Самоподъемное буровое морское основание ледового класса с одиночной конической опорой на свайном основании и установочными гнездами

Группа изобретений относится к системам для бурения на нефть и газ и для добычи нефти и газа в потенциально ледовых условиях на прибрежных морских площадях и к способам бурения скважины в водах, подверженных появлению льда. Технический результат заключается в защите от ледовых воздействий и взаимодействии буровой установки с одиночной конической опорой. Система содержит: буровую установку, имеющую плавучий корпус с относительно гладкой палубой в своей верхней части и выгибающую лед форму в своей нижней части, проходящую вниз и внутрь вокруг периметра корпуса, где выгибающая лед форма проходит от зоны корпуса вблизи уровня палубы и проходит вниз к зоне вблизи днища корпуса; участок ледового дефлектора, проходящий вокруг периметра днища корпуса для направления льда вокруг корпуса, а не под корпус; по меньшей мере, три опоры, установленные внутри периметра днища плавучего корпуса, при этом опоры выполнены с возможностью подъема от морского дна для осуществления буксировки буровой установки через мелководье, а также выдвижения к морскому дну и дополнительного выдвижения для подъема корпуса частично или полностью из воды; и устройство самоподъема, соединенное с каждой опорой, как для подъема опоры от морского дна, чтобы самоподъемная буровая установка ледового класса могла плавать благодаря плавучести корпуса, так и выталкивания опор вниз к морскому дну и выталкивания корпуса полностью из воды, когда лед отсутствует; и одиночную коническую опору на свайном основании, имеющую корпус с опорной частью внизу и верхней палубой сверху, при этом опорная часть прикреплена к сваям, забитым в морское дно, когда конструкция одиночной конической опоры на свайном основании устанавливается для использования наклонной поверхностью, входящей в контакт со льдом вокруг корпуса, проходящую от более широкой нижней зоны к более узкой верхней зоне, где нижняя зона располагается ниже морской поверхности и верхняя зона располагается над морской поверхностью; и включает в себя узлы с установочными гнездами, выполненными с возможностью приема башмака, по меньшей мере, на одной опоре, прикрепляемого и удерживаемого на месте для бурения через одиночную коническую опору на свайном основании; при этом буровая установка выполнена с возможностью подъема корпуса над водой и бурения через одиночную коническую опору на свайном основании, спуска в воду для перехода в положение защиты ото льда, при этом лед может входить в контакт с выгибающей лед формой буровой установки, когда присутствует тонкий лед, и должна убираться, когда присутствует толстый лед. 3 н. и 14 з.п. ф-лы, 8 ил.

 

Данное изобретение относится к мобильным морским буровым основаниям, часто называемым "самоподъемными" буровыми основаниями или буровыми установками, которые используются на мелководье, обычно на глубинах меньше 400 футов (122 м), для бурения нефтяных и газовых скважин.

В нескончаемом поиске углеводородного сырья много нефтяных и газовых коллекторов открыто за последние более ста пятидесяти лет. Разработано много технологий поиска новых коллекторов и запасов и во многих областях в мире проведены поисковые работы, дающие новые открытия. Маловероятно открытие новых неразведанных запасов вблизи населенных областей и в доступных местах. Вместо этого, новые большие запасы открываются в проблемных и труднодостижимых областях.

Одной многообещающей областью является прибрежная морская зона Арктики. Вместе с тем Арктика является удаленной и холодной, где лед на воде создает значительные трудности для разведки и добычи углеводородов. В течение многих лет, в общем, считается, что шесть нерентабельных скважин должны быть пробурены на каждую рентабельную скважину. Если данное фактически верно, необходимо делать строительство нерентабельных скважин недорогим. Вместе с тем в Арктике практически ничего недорогого нет.

В настоящее время на мелководье в местах с холодными погодными условиями, такими как Арктика, самоподъемные или мобильные морские буровые основания можно использовать около 45-90 дней в короткий период открытой воды в летний сезон. Прогнозирование начала и конца сезона бурения зависит от случайных факторов и много усилий тратится для определения момента безопасной буксировки самоподъемного основания на буровую площадку и начала бурения. После начала строительства критичным является выполнение в срок заканчивания скважины для предотвращения вынужденного отсоединения и отступления в случае прихода льда до заканчивания скважины. Даже во время нескольких недель открытой воды плавающие льдины представляют значительную опасность для самоподъемных буровых установок, когда буровая установка находится на площадке, и опоры самоподъемной буровой установки открыты воздействию и весьма уязвимы для повреждения.

Самоподъемные буровые установки являются мобильными автономно поднимающимися морскими платформами бурения и капремонта и оборудованы опорами, выполненными с возможностью спускаться на морское дно и затем поднимать корпус над водой. Самоподъемные буровые установки обычно включают в себя буровое оборудование и/или оборудование капремонта, систему подъема опор, жилые отсеки, погрузо-разгрузочные сооружения, зоны хранения насыпных и жидких материалов, вертолетную площадку и другие необходимые сооружения и оборудование.

Самоподъемная буровая установка конструктивно исполнена с возможностью буксировки на буровую площадку и подъема на опорах над водой так, что морские волны воздействуют только на опоры, которые имеют весьма небольшое сечение, таким образом, обеспечивается проход волн без сообщения значительного перемещения самоподъемной буровой установке. Вместе с тем опоры самоподъемной установки слабо защищены от столкновения с плавающими льдинами, и плавающая льдина любого существенного размера способна вызвать структурное повреждение одной или нескольких опор и/или столкнуть буровую установку с площадки. Если такое событие произойдет до окончания бурения и заканчивания с установкой надлежащей защиты и выполнения консервации, возможно возникновение утечки углеводородов. Даже незначительный риск такой утечки является совершенно неприемлемым в нефтегазовой промышленности для органов надзора и населения.

Таким образом, после определения, что потенциально рентабельная скважина пробурена во время данного короткого сезона, весьма крупногабаритная, удерживаемая собственным весом система, или аналогичная конструкция может доставляться и устанавливаться на морское дно для долгосрочного процесса бурения и добычи углеводородов. Данные, удерживаемые собственным весом конструкции являются весьма крупными и очень дорогими, но способными выдерживать силы воздействия льда круглый год. Использование любой возможности без риска уменьшить стоимость разработки в Арктике может дать экономию значительных денежных средств.

