Способ фронтального синтезирования апертуры антенны земной поверхности с исключением слепых зон в передней зоне с помощью многопозиционной радиолокационной системы

Изобретение относится к многопозиционным бортовым радиолокационным станциям (РЛС) и может быть использовано для формирования радиолокационного изображения (РЛИ) наблюдаемого участка земной поверхности. Достигаемый технический результат - повышение разрешающей способности по угловой координате. Указанный результат достигается за счет того, что фронтальный участок земной поверхности (ФУЗП) посредством переднебокового обзора синхронно облучают зондирующими сигналами с помощью двух антенн, которые находятся на борту летательного аппарата (ЛА), при этом приемопередающие позиции, в зависимости от протяженности облучаемого ФУЗП, находятся на расстоянии d друг от друга таким образом, что облучаемые соседние зоны имеют перекрытие, и отраженные сигналы, принятые двумя антеннами, на борту каждого из N ЛА, сориентированные по заданному направлению для левого и правого переднебокового обзора, накапливают отраженные сигналы, и при их обработке формируют два РЛИ высокого разрешения от облучаемых участков земной поверхности в направлении облучения двух антенн путем использования алгоритма синтезирования апертуры, после чего на одном из N ЛА, где N - количество ЛА, по каналу связи синтезируют РЛИ от каждого из N ЛА, тем самым получают РЛИ высокого разрешения в реальном масштабе времени в передней зоне, исключая слепые зоны. 4 ил.

 

Изобретение относится к многопозиционным бортовым радиолокационным станциям с синтезированной апертурой антенны, может быть использовано в системах дистанционного зондирования Земли для формирования радиолокационного изображения (РЛИ) наблюдаемого участка земной поверхности в координатах дальность-азимут по курсу движения летательного аппарата (ЛА).

Известны способы получения РЛИ в передней зоне из литературы, в т.ч. патентной (1, 2, 3, 4).

Эти способы хорошо отработаны и широко используются в настоящее время. Однако им присущи следующие ограничения:

1) низкая разрешающая способность по угловой координате;

2) наличие слепых зон при фронтальном синтезировании (при азимутальном угле ±10° из-за незначительной разницы в этой зоне доплеровского смещения частоты отраженного сигнала);

3) недостаточная информативность однопозиционных систем.

Наиболее близким по своей сущности к заявляемому изобретению следует отнести способ по патенту на изобретение РФ №2278398 (5).

Последовательность операций при реализации запатентованного метода следующая:

1. С борта N передающих позиций (ПРД) излучают N независимых ортогональных сигналов S1…SN.

2. Ориентируют диаграммы направленности (ДН) всех N передающих позиций на заданный участок земной поверхности.

3. Диаграмму направленности первой приемной антенны направляют в сторону заданного участка земной поверхности, а ДН второй слабонаправленной приемной антенны ориентируют по направлению на N передающих позиций.

4. На борту приемной позиции при помощи антенны, сориентированной в направлении заданного участка земной поверхности, принимают N ортогональных сигналов S1OTP…SNOTP, отраженных от наблюдаемого участка земной поверхности.

5. На борту приемной позиции при помощи антенны, сориентированной по направлению передающей позиции, принимают N ортогональных сигналов прямого распространения S1ПР…SNПР, непосредственно поступающих c N передающих позиций.

6. Из сигналов прямого распространения S1ПР…SNПР выделяют информацию о состоянии каждого передатчика и его носителя и о состоянии среды распространения.

7. На борту приемной позиции для каждой из соответствующих друг другу N пар прямых и отраженных сигналов записывают N радиолокационных голограмм, соответствующих N различным ракурсам облучения наблюдаемого участка земной поверхности каждым из носителей передатчика.

8. На борту приемной позиции синтезируют одновременно N разноракурсных радиолокационных изображения (РЛИ) наблюдаемого участка земной поверхности.

9. Производят совместный анализ набора из N разноракурсных РЛИ.

Решение по патенту включает сходные признаки: от 2 до N двухантенных систем, бортовые радиолокационные станции, устройства для обеспечения канала связи. Основными ограничениями данного метода являются:

1. Невозможность данного метода формировать протяженное РЛИ в передней зоне обзора.

