, работающих в прямом режиме TDMA, первого сообщения, определение первой временной синхронизации канала из принятого сообщения, определение, является ли принятая первая временная синхронизация канала правильной, причем определение основано, по меньшей мере, на сравнении версии первого абонентского устройства с версией второго абонентского устройства, когда принятая первая временная синхронизация канала является правильной, запуск случайной задержки, после истечения случайной задержки, передачу первого сообщения принудительного распространения, чтобы распространять первую временную синхронизацию канала, по меньшей мере, в третье из абонентских устройств, работающее в прямом режиме TDMA и имеющее более высокую версию, чем версии первого и второго абонентских устройств. 2 н. и 10 з.п. ф-лы, 15 ил.

Изобретение относится к системе связи и способу управления ею. Система связи включает в себя: уровень приемопередачи радиосигнала, включающий в себя комбинацию узлов приемопередачи радиосигнала; локальный вычислительный уровень, включающий в себя локальный вычислительный узел, соединенный с узлом приемопередачи радиосигнала в одной или нескольких комбинациях соседних узлов приемопередачи радиосигнала и выполняющий всю обработку связи или первую часть обработки связи; централизованный вычислительный уровень, включающий в себя централизованный вычислительный узел, соединенный с локальным вычислительным узлом и выполняющий вторую часть обработки связи, причем вся обработка связи включает в себя первую часть обработки связи и вторую часть обработки связи. Локальный вычислительный уровень отвечает за всю или часть обработки связи. Технический результат заключается в экономии полосы пропускания сети и улучшении использования системных ресурсов. 2 н. и 19 з.п. ф-лы, 7 ил.

Изобретение относится к мобильной связи. Технический результат заключается в обеспечении возможности выполнения мобильной станцией UE процесса измерения МВТ (Минимизация выездного тестирования) в том случае, если получено разрешение от абонента мобильной станции. Способ содержит: шаг передачи сервером ЕМ эксплуатации и технического обслуживания элемента «МВТ config» в сервер HSS управления абонентами, и шаг передачи сервером HSS управления абонентами в целевую мобильную станцию UE через узел ММЕ управления мобильностью и базовую радиостанцию eNB команды осуществить процесс измерения МВТ в том случае, когда определено, что процесс измерения МВТ целевой мобильной станцией UE разрешен. 4 н. и 4 з.п. ф-лы, 7 ил.

Изобретение относится к области радиосвязи. Техническим результатом является повышение качества измерения позиционирования. Раскрыты решения для использования комбинации типов опорных сигналов в сети беспроводной связи при выполнении измерений, относящихся к позиционированию. В одном примере UE использует «комбинацию» CRS и PRS. В качестве примерного случая UE принимает PRS и, возможно, CRS из одной или более сот, тогда как оно из одной или более других сот принимает только CRS. В данном случае UE определяет, например, значения временной привязки принятого сигнала для CRS как принятых из некоторых сот для каждой соты и для PRS как принятых от других сот для каждой соты. UE может выполнять измерения и уведомлять для каждого сигнала/для каждой соты и может выполнять вычисления, в которых участвует комбинация измерений временной привязки, выполненных как для CRS, так и PRS. В дополнительном аспекте управление или координация передачами опорных сигналов выполняются для каждого порта в сотах, которые используют множественные порты антенны для осуществления передачи в каждой такой соте. 7 н. и 23 н.п. ф-лы, 14 ил.

Изобретение относится к области беспроводной связи и предназначено для указания отката мощности, по меньшей мере, в отчете о запасе мощности в системе связи. Пользовательское оборудование (700) сконфигурировано для принятия решения относительно того, применять или нет снижение мощности, и для указания этого решения в отчете о запасе мощности, который предназначен для передачи в базовую радиостанцию (600). Базовая радиостанция (600) сконфигурирована для приема отчета о запасе мощности, и на основании указанной информации в принятом отчете о запасе мощности базовая станция узнает о дополнительном или специальном откате мощности (например, для выполнения требований SAR), который применялся и, таким образом, может отличить его от нормального отката мощности или снижения мощности. 4 н. и 26 з.п. ф-лы, 18 ил.

Изобретение относится к беспроводной связи. Технический результат состоит в уменьшении вероятности коллизии с несколькими пользователями в ячейке. Для этого ассоциация множества основанных на конкуренции предоставлений восходящей линии связи с диапазоном блоков ресурсов восходящей линии связи позволяет одному сообщению основанного на конкуренции предоставления восходящей линии связи сигнализировать все множество предоставлений. Нагрузка сигнализации по PDCCH уменьшается посредством использования единственного сообщения основанного на конкуренции предоставления восходящей линии связи, чтобы сигнализировать множество основанных на конкуренции предоставлений восходящей линии связи. Сообщение указывает распределенный набор блоков ресурсов восходящей линии связи и количество отдельных предоставлений ресурсов восходящей линии связи, представленных набором, и сигнализируется таким образом, чтобы терминалы пользователя распознали, что отдельные поднаборы блоков ресурсов восходящей линии связи в наборе соответствуют отдельному основанному на конкуренции предоставлению восходящей линии связи. Информация, включенная в сообщение основанного на конкуренции предоставления восходящей линии связи, используется для управления вероятностью, при которой терминалы пользователя предпринимают попытку основанных на конкуренции передач восходящей линии связи, и/или управления схемой модуляции и кодирования, используемой для таких передач. 4 н. и 32 з.п. ф-лы, 8 ил.
Наверх