Изобретение относится к системе, включающей в себя самоподъемную буровую установку ледового класса для бурения на нефть и газ в потенциально ледовых условиях на прибрежных морских площадях, включающую в себя плавучий корпус, имеющий относительно гладкую палубу в своей верхней части. Плавучий корпус дополнительно включает в себя форму для выгибания льда в своей нижней части, проходящую вниз и внутрь вокруг периметра корпуса, при этом форма для выгибания льда проходит от области корпуса вблизи уровня палубы и проходит вниз к области вблизи днища корпуса. Участок ледового дефлектора выполнен проходящим вокруг периметра днища корпуса для направления льда вокруг корпуса, а не под корпус. По меньшей мере, три опоры установлены в периметре днища плавучего корпуса, при этом опоры выполнены с возможностью подъема с морского дна для обеспечения буксировки буровой установки через мелководье, а также выдвижения к морскому дну и дополнительного выдвижения для подъема корпуса частично или полностью из воды. Устройство самоподъема соединяется с каждой опорой и служит как для подъема опоры от морского дна, дающего самоподъемной буровой установке ледового класса возможность плавать благодаря плавучести корпуса, так и выталкивания опор вниз к морскому дну и выталкивания корпуса вверх с частичным выходом из воды, когда плавающие льдины угрожают буровой установке, и с выходом полностью из воды, когда лед отсутствует. Система дополнительно включает в себя одиночную коническую опору на свайном основании, имеющую корпус с опорной частью внизу и верхней палубой сверху, при этом опорная часть прикрепляется к сваям, забитым в морское дно, когда конструкция одиночной конической опоры на свайном основании устанавливается для использования. Корпус одиночной конической опоры на свайном основании включает в себя наклонную поверхность, входящую в контакт со льдом вокруг корпуса, проходящую от более широкой нижней зоны к более узкой верхней зоне, где нижняя зона располагается ниже морской поверхности, и верхняя зона располагается над морской поверхностью. Одиночная коническая опора на свайном основании дополнительно включает в себя опорные узлы с установочными гнездами, выполненные с возможностью приема башмака, по меньшей мере, на одной опоре, прикрепляемого и удерживаемого на месте для бурения через одиночную коническую опору на свайном основании. Буровая установка выполнена с возможностью работы с одиночной конической опорой на свайном основании с подъемом корпуса над водой и выдвижением над одиночной конической опорой на свайном основании для бурения вниз через одиночную коническую опору на свайном основании, и спуска корпуса в воду для перехода в положение защиты ото льда, при этом лед должен входить в контакт с выгибающей лед формой буровой установки, когда присутствует тонкий лед, ухода с появлением толстого льда.

Изобретение дополнительно относится к способу бурения скважин в водах, подверженных появлению льда. Способ включает в себя создание одиночной конической опоры на свайном основании, имеющей корпус с опорной частью внизу и верхней палубой сверху и наклонную поверхность, входящую в контакт со льдом вокруг корпуса, проходящую от более широкой нижней зоны к более узкой верхней зоне, где нижняя зона располагается ниже морской поверхности, и верхняя зона располагается над морской поверхностью, при этом одиночная коническая опора на свайном основании включает в себя, по меньшей мере, один опорный узел с установочным гнездом для приема и удержания на месте башмака опоры самоподъемной буровой установки. Сваи забивают в морское дно и прикрепляют к одиночной конической опоре на свайном основании для закрепления одиночной конической опоры на морском дне. Создается буровая установка, имеющая плавучий корпус с относительно гладкой палубой в своей верхней части и с формой для выгибания льда в своей нижней части, причем форма для выгибания льда проходит от области корпуса вблизи уровня палубы и проходит вниз к области вблизи днища корпуса. Создается участок ледового дефлектора, проходящий вокруг периметра днища корпуса для направления льда вокруг корпуса, а не под корпус. По меньшей мере, три опоры устанавливают в периметре днища корпуса. Каждая опора выдвигается вниз так что, по меньшей мере, один башмак снизу одной из опор входит в контакт с установочным гнездом узла опирания на одиночную коническую опору на свайном основании, и остальные башмаки входят в контакт с морским дном или другими установочными гнездами узлов опирания, и корпус поднимается вверх и полностью из воды, когда лед не угрожает буровой установке, когда буровая установка бурит скважину на буровой площадке. Корпус дополнительно спускается в воду в конфигурацию защиты ото льда так, что форма для выгибания льда проходит над и под морской поверхностью для выгибания льда, идущего на буровую установку, для обеспечения погружения льда под воду и приложения выгибающих сил, разламывающих лед, при этом лед обходит буровую установку. Скважина бурится с буровой установки за краем палубы и вниз через одиночную коническую опору на свайном основании.

Более полное понимание настоящего изобретения и его преимуществ дает приведенное ниже описание с прилагаемыми чертежами, на которых показано следующее.

На фиг.1 показан вид сбоку настоящего изобретения, где буровая установка находится на плаву и в готовности к буксировке на буровую площадку.

На фиг.2 показан вид сбоку настоящего изобретения, где буровая установка поднята над водой.

На фиг.3 показан вид сбоку первого варианта осуществления настоящего изобретения, где буровая установка частично опущена в поверхность раздела льда и воды, но продолжает поддерживаться опорами в защитной конфигурации для бурения в потенциально ледовых условиях.

На фиг.4 показан с увеличением вид сбоку одного конца первого варианта осуществления настоящего изобретения фиг.3 со льдом, перемещающимся на буровую установку.

На фиг.5 показан вид сбоку буровой установки, перемещающейся к одиночной конической опоре на свайном основании для бурения вниз через одиночную коническую опору на свайном основании.

На фиг.6 показан вид сбоку буровой установки, установленной над одиночной конической опорой на свайном основании для бурения вниз через одиночную коническую опору на свайном основании.

На фиг.7 показан вид сбоку буровой установки, установленной смежно с одиночной конической опорой на свайном основании в своей конфигурации защиты ото льда.