2. Низкая разрешающая способность по азимутальной координате.

Причем за счет использования двухантенной системы возможно сократить количество приемопередающих позиций (ППП) на борту ЛА в составе многопозиционной радиолокационной системы.

Предлагается способ, позволяющий избежать указанных ограничений.

Суть предлагаемого способа заключается в следующем. В отличие от прототипа, способ реализуется с использованием N совмещенных ППП, расположенных на каждом из N летательных аппаратов. Кроме того, используется алгоритм синтезирования апертуры при переднебоковом обзоре, что позволяет повысить разрешающую способность по угловой координате. Предлагаемый способ позволяет функционировать в реальном масштабе времени.

Задачей, на решение которой направлено заявляемое изобретение, является исключение слепых зон при фронтальном синтезировании апертуры для формирования радиолокационного изображения земной поверхности в передней зоне с высоким разрешением по угловой координате в реальном масштабе времени.

Данная задача решается за счет того, что предлагаемое изобретение

«Способ фронтального синтезирования апертуры антенны при обзоре земной поверхности с исключением слепых зон в передней зоне с помощью многопозиционной радиолокационной системы, включающий от 2-х до N двухантенных систем с фазированными решетками, бортовые радиолокационные станции, устройства для обеспечения канала связи,

отличающийся тем, что

многопозиционная радиолокационная система

представляет собой группу однопозиционных радиолокационных систем, являющихся приемопередающими позициями (ППП), расположенными на бортах летательных аппаратов (ЛА), устройство для обеспечения канала связи между ППП, при этом

фронтальный участок земной поверхности синхронно облучают зондирующими сигналами с помощью двухантенной системы каждой из ППП посредством переднебокового обзора, причем ППП находятся на расстоянии d друг от друга и расположены таким образом, что облучаемые зоны переднебокового обзора перекрываются,

отраженные радиолокационные сигналы, принятые двухантенными системами, сориентированные по заданному направлению для левого и правого переднебокового обзора каждого ЛА, используют для синтезирования наблюдаемого участка земной поверхности, где находится центр управления и производится обработка информации,

собираемой посредством систем связи от других ППП, в результате чего происходит формирование итогового фронтального радиолокационного изображения высокого разрешения в реальном масштабе времени в передней зоне, при этом исключаются слепые зоны по ходу движения каждого ЛА».

Технический результат - получение радиолокационных изображений высокого разрешения РЛИ в реальном масштабе времени, в передней зоне обзора земной поверхности при синтезировании апертуры РЛС с борта N ЛА, исключая слепые зоны, при помощи многопозиционной бортовой РЛС.

Сущность изобретения поясняется дальнейшим описанием и чертежами, на которых представлено: фиг. 1 - структурная схема передней зоны земной поверхности, количество ППП от 2-х до N; фиг. 2 - структурная схема приемопередающей позиции, в которую входит двухантенная система, бортовая радиолокационная станция, устройство синхронизации, устройство для обеспечения канала связи для обмена информацией между ППП и центром обработки и управления информации; фиг. 3 - структурная схема обмена и передачи информации между многопозиционной радиолокационной системой и центром обработки и управления информации; фиг. 4 - структурная схема центра управления и обработки информации.

Предлагаемый способ функционирует следующим образом. С блока управления команд поступает сигнал на устройство для обеспечения каналов связи. Система связи посылает управляющие сигналы по каналам связи на борт ЛА, где по этим командам устройство управления ППП формирует траекторию движения ЛА для достижения необходимого расположения ППП, в частности для достижения необходимого расстояния между ЛА. Кроме того, управляющие команды задают параметры для настройки двухантенной системы, синхронизатора, передатчика и приемника. После синхронного излучения сигналы, переотразившиеся на двухантенную систему, поступают в соответствующий приемник, далее на процессор обработки данных, где формируется РЛИ, и далее вместе с навигационными данными, параметрами антенны, передатчика поступают на устройство, обеспечивающее канал связи. С каждой из N ППП на систему связи центра управления и обработки поступает информация, которая обрабатывается на процессоре данных, который и формирует окончательное РЛИ в передней зоне обзора.

