Датчик дифференциального давления



Датчик дифференциального давления
Датчик дифференциального давления
G01L9/00 - Измерение постоянного или медленно меняющегося давления газообразных и жидких веществ или сыпучих материалов с помощью электрических или магнитных элементов, чувствительных к механическому давлению; передача и индикация перемещений элементов, чувствительных к механическому воздействию, используемых для измерения давления с помощью электрических или магнитных средств (измерение разности двух или более величин давления G01L 13/00; одновременное измерение двух и более величин давления G01L 15/00; вакуумметры G01L 21/00)

Владельцы патента RU 2559299:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (RU)

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки техники, связанных с измерением перепада давления среды. Техническим результатом изобретения является уменьшение погрешности датчика разности давления. Датчик давления содержит корпус, в котором герметично размещены полупроводниковые чувствительные элементы, на которых сформированы тензодатчики, две полости, заполненные электроизоляционной жидкостью и расположенные с торцов по ходу движения жидкости. Первый полупроводниковый чувствительный элемент с первым тензодатчиком расположены между полостями, второй полупроводниковый чувствительный элемент параллелен первому полупроводниковому чувствительному элементу. Корпус загерметизирован профилированными мембранами, расположенными с зазором относительно сторон корпуса. Полупроводниковые чувствительные элементы выполнены в виде микроэлектромеханических структур разной толщины. Второй чувствительный элемент со стороны тензодатчика соединен с атмосферой и имеет толщину большую, чем первый чувствительный элемент. 2 ил.

 

Область техники

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки техники, связанных с измерением перепада давления среды.

Уровень техники

Объектами эксплуатации дифференциального датчика давления могут быть трубопроводы для подвода и отвода жидкостей для систем и агрегатов судов, а также в трубопроводах промышленного назначения, для контроля чистоты фильтров, а также измерения расхода.

Как правило, приходится измерять малые давления. При измерении приходится использовать тонкие кремниевые мембраны. Для уменьшения влияния на точность датчика кремниевую мембрану размещают на массивном стеклянном основании. Коэффициент температурного расширения стеклянного основания совпадает с коэффициентом температурного расширения кремния. Такая конструкция позволяет снизить погрешности, возникающие из-за несовпадения коэффициента температурного расширения корпуса.

На кремниевой мембране сформирован тензомост, который преобразует давление в электрический сигнал. В дифференциальном датчике давления высокое статическое давление действует на кремниевую мембрану, которая находится на стеклянном основании со всех сторон. Поскольку модуль Юнга стекла и кремния различны, деформации стекла и кремния также различные. В результате на границе стекло-кремний возникают касательные напряжения, приводящие к деформации кремниевой мембраны и появлению погрешности измерения от действия статического давления (см. Патент США №5477738 MULTI-FUNCTION DIFFERENTIAL PRESSURE SENSOR WITH THIN STATIONARY BASE, МПК G01L 13/02, дата публикации 26.12.1995).

Датчик разности давления включает полупроводниковый чип, состоящий из одного кристалла и имеющий противоположные первую и вторую поверхности. Полупроводниковый кристалл включает тонкостенную часть и толстостенную часть, сформированной вокруг тонкостенной части. Тонкостенная часть чувствительна к разности между первым и вторым давлением, соответственно приложенным к первой и второй поверхности указанного полупроводникового кристалла.

Стационарное основание имеет соединительную поверхность, другую поверхность напротив присоединительной поверхности и отверстие. Неподвижное основание соединяется через присоединительную поверхность к толстостенной части полупроводникового кристалла, чтобы жестко закрепить полупроводниковый кристалл. Неподвижное основание в области присоединительной поверхности меньше по толщине в том же направлении, чем толстостенная часть полупроводникового кристалла. Отверстие сформировано в противоположной поверхности неподвижного основания для подведения первого давления к первой поверхности полупроводникового кристалла.