На фиг.8 показан вид сверху буровой установки, установленной для бурения вниз через одиночную коническую опору на свайном основании.

Рассматривая подробное описание предпочтительного устройства или устройств настоящего изобретения, следует понимать, что признаки изобретения и концепции могут проявляться в других устройствах и что объем изобретения не ограничивается описанными или показанными вариантами осуществления. Объем изобретения ограничивается только объемом формулы изобретения, приведенной ниже.

На фиг.1 показана самоподъемная буровая установка ледового класса, в целом, указана стрелкой 10. На фиг.1 самоподъемная буровая установка 10 показана с корпусом 20, находящимся на плаву в море и опорами 25 в поднятом положении, где большая часть длины опор 25 возвышается над палубой 21 корпуса 20. На палубе 21 располагается вышка 30, установленная на буровую консоль 24, и другое обычное оборудование и системы для бурения скважин. В конфигурации, показанной на фиг.1, самоподъемная буровая установка 10 может буксироваться с одного разведываемого месторождения на другое и в базу или из базы на берегу для техобслуживания и других береговых работ.

Когда самоподъемная буровая установка 10 отбуксирована на буровую площадку, в общем, на мелководье, опоры 25 спускаются через отверстия 27 в корпусе 20 до входа в контакт башмаков 26 на нижних концах опор 25 с морским дном 15, как показано на фиг.2. В предпочтительном варианте осуществления башмаки 26 соединяются с опорными кессонами 28 для закрепления буровой установки 10 на морском дне. После соединения башмаков 26 с морским дном 15 подъемные устройства в отверстиях 27 поднимают корпус 20 из воды на опорах 25. Когда корпус 20 полностью поднят из воды, любое воздействие волн и бурного моря обходит опоры 25, создавая уменьшенную нагрузку, в сравнении с воздействием волн на крупный плавучий объект, такой как корпус 20.

Когда лед начинает формироваться на поверхности 12 моря, риск контакта плавающих льдин с опорами 25 и повреждения ими опор или просто сноса самоподъемной буровой установки 10 с буровой площадки становится весьма высоким для обычных самоподъемных буровых установок, и такие буровые установки обычно убирают с буровых площадок по окончании сезона открытой воды. Самоподъемная буровая установка 10 ледового класса разработана с возможностью противостоять плавающим льдинам благодаря защите ото льда, создаваемой корпусом в водоизмещающем положении, как показано на фиг.3. На фиг.3 показано, что лед обычно демпфирует волны и волнение моря, так что морская поверхность 12 кажется менее угрожающей, вместе с тем опасности морской среды только меняются, а не уменьшаются.

Когда самоподъемная буровая установка 10 ледового класса принимает создающую защиту ото льда конфигурацию с корпусом в водоизмещающем положении, корпус 20 спускается в контакт с водой, но не настолько, чтобы корпус 20 плавал. Значительная часть веса буровой установки 10 предпочтительно продолжает действовать на опоры 25 для закрепления буровой установки 10 на буровой площадке, в положении сопротивления любому давлению, которое может оказывать ледяное поле. Буровая установка 10 спускается так, что имеющая уклон внутрь выгибающая лед поверхность 41 перекрывает морскую поверхность 12, как лучше всего видно на фиг.4, для контакта с любым плавающим льдом, который может подходить к буровой установке 10.

Наклонная выгибающая лед поверхность 41 проходит от уступа 42, находящегося на краю палубы 26, до линии 44 горловины. Ледовый дефлектор 45 проходит вниз от линии 44 горловины. Таким образом, когда плавающая льдина, такая как показанная позицией 51, подходит к буровой установке 10, выгибающая лед поверхность 41 обеспечивает погружение передней кромки плавающей льдины 51 под морскую поверхность 12 и прикладывает значительную выгибающую силу, разламывающую крупные плавающие льдины на более мелкие, менее разрушительные и менее опасные куски льда. Например, можно предположить, что ледовое поле в сотни футов и возможно на мили в поперечнике может подойти к буровой установке 10. Если плавающая льдина ломается на куски меньше двадцати футов (6 м) длиной, такие куски могут обходить буровую установку 10, вызывая значительно меньше опасений.

На фиг.5 одиночная коническая опора на свайном основании, в общем, указанная позицией 60, заранее установлена на морское дно. Одиночная коническая опора 60 на свайном основании является конструкцией, которую можно использовать в местах вблизи побережья в зонах, подверженных воздействию льда со значительно уменьшенными расходами в сравнении с обычной конструкцией гравитационного типа. Одиночная коническая опора 60 на свайном основании включает в себя корпус 65, опорную часть 67 и верхнюю палубу 70. Опорная часть 67 предпочтительно имеет форму фланца с отверстиями или перфорациями, разнесенными по периметру одиночной конической опоры 60 на свайном основании. Опорная часть 67 выполнена с возможностью опирания на морское дно 15. Хотя одиночная коническая опора 60 на свайном основании опирается на морское дно, вес одиночной конической опоры на свайном основании предпочтительно несет множество свай 68, забиваемых в морское дно 15 и затем прикрепляемых к одиночной конической опоре 60 на свайном основании. Обычно сваи 68 забивают на глубину от около 35 до около 75 метров в придонный слой для постоянного закрепления одиночной конической опоры 60 на свайном основании на площадке в прибрежной зоне. Сваи 68 обычно представляют собой прочные трубы, или конструкции в виде труб, работающие по типу длинных гвоздей и создающие эффективную конструкцию для стационарных платформ для операций прибрежного бурения и добычи углеводородов. Сваи имеют относительно большой диаметр от 1 до 3 метров и толщину стенок от около 2 до около 10 см. Одно конкретное преимущество настоящего изобретения состоит в том, что для веса одиночной конической опоры 60 на свайном основании, поддерживаемом сваями 68, требуется незначительная или вообще не требуется подготовки придонного слоя перед установкой, и любая подготовка придонного слоя сводится, в принципе, к созданию ровной площадки на морском дне для установки одиночной конической опоры 60, когда сваи 68 установлены. Придонный слой, содержащий мягкие илистые материалы, нет необходимости вынимать и заменять более прочными материалами.