На фиг. 1 показано, как с ППП двухантенными системами синхронно облучают участок земной поверхности зондирующими сигналами таким образом, чтобы облучить с перекрытием весь передний фронт земной поверхности, используя переднебоковой обзор с перекрытием зон наблюдения соседних ППП.

Следует отметить, что центр обработки и управления может базироваться на одном из ЛА с дополнительной аппаратурой в соответствии с фиг. 4 или на наземном пункте.

В качестве носителя ППП может использоваться пилотируемый самолет, беспилотный ЛА.

Источники информации

1. Радиолокационные станции обзора Земли / под. ред. Г.С. Кондратенкова. - М.: Радио и связь, 1983. - 272 с.

2. Многофункциональные радиолокационные системы под ред. Б.Г. Татарского, М., ООО «Дрофа», 2007 г., стр. 24, 25, 174-195.

3. Способ наблюдения земной поверхности в передней зоне обзора бортовой рлс - патент РФ №2419109 МПК G01S 13/89, опубл. 20.05.2011.

4. Способ картографирования земной поверхности бортовой радиолокационной станцией - патент РФ №2423724, МПК G01S 13/89, опубл. 10.07.2011.

5. Способ получения радиолокационного изображения земной поверхности при помощи многопозиционной радиолокационной системы с синтезированной апертурой антенны - патент РФ №2278398, МПК G01S 13/90, В08В 9/04, опубл. 20.06.2006.

Способ фронтального синтезирования апертуры антенны при обзоре земной поверхности с исключением слепых зон в передней зоне с помощью многопозиционной радиолокационной системы, включающий от 2-х до N двухантенных систем с фазированными решетками, бортовые радиолокационные станции, устройства для обеспечения канала связи,
отличающийся тем, что
многопозиционная радиолокационная система
представляет собой группу однопозиционных радиолокационных систем, являющихся приемопередающими позициями (ППП), расположенными на бортах летательных аппаратов (ЛА), устройство для обеспечения канала связи между ППП, при этом
фронтальный участок земной поверхности синхронно облучают зондирующими сигналами с помощью двухантенной системы каждой из ППП посредством переднебокового обзора, причем ППП находятся на расстоянии d друг от друга и расположены таким образом, что облучаемые зоны переднебокового обзора перекрываются,
отраженные радиолокационные сигналы, принятые двухантенными системами, сориентированные по заданному направлению для левого и правого переднебокового обзора каждого ЛА, используют для синтезирования наблюдаемого участка земной поверхности, где находится центр управления и производится обработка информации,
собираемой посредством систем связи от других ППП, в результате чего происходит формирование итогового фронтального радиолокационного изображения высокого разрешения в реальном масштабе времени в передней зоне, при этом исключаются слепые зоны по ходу движения каждого ЛА.



 

Похожие патенты:
Изобретение относится к радиоканалам передачи цифровой информации, конкретно, к космическим высокоскоростным радиолиниям (ВРЛ) передачи данных наблюдения с космических аппаратов (КА) дистанционного зондирования Земли (ДЗЗ).

Способ измерения радиальной скорости отражателя в радиолокаторе бокового обзора с синтезированной апертурой относится к радиолокации поверхности Земли с летательных аппаратов и может быть использован для одновременного формирования яркостных и скоростных портретов поверхности с высоким разрешением, точной привязкой к координатам местности и помехоустойчивостью.

Изобретение относится к геодезической системе глобального позицирования, обеспечивающей воздушно-базированное определение географических координат сопряженных точек изображения из изображений радара с синтезированной апертурой (SAR), при этом SAR изображения представлены в форме изображений Slant Range, и позиция съемки каждого SAR изображения известна, при этом из координат сопряженных точек изображения на SAR изображениях и соответствующих селекторных импульсов дальности определяют соответственно расстояние между каждой ячейкой разрешения на земной поверхности и каждой позицией съемки соответствующего SAR изображения, и на основании определенных расстояний и соотнесенных позиций съемки SAR изображений с применением эллипсоида WGS84 определяют географические координаты сопряженных точек изображения на SAR изображениях.

