Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового бпла

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит теплоноситель и средства формирования теплозащитного слоя. Внутри носовой части БПЛА между его передней кромкой и камерой сгорания силовой установки размещен цилиндрический газоструйный резонатор с системой управляемых клапанов, расположенных на боковой стенке резонатора. Открытый вход резонатора совмещен с передней кромкой БПЛА и направлен навстречу набегающему потоку. На внешней поверхности резонатора установлены контейнер с теплоносителем в виде метангидрата и преобразователь метангидрата в смесь паров воды и метана, которая, находясь под давлением в пульсирующем режиме с частотой более 100 Гц, с помощью системы управляемых клапанов газоструйного резонатора обеспечивает возможность формирования на открытом входе резонатора защитного слоя, предохраняющего переднюю кромку БПЛА от пиковых тепловых нагрузок. Достигается снижение пиковые тепловые нагрузки на элементы конструкции гиперзвукового БПЛА и повышение топливной эффективности его силовой установки. 1 ил.

 

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА).

Аналогами предлагаемого устройства являются пассивные средства защиты теплонапряженных элементов конструкции летательного аппарата с помощью высокотемпературных покрытий (Проблемы механики и теплообмена в космической технике. Под ред. Белоцерковского О.М. М.: Машиностроение, 1982; патент США №6497390, 24.12.2002; патент RU №2383476С1, МПК B64G 1/58, B64G 1/62, 25.12.2008).

Известен способ неразрушающейся тепловой защиты передней кромки летательного аппарата от воздействия интенсивного теплового потока и передняя кромка летательного аппарата с неразрушающейся тепловой защитой (патент RU №2149808 С1, МПК B64G 1/58, В64С 1/38, 1/36, 08.06.1999), включающая оболочку с минимальным аэродинамическим сопротивлением и средства транспортировки энергии от передней кромки, воспринимающей пиковые тепловые нагрузки.

Недостатком известного технического решения является дополнительное аэродинамическое сопротивление затупленной передней кромки с оболочкой при гиперзвуковых скоростях полета.

Наиболее близким из технических решений к предлагаемому устройству активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА является принятое за прототип устройство, реализующее способ теплозащиты и модуляции аэродинамического сопротивления объекта, спускаемого с космического аппарата (патент RU №2219110 С1, МПК B64G 1/58, С09Д 1/02, В64С 1/38, 31.05.2002), содержащее теплоноситель и средства формирования теплозащитного слоя.

Недостатком известного технического решения является повышенное энергопотребление.

Задачей заявленного изобретения является создание эффективной теплозащиты теплонапряженной передней кромки летательного аппарата и модуляции его аэродинамического сопротивления на режимах гиперзвукового полета в атмосфере.

Технический результат, получаемый при осуществлении изобретения, заключается в снижении пиковых тепловых нагрузок на элементы конструкции гиперзвукового БПЛА и повышение топливной эффективности его силовой установки.

Решение поставленной задачи и технический результат достигаются тем, что в устройстве активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА, содержащем теплоноситель и средства формирования теплозащитного слоя, соединенные с системой управления БПЛА, внутри носовой части БПЛА между его передней кромкой и камерой сгорания силовой установки по оси БПЛА размещен цилиндрический газоструйный резонатор с системой управляемых клапанов, расположенных на боковой стенке резонатора, причем открытый вход резонатора совмещен с передней кромкой БПЛА и направлен навстречу набегающему потоку, на внешней поверхности резонатора на его боковых стенках по окружности установлены контейнер с теплоносителем в виде метангидрата и преобразователь метангидрата в смесь паров воды и метана, которая, находясь под давлением в пульсирующем режиме с частотой более 100 Гц, с помощью системы управляемых клапанов газоструйного резонатора обеспечивает возможность формирования на открытом входе резонатора защитного слоя, предохраняющего переднюю кромку БПЛА от пиковых тепловых нагрузок.