Для одиночной конической опоры 60 на свайном основании, поддерживаемой сваями 68, подготовка морского дна для установки одиночной конической опоры 60 требуется минимальная или не требуется. Поскольку сваи 68 забиты в морское дно и прочно прикрепляются к опорной части 67, сваи 68 обеспечивают сопротивление: (a) силам, вызывающим скольжение конструкций по морскому дну, (б) силам, вызывающим опрокидывание конструкций, таким как силы, действующие на несколько метров выше опорной части конструкции; и (в) силам, вызывающим вертикальное перемещение как вверх, так и вниз. Сопротивление перемещению как вверх, так и вниз является важным для сопротивления опрокидывающим силам, которые может прикладывать лед. Сваи 68 на передней стороне одиночной конической опоры 60 на свайном основании оказывают сопротивление подъемным силам, которые лед может прикладывать со стороны выше по потоку, т.е. сопротивление опрокидыванию, а сваи 68 на задней стороне или стороне ниже по потоку одиночной конической опоры 60 на свайном основании оказывают сопротивление перемещению вниз, при котором задняя сторона вдавливается в морское дно 15. При использовании таких длинных свай создается конструктивно эффективная опорная часть для круглогодичных операций в подверженных воздействию льда зонах в прибрежной среде, противостоящая ледовым нагрузкам, которые могут быть весьма значительными. Сваи действуют по типу гвоздей, удерживающих платформу на месте, и являются конструктивно более эффективными, чем гравитационные основания, где сопротивление перевороту создается только размером и весом конструкции.

Длина и число свай 68 должны зависеть от величины прогнозируемых вертикальных и боковых сил и прочности слоев грунта, в который сваи забивают. Предпочтительно, сваи стратегически располагают вокруг периферии опорной части 67 для создания сопротивления сдвигающим и опрокидывающим силам с максимальной конструктивной эффективностью. Опорная часть может включать в себя, по меньшей мере, восемь и предпочтительно, по меньшей мере, 16 свай и до 64 свай вокруг периферии с интервалами, которые могут максимизировать конструктивную эффективность и создать куст свай, где несколько свай работают совместно для сопротивления боковым силам и несения одиночной конической опоры 60 на свайном основании. Сваи 68 обычно проходят на глубину от 35 до 75 метров в придонный слой в зависимости от прогнозируемых нагрузок и параметров прочности грунта. Одиночная коническая опора 60 на свайном основании показана, как восьмиугольная многогранная конструкция, но круглые или кольцевые конфигурации можно также использовать. Предпочтительно, конструкция является многогранной для простоты изготовления, имеющей шесть, восемь или даже 12 сторон, предпочтительно, все одного размера, и одиночная коническая опора 60 на свайном основании является симметричной.

Корпус 65 одиночной конической опоры 60 на свайном основании включает в себя наклонную поверхность 72 контакта со льдом, проходящую от уровня под морской поверхностью 12 до уровня над морской поверхностью 12, так что лед в море, в частности, плавающий лед, входит в контакт с корпусом 65 на наклонной поверхности 72 контакта со льдом. Поверхность 72 контакта со льдом проходит вокруг периферии одиночной конической опоры 60 на свайном основании так, что лед с любого направления должен входить в контакт с корпусом 65 на поверхности 72 контакта со льдом. Наклон поверхности 72 контакта со льдом вызывает подъем любых плит льда по наклонной поверхности и изгиб до точки разрушения и обычно составляет от 40 градусов до 60 градусов к горизонтали и, более предпочтительно, около 55 градусов к горизонтали. Глыбы расколовшегося льда, называемые обломками, должны проходить вокруг корпуса 65, приводимые в движение морским течением или ветром. Над поверхностью 72 контакта со льдом одиночная коническая опора на свайном основании включает в себя форму для отворачивания льда, вытолкнутого к верхней точке поверхности 72 контакта со льдом. Палуба 70 располагается сверху одиночной конической опоры 60 на свайном основании и может быть оборудована опорной плитой для бурения нескольких скважин.

Одиночная коническая опора 60 на свайном основании представляет собой массивную конструкцию, обычно с размером палубы 70 более 75 метров в поперечнике. Одним преимуществом прочной и крупногабаритной одиночной конической опоры на свайном основании над конструкцией гравитационного типа является, в общем, уменьшенный вес или, конкретнее, удельная масса до балластировки водой. Твердого материала балласта, в общем, не требуется для одиночной конической опоры на свайном основании. Конструкция гравитационного типа обычно имеет удельную массу от 0,21 тонн/м3 до 0,25 тонн/м3, одиночную коническую опору на свайном основании можно сконструировать с удельной массой от 0,20 тонн/м3 до около 0,18 тонн/м3. Часто конструкции гравитационного типа требуется твердый балласт для увеличения веса для создания сопротивления сдвигу и перевороту. При использовании свай или куста свай 68 одиночную коническую опору 60 на свайном основании можно разработать с уменьшенным весом. Уменьшенную удельную массу одиночной конической опоры на свайном основании можно также перевести в уменьшение стоимости изготовления и транспортировки, не включающего в себя уменьшенную стоимость установки вследствие исключения стоимости подготовки площадки на морском дне, требуемой для крупноразмерных систем с конструкциями гравитационного типа, и стоимости материала балласта с высокой удельной массой, часто добавляемого в конструкцию гравитационного типа.

Хотя одиночные конические опоры 60 на свайном основании можно оборудовать вышкой и системами для бурения скважин, получается экономия расходов, если скважины можно бурить самоподъемной буровой установкой, поскольку одиночную коническую опору на свайном основании можно выполнить несколько меньше размерами и, конечно с экономией средств только от уменьшения размеров, не говоря об экономии средств на все связанное с бурением оборудование и системы. Бурение скважины через одиночную коническую опору на свайном основании с помощью буровой установки ледового класса, такой как буровая установка 10, обеспечивает дополнительную экономию средств, поскольку буровая установка не требует обязательной буксировки с площадки при первых признаках льда. Больше скважин можно пробурить за год с помощью буровой установки 10 ледового класса, которая может оставаться на площадке работ дольше осенью, когда другие буровые установки давно ушли.