Изобретение предназначено для обнаружения и определения координат с высокой точностью наземных неподвижных целей на фоне подстилающей поверхности в широком азимутальном секторе.

Изобретения могут быть использованы для получения радиолокационных изображений (РЛИ) земной поверхности с помощью радиолокаторов с синтезированной апертурой (РСА), размещаемых на космических аппаратах (КА).

Изобретение относится к способу идентификации и анализа устойчивых рассеивателей (PS) в последовательности цифровых изображений, полученных с помощью радиолокатора с синтезированием апертуры (SAR).

Изобретение относится к радиолокации и может использоваться в радиолокационных системах, установленных на подвижных объектах для картографирования земной (морской) поверхности а также поверхностей других планет.

Изобретение относится к радиолокации, в частности к бортовым радиолокационным средствам навигации летательных аппаратов (ЛА), обеспечивающим наведение на наземные цели или посадку ЛА по радиолокационным изображениям земной поверхности.

Изобретение относится к приемному тракту радиолокационных систем и предназначено для обеспечения высокопроизводительной первичной цифровой обработки сигналов в реальном масштабе времени.

Изобретение относится к области радиоподавления радиолокационных станций (РЛС), в частности, может быть использовано при разработке станций помех РЛС с синтезированной апертурой антенны (PCА).

Изобретение относится к радиолокации, в частности к бортовым радиолокационным средствам навигации летательных аппаратов (ЛА). Достигаемый технический результат - повышение вероятности правильного определения положения ЛА по радиолокационным изображениям (РЛИ) земной поверхности и расширение условий возможного применения бортовых радиолокационных средств ЛА, обеспечивающих возможность навигации ЛА по РЛИ земной поверхности. Технический результат изобретения достигается путем формирования в полете ЛА радиолокационного изображения земной поверхности в системе координат ″наклонная дальность - доплеровская частота″, преобразования этого изображения в набор РЛИ в нормальной земной системе координат с учетом априорно формируемых поправок к данным о высоте полета ЛА, счисляемым навигационным комплексом летательного аппарата, и последующей взаимокорреляционной обработки сформированных РЛИ с заранее подготовленным опорным (эталонным) радиолокационным изображением. 5 ил.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам (РЛС) наблюдения за земной поверхностью на базе доплеровской радиолокационной станции с линейной антенной решеткой. Достигаемый технический результат - формирование трехмерного изображения поверхности в зоне видимости РЛС в виде совокупности пространственных координат отражающих элементов поверхности при меньшем числе каналов обработки и для более широкой диаграммы направленности антенны. Способ заключается в определении пространственных координат отражающих элементов поверхности, расположенных в элементах разрешения дальности и доплеровской частоты, и основан на совместном применении селекции по доплеровской частоте и амплитудного метода измерения координат. 4 табл.

Изобретение относится к радиолокации и предназначено для проверки идентификационных возможностей векторных одночастотных признаков распознавания объектов, к которым, в частности, относятся и доплеровские портреты воздушных объектов (ДП ВО). Достигаемый технический результат - повышение качества проверки идентификационных возможностей ДП ВО. Указанный результат обеспечивается привлечением к натурным экспериментам с реальными ВО дополнительной радиолокационной станции (РЛС), несущая частота которой отличается от частоты основной, используемой в экспериментах РЛС. Обе РЛС переводят в режим автоматического сопровождения по угловым координатам и дальности, и после отождествления отметок от ВО синхронно регистрируют отраженные ВО сигналы с помощью двухканального аналого-цифрового преобразователя, а затем сохраняют их в запоминающем устройстве в виде генеральных массивов амплитудно-фазовых отражений. Из генеральных массивов с параметрами отраженных сигналов выделяют синхронные и равные по числу элементов (длительности соответствующего интервала инверсного синтезирования) частные выборки отражений, из которых методом дискретного преобразования Фурье формируют комплексные спектральные вектора доплеровских портретов ВО и выделяют их огибающие, позволяющие сравнивать динамику эволюций структуры ДП, полученных в разных по частоте РЛС. 1 ил.