Схема устройства активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА показана на фигуре 1. В носовой части 4 гиперзвукового БПЛА 1 между его передней кромкой 2 и камерой сгорания 11 силовой установки 12 по оси БПЛА размещен цилиндрический газоструйный резонатор 7 с системой управляемых клапанов 6, расположенных на боковой стенке резонатора 7, причем открытый вход 8 резонатора 7 совмещен с передней кромкой 2 БПЛА и направлен навстречу набегающему потоку. На внешней поверхности резонатора 7 на его боковых стенках по окружности установлены контейнер 3 с теплоносителем в виде метангидрата и преобразователь 5 метангидрата в смесь паров воды и метана. Кроме того, на фигуре 1 обозначено: 9-система управления БПЛА, 10-топливо.

Работает устройство следующим образом.

При движении гиперзвукового БПЛА 1 в атмосфере на него набегает поток воздуха со скоростью V0, формируется головная ударная волна и температура торможения потока достигает порядка 2000К. На элементы конструкции летательного аппарата, и в первую очередь на его переднюю кромку 2, поступает тепловой поток, который может повредить конструкцию или изменить конфигурацию передней кромки 2, определяющей аэродинамические характеристики БПЛА.

С целью охлаждения передней кромки 2 БПЛА перед ней с помощью преобразователя 5 через систему управляемых клапанов 6, расположенных на боковой стенке газоструйного резонатора 7, создают защитный слой из продуктов разложения метангидрата в виде смеси паров воды и метана. Полученную смесь направляют в газоструйный резонатор 7, в котором пары воды и метана под давлением в пульсирующем режиме с частотой более 100 Гц через открытый вход 8 газоструйного резонатора вводят навстречу набегающему потоку. В результате формируется защитный слой, экранирующий переднюю кромку БПЛА от пиковых тепловых нагрузок. Экспериментально установлено, что для полной диссоциации одного моля водяного пара требуется более 242 кДж. Диссоциация метана в присутствии паров воды также протекает с интенсивным поглощением энергии и хорошим выходом водорода, атомарного углерода, ацетилена и других компонентов с высокой энтальпией, которые могут эффективно быть использованы в процессе горения топливовоздушной смеси в камере сгорания 11 силовой установки 12 гиперзвукового БПЛА 1.

Ввод смеси паров воды и метана газоструйным резонатором 7 навстречу набегающему потоку в пульсирующем режиме вызывает также модуляцию аэродинамического сопротивления БПЛА и способствует устойчивости пограничного слоя БПЛА.

Таким образом, предлагаемое изобретение позволяет:

- создать эффективную теплозащиту теплонапряженной передней кромки гиперзвукового БПЛА за счет снижения пиковых тепловых нагрузок на элементы конструкции БПЛА с формированием защитного слоя;

- улучшить устойчивость пограничного слоя за счет создания модуляции аэродинамического сопротивления БПЛА при вводе в набегающий высокоскоростной поток с помощью газоструйного резонатора паров воды и метана под давлением в пульсирующем режиме;

- организовать поглощение энергии набегающего потока при диссоциации молекул воды, метана, а также синтезе ацетилена и других компонентов;

- повысить топливную эффективность БПЛА и улучшить его массогабаритные характеристики за счет использования полученных продуктов разложения метангидрата с добавленной энтальпией в камере сгорания силовой установки гиперзвукового БПЛА.

В настоящее время принято решение о создании опытного образца устройства (демонстратора технологии).

Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА, содержащее теплоноситель и средства формирования теплозащитного слоя, соединенные с системой управления БПЛА, отличающееся тем, что внутри носовой части БПЛА между его передней кромкой и камерой сгорания силовой установки по оси БПЛА размещен цилиндрический газоструйный резонатор с системой управляемых клапанов, расположенных на боковой стенке резонатора, причем открытый вход резонатора совмещен с передней кромкой БПЛА и направлен навстречу набегающему потоку, на внешней поверхности резонатора на его боковых стенках по окружности установлены контейнер с теплоносителем в виде метангидрата и преобразователь метангидрата в смесь паров воды и метана, которая, находясь под давлением в пульсирующем режиме с частотой более 100 Гц, с помощью системы управляемых клапанов газоструйного резонатора обеспечивает возможность формирования на открытом входе резонатора защитного слоя, предохраняющего переднюю кромку БПЛА от пиковых тепловых нагрузок.