С одиночной конической опорой 60 на свайном основании, закрепленной на морском дне 15, буровая установка 10 перемещается на площадку, как показано на фиг.5 и устанавливается для бурения вниз через одиночную коническую опору 60 на свайном основании, как показано на фиг.6. Одним конкретным аспектом настоящего изобретения являются опорные узлы 75, отходящие от опорной части 67, которые включают в себя сваи 68 для закрепления на морском дне 15. Опорные кессоны 28, ближайшие к одиночной конической опоре 60 на свайном основании, стыкуются с установочными гнездами сверху опорных узлов 75 и удерживаются на месте фиксаторами 78. Таким образом, буровой установке 10 обеспечивается дополнительное сопротивление перемещению под давлением льда благодаря прикреплению к одиночной конической опоре на свайном основании. Данное устройство описано, как "Ahab Socket" применительно к капитану в книге Moby Dick, вставлявшему деревянную ногу в дыру от сучка в доске лодки для приобретения устойчивости при охоте на кита.

После закрепления в установочных гнездах опор 25 буровой установки 10 ледового класса, которые требуют более прочной конструкции, чем обычные опоры самоподъемной буровой установки, должны выдерживать ограниченные ледовые нагрузки. Вместе с тем при возникновении угрозы ледовой нагрузки выше предельной, буровая установка 10 ледового класса может оставаться на месте работ, прекращать операции бурения и принимать конфигурацию защиты ото льда, как показано на фиг.7. В данном положении лед, входящий в контакт с буровой установкой 10 и/или одиночной конической опорой 60 на свайном основании, должен разрушаться и направляться в обход системы. Когда лед уходит, бурение может возобновляться, и когда лед становится слишком толстым, буровую установку 10 можно убирать с площадки до следующего сезона бурения. Форма корпуса 20 (а также его прочность) обеспечивает выгибание льда и его разрушение и увеличивает временное окно для бурения, что существенно уменьшает расходы для площадок, подверженных воздействию льда. Хотя предпочтительно буровая установка 10 устанавливается смежно с одной из граней одиночной конической опоры на свайном основании, как показано на фиг.8, но может подходить с любого направления, как показано позицией 20A.

Корпус 20 предпочтительно имеет многогранную или многостороннюю форму, что дает преимущества круглой или овальной формы и может уменьшать стоимость изготовления. Плиты, из которых собирают корпус, в таком случае могут быть плоскими и то, что вся конструкция содержит части из плоского материала, такого как сталь, должно уменьшать ее сложность. Ломающая лед поверхность предпочтительно проходит, по меньшей мере, около пяти метров над уровнем воды или морской поверхности 12 с учетом того, что уровень моря поднимается и опускается под действием приливов и штормов и, возможно, других факторов. Высота над морской поверхностью учитывает значительную толщину льдин с торосами, поднимающимися над морской поверхностью 12, но поскольку высота уступа 42 над морской поверхностью 12 является достаточной, льдины большой толщины должны задавливаться вниз, когда входят в контакт с буровой установкой 10. Одновременно, палуба 21 сверху корпуса 20 должна находиться достаточно высоко над ватерлинией, чтобы волны не перекатывались по палубе. Поэтому палуба 25 предпочтительно располагается, по меньшей мере, в 7-8 метрах над морской поверхностью 12. Наоборот, линия горловины 42 предпочтительно располагается, по меньшей мере, на 4-8 метров ниже морской поверхности 12 для адекватного выгибания льдин для разламывания их на безвредные части. Таким образом, корпус 20 предпочтительно имеет высоту в диапазоне 5-16 метров от плоскости днища до палубы 20, более предпочтительно, 8-16 метров или 11-16 метров.

Следует также отметить, что опоры 25 и проемы 27, в которых опоры соединяются с корпусом 20, располагаются в периметре ледового дефлектора 45, при этом возможность контакта льдин с опорами уменьшается, когда буровая установка 10 находится в конфигурации защиты ото льда, показанной на фиг.3 и иногда называемой конфигурацией с корпусом в водоизмещающем положении. Кроме того, буровая установка 10 не должна реагировать на каждую угрозу от льдин со значительным увеличением стоимости продукции нефтяных и газовых компаний. Если буровая установка 10 может продлить сезон бурения всего лишь на месяц, это может означать пятидесятипроцентное улучшение в некоторых, подверженных воздействию льда областях, и поэтому создавать существенную экономию расходов в промышленности.

В заключение, следует заметить, что рассмотрение любой ссылки не является допущением, что она относится к известной технике для настоящего изобретения, в особенности, любой ссылки, которая может иметь дату публикации после даты приоритета данной заявки. В то же время все без исключения пункты формулы, приведенной ниже, включаются в данное описание, как дополнительный вариант осуществления настоящего изобретения.

Хотя системы и способы подробно описаны в данном документе, следует понимать, что различные изменения, замещения и замены могут выполняться без отхода от сущности и объема изобретения, определенного приведенной ниже формулой. Специалист в данной области техники может изучить предпочтительные варианты осуществления и идентифицировать другие пути реализации изобретения, не описанные в данном документе. Изобретатели считают, что вариации и эквиваленты изобретения задаются объемом формулы изобретения, при этом описание, сущность и чертежи не должны ограничивать объем изобретения. Объем изобретения конкретно ограничивается пунктами формулы, приведенной ниже, и их эквивалентами.