На кремниевом кристалле сформированы две мембраны. Одна из мембран имеет меньшую толщину, чем другая мембрана. Кремниевый кристалл присоединяют к массивному стеклянному основанию методом анодной посадки. Мембрана с меньшей толщиной располагается над отверстием в стекле, через которое подается давление, и образует сенсор дифференциального давления.

Мембрана с большей толщиной располагается на стекле таким образом, что полость под мембраной закрыта герметично. Таким образом, формируется датчик абсолютного давления, предназначенный для измерения статического давления. На сенсорах дифференциального и статического давления сформированы измерительные мосты.

За счет электронной схемы происходит устранение погрешности, возникающей на сенсоре дифференциального давления от действия статического давления за счет коррекции датчиком статического давления.

Недостатком данного решения является то, что сенсор статического давления чувствителен к изменению атмосферного давления, которое вносит погрешность в измерения статического давления. В результате в коррекцию сигнала с датчика вносится погрешность.

Наиболее близким известным техническим решением является датчик дифференциального давления (см. Патент РФ №2395793, МПК G01L 13/02, от 29.01.2009 г.), содержащий корпус, в котором выполнены две полости, заполненные малосжимаемой жидкостью. Каждая полость загерметизирована профилированной мембраной, расположенной с зазором относительно корпуса. Кремниевые мембраны соединены с диффузионными тензорезисторами.

Работает датчик следующим образом.

При воздействии давления P1 на мембрану 7 и давления Р2 на мембрану 6 (в случае если величина разности давлений ΔP=P1-P2 не превышает предельно допустимого рабочего давления) разность давлений между полостями 3 и 2, равная ΔР, воздействует на полупроводниковые тензорезистивные элементы 5 и 4, вырабатывающие электрические сигналы S1 и S2, пропорциональные величине ΔР. Сигнал S1 возрастает при увеличении ΔР, а сигнал S2 уменьшается при увеличении ΔР.

Из-за нестабильности полупроводниковых тензорезистивных чувствительных элементов происходит изменение сигналов S1 и S2 на ΔS1 и ΔS2, что соответствует относительной погрешности нестабильности и Δ S 2 S 2 .

Эта погрешность при совместной работе двух полупроводниковых тензорезистивных чувствительных элементов уменьшается за счет использования сигналов с обоих полупроводниковых тензорезистивных чувствительных элементов с преобразованием их в разность S, равную (S1-S2).

Величина разности сигналов (S1-S2) возрастает до двух раз по сравнению с сигналами S1 и S2 из-за того, что сигнал S1 возрастает, a S2 уменьшается.

Погрешность нестабильности для разности сигналов равна Δ S 1 Δ S 2 S .

Эта погрешность при достаточно близких значениях характеристик стабильности с разбросом до 20% снижается в 5410 раз по сравнению с аналогичной погрешностью для каждого отдельного полупроводникового тензорезистивного чувствительного элемента, поскольку разность (ΔS1-ΔS2) меньше каждого ΔS1 и ΔS2, а S больше S1 и S2.

Датчик с двумя полупроводниковыми тензорезистивными чувствительными элементами имеет возможность работать совместно как со встроенной электронной схемой вычисления разности сигналов, так и с различными вариантами автономных вычислительных систем, обеспечивая при этом повышенную стабильность измерения разности давлений.

Недостатком данного решения является разогрев чувствительных элементов вследствие прохождения тока через тензорезисторы. Разогрев чувствительных элементов приводит к разогреву заполненной малосжимаемой электроизоляционной жидкости и возникновению давления жидкости на кристалл чувствительных элементов. Вследствие этого давления возникает погрешность.

Технической задачей предложенного решения является повышение точности за счет устранения погрешности, вызванной статическим давлением, воздействующим на чувствительный элемент датчика дифференциального давления, а также снижение влияния атмосферного давления на измерения.

Раскрытие изобретения

Задачей предлагаемого технического решения является устранение недостатков прототипа и, как следствие, уменьшение погрешности датчика разности давления возникающего из-за статического сжатия полупроводникового тензорезистивного чувствительного элемента.