 

Похожие патенты:

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин.

Изобретение относится к тепловой защите элементов конструкции космического аппарата (КА) от воздействия ионизированных газовых потоков, преимущественно стационарных плазменных двигателей.

Изобретение может использоваться в многослойных комбинированных покрытиях зеркальных космических антенн с рефлекторами из полимерного композиционного материала - углепластика.

Изобретение относится к ракетно-космической технике и может быть использовано для креплений разделительных устройств блоков ступеней ракет-носителей, устанавливаемых на теплозащитах двигателей.

Изобретение относится к космической технике и касается создания терморегулирующего материала для нанесения на поверхность космического объекта (КО). Терморегулирующий материал содержит подложку в виде оптически прозрачного стекла, высокоотражающий слой из серебра, защитный слой.

Изобретение относится к терморегулирующим материалам, эксплуатирующимся в составе космической техники, в частности в качестве внешнего слоя экранно-вакуумной теплоизоляции на наружных поверхностях космических аппаратов (КА) с электрическим заземлением на корпус КА или в качестве терморегулирующего покрытия класса "солнечный отражатель" при нанесении его с помощью клеевого электропроводного слоя на наружные поверхности КА.

Изобретение относится к термостойким системам теплозащиты поверхности гиперзвуковых летательных и возвращаемых космических аппаратов. Термостойкая система теплозащиты состоит из теплоизоляционного и теплозащитного слоя, включающего композиты с керамической матрицей, армированной теплостойкими волокнами и содержащей сублимирующее твердое вещество.

Изобретения относятся к вариантам выполнения фюзеляжа воздушного судна и к воздушному судну. Фюзеляж по первому варианту содержит пространство с полом, который содержит одну или несколько панелей для пола.

Изобретение относится к авиационной и ракетно-космической технике и касается тепловой защиты частей корпусов летательных аппаратов (ЛА), совершающих полет со сверх- и гиперзвуковыми скоростями.

Изобретение относится к пассивной теплозащите, в частности, приборов и оборудования космических аппаратов. Терморегулирующий материал содержит внешний и армирующий слои, между которыми введен термопластичный слой.

Изобретение относится к техническим объектам, испытывающим воздействие газовых потоков. Способ снижения трения газового потока на обтекаемой поверхности путем поперечного отсоса потока через перфорацию в обтекаемой поверхности заключается в том, что поперечный отсос газа осуществляют дискретно на отдельных перфорированных участках, расположенных последовательно на обтекаемой поверхности вдоль направления потока.

Группа изобретений относится к области авиации. Обтекаемое тело (1) с внешней стороной (3) с относительно направления потока верхней стороной (3a) и нижней стороной (3b), с боковыми концевыми участками (5a, 5b), которые при рассмотрении поперек принятого направления (S) потока образуют боковые концы.

Изобретение относится к области авиации, в частности к системам увеличения подъемной силы крыла. .

Изобретение относится к авиационной промышленности. .

Изобретение относится к устройствам для улучшения аэродинамических характеристик летательных аппаратов, преимущественно ракет-носителей (РН). .

Изобретение относится к авиации и касается технологии управления обтеканием воздушным потоком сверх- и гиперзвуковых летательных аппаратов (ЛА). .

Изобретение относится к ветроэнергетике, а именно к ветроэнергетическим установкам, преобразующим энергию ветра в электрическую, механическую, гидравлическую или иного вида энергию.

Изобретение относится к морской авиации и касается создания спасательных гидросамолетов. .

Изобретение относится к управлению летательным аппаратом. .

Изобретение относится к области авиации, в частности к конструкциям сверхзвуковых летательных аппаратов. Носовая часть летательного аппарата содержит кабину управления с вытянутой вперед головкой в форме усеченного конуса с прикрепленной к его вершине пластиной, изготовленной из жаростойкого материала и расположенной перпендикулярно или наклонно к набегающему воздушному потоку.
Наверх