1. Система для бурения на нефть и газ и для добычи нефти и газа в потенциально ледовых условиях на прибрежных морских площадях, содержащая: буровую установку, имеющую плавучий корпус с относительно гладкой палубой в своей верхней части и выгибающую лед форму в своей нижней части, проходящую вниз и внутрь вокруг периметра корпуса, где выгибающая лед форма проходит от зоны корпуса вблизи уровня палубы и проходит вниз к зоне вблизи днища корпуса; участок ледового дефлектора, проходящий вокруг периметра днища корпуса для направления льда вокруг корпуса, а не под корпус; по меньшей мере, три опоры, установленные внутри периметра днища плавучего корпуса, при этом опоры выполнены с возможностью подъема от морского дна для осуществления буксировки буровой установки через мелководье, а также выдвижения к морскому дну и дополнительного выдвижения для подъема корпуса частично или полностью из воды; и устройство самоподъема, соединенное с каждой опорой, как для подъема опоры от морского дна, чтобы самоподъемная буровая установка ледового класса могла плавать благодаря плавучести корпуса, так и выталкивания опор вниз к морскому дну и выталкивания корпуса полностью из воды, когда лед отсутствует; и одиночную коническую опору на свайном основании, имеющую корпус с опорной частью внизу и верхней палубой сверху, при этом опорная часть прикреплена к сваям, забитым в морское дно, когда конструкция одиночной конической опоры на свайном основании устанавливается для использования наклонной поверхностью, входящей в контакт со льдом вокруг корпуса, проходящую от более широкой нижней зоны к более узкой верхней зоне, где нижняя зона располагается ниже морской поверхности и верхняя зона располагается над морской поверхностью; и включает в себя узлы с установочными гнездами, выполненными с возможностью приема башмака, по меньшей мере, на одной опоре, прикрепляемого и удерживаемого на месте для бурения через одиночную коническую опору на свайном основании; при этом буровая установка выполнена с возможностью подъема корпуса над водой и бурения через одиночную коническую опору на свайном основании, спуска в воду для перехода в положение защиты ото льда, при этом лед может входить в контакт с выгибающей лед формой буровой установки, когда присутствует тонкий лед, и должна убираться, когда присутствует толстый лед.

2. Система по п. 1, дополнительно включающая в себя фиксаторы на установочных гнездах, выборочно удерживающие башмак в установочном гнезде и, когда необходимо, высвобождающие башмак.

3. Система по п. 1 или 2, в которой выгибающая лед поверхность отклоняется в направлении вверх и наружу от линии горловины уменьшенного размера к уступу увеличенного размера.

4. Система по п. 1 или 2, в которой выгибающая лед поверхность проходит по вертикали, по меньшей мере, 8-10 или больше метров.

5. Система по п. 3, в которой выгибающая лед поверхность проходит по вертикали, по меньшей мере, 8-10 или больше метров.

6. Система по п. 4, в которой угол выгибающей лед поверхности имеет величину в диапазоне 30-60 градусов от вертикали.

7. Система по п. 1 или 2, в которой корпус одиночной конической опоры на свайном основании имеет, по меньшей мере, размер 60 метров в поперечнике, и конструкция одиночной конической опоры имеет удельную массу меньше около 0,20 тонн/м3.

8. Система по п. 1 или 2, в которой сваи проходят вглубь на 35 метров под опорной частью или глубже.

9. Система по п. 1 или 2, в которой сваи проходят вглубь на 50 метров под опорной частью или глубже.

10. Способ бурения скважины в водах, подверженных появлению льда, в котором: обеспечивают одиночную коническую опору на свайном основании, имеющую корпус с опорной частью внизу и верхней палубой сверху и наклонную поверхность, входящую в контакт со льдом вокруг корпуса, проходящую от более широкой нижней зоны к более узкой верхней зоне, где нижняя зона располагается ниже морской поверхности и верхняя зона располагается над морской поверхностью; при этом одиночная коническая опора на свайном основании включает в себя опорный узел с установочным гнездом для приема и удержания на месте башмака самоподъемной буровой установки; забивают сваи в морское дно и прикрепляют к одиночной конической опоре на свайном основании для закрепления одиночной конической опоры на морском дне, обеспечивают буровую установку с плавучим корпусом, имеющим относительно гладкую палубу в своей верхней части и выгибающую лед форму в своей нижней части, причем выгибающая лед форма проходит от зоны корпуса вблизи уровня палубы и проходит вниз к зоне вблизи днища, и участок ледового дефлектора, проходящий вокруг периметра днища корпуса для направления льда вокруг корпуса, а не под корпус; создают, по меньшей мере, три опоры, установленные в периметре днища корпуса; спускают вниз каждую опору так, что, по меньшей мере, один башмак снизу одной опоры соединяется с установочным гнездом на опорном узле одиночной конической опоры на свайном основании и остающиеся башмаки опираются на морское дно или соединяются с другими установочными гнездами на опорном узле, при этом корпус поднимают вверх на опорах и полностью из воды, когда лед не угрожает буровой установке при бурении буровой установкой скважины на буровой площадке; осуществляют спуск корпуса в воду в конфигурацию защиты ото льда, при этом выгибающая лед форма проходит над и под морской поверхностью для выгибания льда, поступающего на буровую установку для обеспечения погружения льда под воду и приложения выгибающих сил, разламывающих лед, при этом лед обходит буровую установку; и бурят скважину за краем палубы и вниз через одиночную коническую опору на свайном основании.

11. Способ по п. 10, в котором этап, на котором забивают сваи, дополнительно содержит забивание свай диаметром, по меньшей мере, 1 метр, по меньшей мере, на глубину 35 метров в морское дно.

12. Способ по п. 10 или 11, в котором выгибающая лед поверхность проходит от уступа к линии горловины, и этап спуска корпуса в воду, в частности, содержит спуск корпуса в воду так, что линия горловины располагается, по меньшей мере, на 4 метра ниже морской поверхности, и уступ располагается, по меньшей мере, на 7 метров выше морской поверхности.

13. Способ по п. 10 или 11, дополнительно включающий в себя этап подъема корпуса из воды, когда угроза от плавающих льдин уменьшается.

14. Способ по п. 12, дополнительно включающий в себя этап подъема корпуса из воды, когда угроза от плавающих льдин уменьшается.

15. Способ по п. 10 или 11, в котором этап, на котором забивают сваи, дополнительно содержит забивание свай диаметром, по меньшей мере, 1,5 метра, по меньшей мере, на глубину 50 метров в морское дно.

16. Способ по п. 10 или 11, в котором этап, на котором забивают сваи, дополнительно содержит забивание свай диаметром, по меньшей мере, 2 метра, по меньшей мере, на глубину 60 метров в морское дно.

17. Способ бурения скважин в водах, подверженных появлению льда, содержащий использование буровой установки и одиночной конической опоры на свайном основании по любому из пп. 1-9.



 

Похожие патенты:
Изобретение относится к средствам освоения континентального шельфа. Морская плавучая платформа содержит подводный водоизмещающий модуль, поддерживающий надводный модуль посредством жестких опорных колонн со связующими элементами, и натяжные связи, закрепленные на донных якорях.