Поставленная задача решается тем, в датчике дифференциального давления, содержащем корпус, в котором герметично размещены полупроводниковые чувствительные элементы, на которых сформированы тензодатчики, выполненные в виде мостовой схемы, две полости, заполненные электроизоляционной жидкостью, расположенные с торцов по ходу движения жидкости, первый полупроводниковый чувствительный элемент с первым тензодатчиком расположены между полостями, а второй полупроводниковый чувствительный элемент параллелен первому полупроводниковому чувствительному элементу, корпус загерметизирован профилированными мембранами, расположенными с зазором относительно сторон корпуса, перпендикулярными относительно хода движения жидкости, полупроводниковые чувствительные элементы выполнены в виде микроэлектромеханических структур разной толщины, при этом второй чувствительный элемент со стороны тензодатчика соединен с атмосферой, имеет толщину большую, чем первый чувствительный элемент, а второй стороной обращен к полости с электроизоляционной жидкостью.

Изобретение поясняется чертежами, где на фиг. 1 - конструкция датчика дифференциального давления, а на фиг. 2 показан чувствительный элемент датчика давления.

Осуществление изобретения

Полупроводниковый датчик дифференциального (фиг. 1) давления состоит из двух полупроводниковых (кремниевых) чувствительных элементов 1 и 2. Также датчик содержит корпус, в котором выполнены две полости 3, 4, заполненные электроизоляционной жидкостью. Каждая полость загерметизирована воспринимающими давление профилированными мембранами 5, расположенными с зазором относительно корпуса. Между полостями 3, 4 в корпусе герметично закреплен полупроводниковый чувствительный элемент 1, который воспринимает разность давлений. В датчик дифференциального давления введен второй полупроводниковый тензорезистивный чувствительный элемент 2, установленный в полости 3 встречно первому полупроводниковому чувствительному элементу 1, который воспринимает статическое давление. На поверхности чувствительных элементов 1 и 2 сформированы тензодатчики, выполненные в виде мостовой схемы из тензорезисторов 6 для каждого чувствительного элемента.

Полупроводниковый чувствительный элемент 1 измеряет дифференциальное давление. Он содержит кремниевую мембрану, выполненную в виде микроэлектромеханической структукры (МЭМС-структуры), которая сформирована методом анодной посадки кремниевой мембраны на стеклянное основание. На кремниевой мембране нанесены тензорезисторы, которые преобразуют давление в электрический сигнал.

Кремниевый чувствительный элемент 2 измеряет статическое давление. Он также выполнен в виде МЭМС-структуры. На кремниевой мембране нанесены тензорезисторы, которые преобразуют давление в электрический сигал.

Кремниевая мембрана чувствительного элемента 2 своей планарной стороной соединена с атмосферой (Ратм). Вследствие этого чувствительный элемент 2 не воспринимает изменения атмосферного давления, поэтому сигнал с него равен статическому давлению и погрешности от воздействия атмосферного давления не возникает.

В результате предложенная конструкция датчика разности давления позволяет снизить погрешность, вызванную статическим давлением, воздействующим на чувствительный элемент измеряющий разность давления, а также снизить влияние атмосферного давления на измерения.

Датчик давления, содержащий корпус, в котором герметично размещены полупроводниковые чувствительные элементы, на которых сформированы тензодатчики, выполненные в виде мостовой схемы, две полости, заполненные электроизоляционной жидкостью, расположенные с торцов по ходу движения жидкости, первый полупроводниковый чувствительный элемент с первым тензодатчиком расположены между полостями, а второй полупроводниковый чувствительный элемент параллелен первому полупроводниковому чувствительному элементу, корпус загерметизирован профилированными мембранами, расположенными с зазором относительно сторон корпуса, перпендикулярными относительно хода движения жидкости, отличающийся тем, что полупроводниковые чувствительные элементы выполнены в виде микроэлектромеханических структур разной толщины, при этом второй чувствительный элемент со стороны тензодатчика соединен с атмосферой, имеет толщину большую, чем первый чувствительный элемент, а второй стороной обращен к полости с электроизоляционной жидкостью.