Изобретение относится к области радиолокации и может быть использовано для определения высоты полета летательного аппарата над земной, водной поверхностью, над поверхностью различных планет, а также при взлете и посадке. Достигаемый технический результат - снижение погрешности измерения высоты при изменении направления излучения, балльности, появлении брызг, перемещении поверхности слоя воды. Сущность изобретения в том, что измерение высоты полета осуществляется способом, основанным на измерении протяженности облучаемой площадки с помощью радиовысотомера или бортового радиолокатора. В связи с тем что измерение дальности до каких либо радиолокационных отражателей, расположенных в пределах диаграммы направленности бортовой антенны не осуществляется, имеет место устранение причины появления погрешностей в известных радиовысотомерах. 1 з.п. ф-лы, 5 ил.

Изобретение относится к радиолокационным методам и предназначено для извлечения из доплеровских портретов воздушных объектов (ДпП ВО) признаков идентификации, а именно частоты и амплитуды спектральных откликов, соответствующих рассеивающим центрам (РЦ) ВО. Достигаемый технический результат - высокая разрешающая способность по частоте, способствующая повышению информативности признаков идентификации, заключенных в структуре ДпП. Для достижения указанного результата методом линейного предсказания проводят проверку структуры ДпП ВО на возможное наличие в ней дополнительных спектральных составляющих, соответствующих РЦ на освещенной поверхности ВО, которые при проведении стандартной операции дискретного преобразования Фурье с комплексными значениями отражательной характеристики ВО по причине низкой разрешающей способности не выявляются. Данный способ позволяет в сформированных ДпП ВО наблюдать дополнительные спектральные отклики, что свидетельствует о повышении поперечного разрешения по частоте Доплера. 17 ил.

Сканирующее устройство формирования трехмерного голографического изображения, в миллиметровом диапазоне волн, которое обеспечивает реализацию способа исследования объекта, включает в себя модуль трансивера миллиметрового диапазона, содержащий антенную решетку, направляющее устройство рельсового типа, с которым соединен модуль трансивера. При этом сканирование, выполняемое модулем трансивера миллиметрового диапазона, представляет собой плоскостное сканирование. При этом сканирующее устройство формирования трехмерного голографического изображения выполнено с возможностью осуществления трехмерного сканирования. Направление сканирования может варьироваться путем изменения ориентации направляющего устройства рельсового типа. Технический результат заключается в упрощении конструкции и ускорении процесса сканирования объекта при помощи длин волн миллиметрового диапазона. 2 н. и 15 з.п. ф-лы, 2 ил.

Изобретение относится к космическим радиоканалам передачи цифровой информации. Сущность заявленного радиокомплекса заключается в организации радиоканала передачи оперативной управляющей информации (ОУИ) «Земля - КА» введением в бортовые и наземные программно-аппаратные средства на пунктах приема целевой информации радиокомплекса устройств формирования и передачи ОУИ на Земле и приема и выделения ОУИ на КА, что позволит минимизировать взаимодействие с центром управления полетами и сокращать время от приема заявок на дистанционное зондирование Земли (ДЗЗ) от потребителей и формирования программы зондирования до получения результатов ее реализации на КА, в течение текущего сеанса связи адаптировать во введенных на КА перестраиваемых блоках кодирования и модуляции сигнально-кодовую структуру информации к его условиям, избирательно запрашивать из всего объема информации наиболее информационно емкие данные зондирования (ДЗ) с помощью введенных на КА устройств анализа ДЗ и каталога ДЗ, а в наземную аппаратуру - устройств восстановления структуры бортового информационного потока. Радиокомплекс также содержит устройства обнаружения ошибок и перезапросов, повышающие достоверность данных путем перезапроса по каналу «Земля - КА» ошибочной информации. При этом бортовая и наземная аппаратура содержит многочастотные передающие и приемные устройства, многоволновые антенные облучатели при общем рефлекторе и блоки высокочастотных фильтров для максимизации скорости передачи данных путем их одновременной передачи в нескольких частотных диапазонах. Кроме того, радиокомплекс содержит аппаратуру автосопровождения на КА, упрощающую требования к КА в части программно-временного сопровождения бортовых антенн в сеансе связи с Землей. Достигаемый технический результат - увеличение объема передаваемых в сеансе ДЗ, повышение оперативности процессов планирования и проведения ДЗЗ, оптимизация процесса сброса ДЗ, а также повышение автономности функционирования радиокомплекса, что повышает эффективность системы ДЗЗ в целом. 3 ил.