Группа изобретений относится к буровым самоподъемным установкам и к способам бурения на мелководье с возможным наличием льда. Технический результат заключается в увеличении эффективности разведки и продлении бурового сезона в местах с возможным наличием льда.

Изобретение относится к области гидротехнического строительства и может быть применено для создания и эксплуатации морских гравитационных платформ. Платформа содержит корпус, фундаментную часть с донной плитой, оборудованной ребрами, заглубляемыми в грунт основания.

Изобретение относится к строительству, а именно к опорным конструкциям и к установке подобных опорных конструкций. Способ установки опорной конструкции на морском или речном дне, в котором сооружают опорную конструкцию, способную временно самостоятельно стоять, являясь достаточно тяжелой для того, чтобы удерживаться на месте трением на морском или речном дне, перед выполнением операций, требуемых для постоянного закрепления опорной конструкции на морском или речном дне и во время их выполнения.

Изобретение относится к возведению в арктических морях платформ островного типа в условиях дрейфа айсбергов, подвижек смерзшихся ледяных полей. Способ включает заглубление и установку подводной части сооружения в донные отложения, неподвижное закрепление к ней полого щита, выполненного в виде шарового сегмента с перфорированной поверхностью.

Изобретение относится к строительству гидротехнических сооружений и может быть применено для создания ограждающей конструкции, предназначенной для защиты добывающей платформы плавучего типа в ледовых условиях арктического шельфа.

Изобретение относится к разработке подводных жидких и газообразных залежей и может быть применено для фиксации добычного оборудования на морском дне посредством якорей.

Изобретение относится к средствам освоения континентального шельфа. Морская плавучая платформа содержит подводный водоизмещающий модуль, поддерживающий надводный модуль посредством жестких опорных колонн со связующими элементами, и натяжные связи, закрепленные на донных якорях.

Изобретение относится к строительству в море платформ, на которых монтируется буровое и нефтедобывающее оборудование. Опорная стойка-якорь морской платформы содержит связанные между собой верхнюю секцию с верхней опорной площадкой, балластные цистерны-секции и нижнюю буровую секцию, в которой установлен гидравлический двигатель, к валу ротора которого присоединен бур, а к статору гидравлического двигателя подсоединены трубопровод подачи и патрубок слива воды.

Раскрыты варианты реализации конструкций гравитационного фундамента, который содержит первую и вторую удлиненные фундаментные секции, разделенные открытой областью и выполненные с обеспечением поддерживания веса в воде указанной конструкции и опирающиеся на дно акватории, и верхнюю секцию, расположенную над указанной открытой областью и выполненную с возможностью прохода по меньшей мере частично над поверхностью воды для поддерживания верхних конструкций.

Способ возведения сооружения включает установку металлических кондукторов (МК) и вертикальных свай с последующим погружением их в грунт дна акватории, подачу бетонной смеси для образования несущей опорной конструкции в виде монолитного бетонного блока (МББ) 8. В направлении от берега в сторону открытого моря на подводном береговом склоне в грунт 10 дна акватории 11 по оси сооружения стационарно устанавливают последовательно один за другим МК, которые на весь период строительства и эксплуатации сооружения являются несъемными. Сначала стационарно устанавливают первый МК с внешним металлическим ограждением в виде гибкого стержневого удерживающего устройства (ГСУУ), образующего внутреннее пространство МК, заполняют его крупным камнем или бетонными фигурными элементами 16, затем на расстоянии 0,4-0,6 м от внешнего его периметра устанавливают опалубку. Подают бетонную смесь во внутреннее пространство, огороженное опалубкой, и омоноличивают первый МК, кроме внутренней полости его вертикальных металлических труб (ВМТ) 2. Выдерживают бетонную смесь до отверждения, а после набора бетоном заданной прочности во внутреннем пространстве, огороженном опалубкой, образуют первый монолитный бетонный блок (МББ) 8 с верхней отметкой 0,6-2,0 м относительно уровня моря, который является составной частью сооружения. С поверхности первого МББ 8 через внутренние полости ВМТ 2 последовательно устанавливают анкерующие сваи 7, перемещая их сквозь тело первого МББ 8 после его возведения, и образуют под ним анкерующее свайное основание, фиксирующее первый МББ 8 от перемещения при волновом воздействии после его возведения. Верхнюю головную часть 12 анкерующих свай 7 равнопрочно и жестко закрепляют во внутренней полости ВМТ 2 с внутренней поверхностью этих труб с помощью металлических вставок типа пластин. Зазор между сваями и внутренней поверхностью металлических труб, а также головные части свай в местах их закрепления во внутренних полостях ВМТ 2 заполняют мелкозернистым бетоном для придания устойчивости МББ 8. На расстоянии 0,4-0,6 м от первого МББ 8 устанавливают на дно акватории последовательно следующий второй МК с внешним металлическим ограждением в виде ГСУУ. Выполняют вышеприведенные операции способа как при возведении первого МББ 8. Второй МББ 8 образуют с верхней отметкой 0,6-2,0 м относительно уровня моря. В той же последовательности ведут строительство следующего МББ 8 до образования целого ряда монолитных бетонных блоков 8, установленных на анкерующем свайном основании и являющихся составной частью всего гидротехнического сооружения вертикального профиля. В обратной последовательности, начиная с последнего в ряду МББ 8, установленного на анкерующем свайном основании, по направлению к берегу возводят бетонную или железобетонную надстройку 19, на которой при необходимости устанавливают волноотбойную стенку 20, и образуют на подводном береговом склоне из различных грунтов, в том числе из легкоразмываемых несвязных грунтов, стационарное гидротехническое сооружение вертикального профиля на анкерующем свайном основании. Повышается несущая способность сооружения, повышается его прочность, надежность и устойчивость к размыву грунта основания, а также к штормовым воздействиям. 2 н. и 2 з.п. ф-лы, 7 ил.