 

Похожие патенты:

Заявленная группа изобретений относится к датчикам, которые используются в устройствах для детектирования давления текучих сред (жидкостей и газообразных сред) в различных областях, например в автомобильной промышленности, в бытовых электрических приборах, в области сохранения окружающей среды и общего контроля в гидротермальной санитарии или в области медицины.

Изобретение относится к бесшкальным манометрам. Техническим результатом изобретения является повышение точности измерений.

Изобретение относится к измерительной технике и предназначено для использования в приборах измерения давления жидкостей и газов. Техническим результатом изобретения является упрощение конструкции и технологии изготовления датчика давления.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных средств. Датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента - мембраны с жестким центром, с периферийным основанием в виде оболочки вращения, образованной на ней гетерогенной структуры из тонких пленок материалов, в которой сформированы контактные площадки, первые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по одной окружности мембраны, и вторые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по другой окружности на мембране, соединенные перемычками, включенные в измерительный мост.

Изобретение относится к датчикам давления, используемым для измерения технологической текучей среды и дифференциального давления. Техническим результатом изобретения является повышение точности измерений давления.

Изобретение относится к измерительной технике, в частности к преобразователям давления, предназначенным для использования в различных областях науки и техники, связанных с измерением давления среды в условиях воздействия нестационарной температуры измеряемой среды.

Изобретение относится к преобразователям давления. Техническим результатом изобретения является повышение точности измерения давления за счет уменьшения содержания посторонних молекул, растворенных в газе или жидкости.

Предлагаемое устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью.

Изобретение относится к измерительной технике и активному неразрушающему контролю и может быть использовано для измерения давления контролируемой среды. Способ измерения давления контролируемой среды включает измерение сигналов колебаний давления в объекте исследования посредством датчика, преобразование сигналов через аналого-цифровой преобразователь и регистрацию получаемых цифровых сигналов.

Изобретение относится к области приборостроения и может быть использовано при разработке и производстве измерительных преобразователей неэлектрических величин типа датчиков угловых скоростей, датчиков линейных, угловых ускорений и т.д.

Изобретение относится к контрольно-измерительной технике и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре.

Изобретение касается способа эксплуатации и системы, снабженной электрической машиной, которая включает в себя статор (4) и ротор (1), а также инфракрасным температурным сенсором, при этом поле детекции инфракрасного температурного сенсора ориентировано по поверхности корпуса ротора.

Изобретение относится к оптике, а именно к устройствам создания фоновой засветки без искажения спектра фонового излучения, в основном для проверки фоточувствительной поверхности фотоприемника.

Изобретение относится к расходометрии и может быть использовано в процессе измерения расхода среды с поддержанием постоянной амплитуды колебания трубки в интервале изменяющейся температуры.

Изобретение относится к пьезоэлектрическим датчикам, предназначенным для контроля различных физических величин. .

Изобретение относится к измерительной технике и может быть использовано при измерении физических величин с использованием дифференциальных датчиков на базе первичных измерительных преобразователей с раздельными электрическими выходами и неидентичными линейными характеристиками.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры объекта. Представлены варианты системы инфракрасного (ИК) измерения температуры. Данное изобретение активно стабилизирует температуры объектов поблизости и на пути между инфракрасным (ИК) датчиком и целевым объектом. Для регулирования мощности, подаваемой на термопреобразователи сопротивления (RTD), используются измеритель и регулятор температуры, который регулирует силу тока, подаваемую на RTD. В результате температуры объектов, видимых в ИК-диапазоне, могут активно стабилизироваться при изменениях, например изменениях в температуре окружающей среды, что приводит к эффективным и точным показаниям температуры. Технический результат - повышение точности получаемых данных. 2 н. и 13 з.п. ф-лы, 16 ил.
Наверх