Изобретение относится к области космического радиолокационного зондирования Земли, в частности к способу двумерного развертывания фазы при получении цифровых моделей рельефа земной поверхности по интерферометрическим парам радиолокационных изображений. Достигаемый технический результат - повышение точности цифровых моделей рельефа, формируемых в результате интерферометрической обработки, за счет предотвращения распространения ошибок развертывания фазы на значительную часть интерферограммы. Указанный результат достигается за счет того, что способ развертывания фазы включает восстановление градиента фазы на основе минимизации стоимости потоков в транспортной сети, ассоциированной с интерферограммой, только вдоль коротких линий разрыва фазы, соответствующих путям проведения потоков малой стоимости; выделение участков на интерферограмме, содержащих длинные линии разрыва фазы, осуществляемое в два этапа: сначала на основе анализа сюжета путем выявления наиболее резких изменений величины и направления наклона фазовой поверхности, а затем по паразитному градиенту, возникающему при восстановлении фазовой поверхности по весовому критерию наименьших квадратов; игнорирование градиента фазы на выделенных участках при восстановлении поверхности развернутой фазы; привлечение низкодетальной опорной информации о рельефе для восстановления среднего уровня фазы в крупных областях, изолированных участками с проигнорированным градиентом. 2 ил.

Изобретение относится к радиолокационной технике, в частности к аэрокосмическим бортовым радиолокационным станциям с синтезированием апертуры антенны (РСА), формирующим радиолокационные изображения (РЛИ) земной поверхности с использованием синтезирования антенного раскрыва (САР) в процессе сканирования этой поверхности диаграммой направленности антенны РСА. Достигаемый технический результат - уменьшение искажений формируемых РЛИ, возникающих за счет изменения доплеровского сдвига несущей частоты радиолокационных сигналов, отражаемых элементами земной поверхности, при перемещении носителя РСА. Указанный результат достигается за счет того, что способ формирования изображения земной поверхности в радиолокационной станции с синтезированием апертуры антенны заключается в объединении радиолокационных изображений парциальных участков земной поверхности, подлежащей радиолокационному обзору, получаемых посредством излучения и приема когерентных импульсов при облучении антенной РСА этих участков, аналого-цифровом преобразовании принятых радиолокационных сигналов, формировании двумерных массивов оцифрованных принятых сигналов путем их распределения по каналам дальности и периодам излучения и последующей цифровой обработке сформированных двумерных массивов, при этом облучение антенной РСА участков земной поверхности производится дискретным или скользящим способом, а суммирование амплитуд элементов разрешения парциальных РЛИ, соответствующих сформированным двумерным массивам, осуществляется после перевода этих массивов из системы координат «дальность-доплеровская частота» в нормальную земную систему координат (НЗСК). 1 з.п. ф-лы, 5 ил.

Изобретение относится к области радиолокации, в частности к бортовым радиолокационным станциям, устанавливаемым на летательных аппаратах, и позволяет формировать радиолокационное изображение (РЛИ) поверхности Земли. Достигаемый технический результат - устранение затемненных областей в РЛИ, полученном из нескольких парциальных кадров, вызванных искривлением пятна диаграммы направленности антенны на поверхности Земли при электронном сканировании. Указанный результат достигается за счет того, что при обработке сигнала производят сдвиг сигнала в каждом канале дальности по частоте таким образом, что доплеровская частота сигналов, отраженных от элементов, находящихся на оси пятна луча диаграммы направленности антенны на картографируемой поверхности, принимает нулевое значение, а при формировании РЛИ производят пересчет элементов разрешения по доплеровской частоте в каждом канале дальности в азимутальные элементы разрешения в соответствии с зависимостью азимута от доплеровской частоты и дальности, обратной использованной при частотном сдвиге сигнала. 5 ил.
Наверх