Группа изобретений относится к морским системам и способам разработки морского нефтяного и газового месторождения. Технический результат заключается в уменьшении шумового загрязнения подводной среды и в уменьшении воздействия на морскую флору и фауну. Морская система, находящаяся в акватории, содержит буровую установку, находящуюся на поверхности акватории, буровое долото, находящееся в скважине на дне акватории, район с уязвимой природной средой, находящийся на расстоянии от скважины, и множество плавучих гибких конструкций, развернутых между скважиной и районом с уязвимой природной средой, при этом плавучие гибкие конструкции являются плоскими шлангами, устанавливаемыми в ненадутом скатанном положении и затем надуваемыми с приведением в вертикальное положение. Способ разработки морского нефтяного и газового месторождения включает в себя монтаж буровой установки в акватории, бурение множества скважин с буровой установки и размещение вблизи скважины множества плавучих гибких конструкций, при этом плавучие гибкие конструкции являются плоскими шлангами, устанавливаемыми в ненадутом скатанном положении и затем надуваемыми с приведением в вертикальное положение. 2 н. и 23 з.п. ф-лы, 5 ил.

Группа изобретений относится к самоподъемным буровым платформам вообще и к фундаменту, который может применяться для самоподъемной буровой платформы, в частности. Снабженный юбкой фундамент 10, предназначенный для установки на морское дно с достаточно мягким материалом над пластом основания, содержит башмачную опору 12, имеющую верхнюю часть и подошву 16, и юбку 20, имеющую верхний край, который связан как неотъемлемая часть с башмачной опорой 12 и выступает вниз, окружая подошву 16, и нижний край 25 для внедрения в морское дно. Верхняя часть и подошва 16 соединены по периметру и образуют внешнюю кромку 14, причем и верхняя часть, и подошва 16 имеют плоскую или коническую конфигурацию. На верхнюю часть установлена одна опора 40 самоподъемной буровой платформы. Подошва 16 имеет плоское основание или нисходящий уклон. Юбка 20 содержит множество окружных отверстий 22, примыкающих к подошве 16 башмачной опоры 12 и расположенных в пределах верхней половины высоты юбки 20. Конфигурация отверстий 22 обеспечивает выход мягкого материала из внутреннего пространства, определяемого юбкой 20 и подошвой 16, при погружении фундамента 10 в морское дно, при этом мягкий материал не захватывается внутрь снабженного юбкой фундамента 10. Снабженный юбкой фундамент 10 выполнен с возможностью внедрения в пласт основания на эффективную глубину. Самоподъемная буровая платформа содержит рабочую платформу, множество опор 40 и множество снабженных юбкой фундаментов 10, приведенных выше. Каждая опора 40 имеет два конца, один из которых соединен с рабочей платформой для обеспечения опоры, а другой - с одним снабженным юбкой фундаментом 10 таким образом, что снабженные юбкой фундаменты 10 обеспечивают фиксацию и поддержку самоподъемной буровой платформы. Способ установки снабженного юбкой фундамента 10, предназначенного для установки на морское дно с достаточно мягким материалом над пластом основания, содержит спуск фундамента в мягкий материал на морском дне и упрощение выхода мягкого материала из внутреннего пространства, определяемого юбкой 20 и подошвой 16, через множество окружных отверстий 22, таким образом повышение несущей способности фундамента. Группа изобретений обеспечивает повышение несущей способности самоподъемной буровой платформы и снабженного юбкой фундамента. 3 н. и 22 з.п. ф-лы, 3 ил.

Изобретение относится к конструкции морских буровых платформ и может быть использовано для защиты водоотделяющей колонны. Защитная конструкция водоотделяющей колонны самоподъемной платформы содержит множество приёмников соединителей, расположенных на корпусе самоподъёмной платформы. Трубчатая втулка, являющаяся полой конструкцией, обеспечивает прохождение через неё водоотделяющей колонны, причём участок трубчатой втулки находится ниже уровня воды. Опорная конструкция соединена с трубчатой втулкой для обеспечения опоры для трубчатой втулки. Каждый из множества соединителей соединён с одним из множества приёмников соединителей. Достигается возможность защиты водоотделяющей колонны от нагрузок со стороны морской воды или льда. 2 н. и 12 з.п. ф-лы, 22 ил.

Группа изобретений относится к горному делу и может быть применена в качестве гравитационного фундамента морских платформ. Раскрыты варианты реализации гравитационного фундамента, который содержит первую и вторую удлиненные фундаментные секции, разделенные открытой областью и выполненные с обеспечением поддерживания веса в воде указанного гравитационного фундамента на дне моря, и верхнюю секцию, расположенную над указанной открытой областью и выполненную с возможностью прохода по меньшей мере частично над поверхностью воды для поддерживания верхних установок. Некоторые варианты реализации дополнительно содержат первую и вторую наклонные секции, соединяющие фундаментные секции с указанной верхней секцией. Согласно некоторым вариантам реализации гравитационный фундамент содержит юбку ниже фундаментных секций для облегчения взаимодействия с морским дном и трубопроводную систему, выполненную с возможностью передачи текучей среды в отсеки или из отсеков для облегчения установки фундамента на морское дно или отрыва от морского дна. Согласно некоторым вариантам реализации гравитационный фундамент содержит внутренние камеры, выборочно заполняемые текучей средой, для облегчения всплытия и погружения в море и перемещения гравитационного фундамента. Технический результат заключается в повышении надежности гравитационного фундамента при его транспортировке и эксплуатации. 3 н. и 17 з.п. ф-лы, 18 ил.
Изобретение относится к технологии строительства гидротехнических сооружений и может быть применено для создания ограждающей конструкции, предназначенной для защиты добывающей платформы плавучего типа в ледовых условиях арктического шельфа. Способ включает установку по периметру платформы защитной ограждающей конструкции. При этом до установки платформы в проектное положение по периметру платформы с зазором устанавливают, по меньшей мере, один ряд опор из металлических свай круглого сечения, заглубленных в неустойчивые донные отложения или в коренные породы. В сваи монтируют охлаждающие устройства и производят искусственное замораживание воды и грунта вокруг свай, причем образующиеся вокруг свай монолитные цилиндры - льдогрунтовые в основании и ледовые в воде, должны смыкаться со смежными цилиндрами, образуя сплошную ледогрунтовую в основании и ледовую в воде защитную противоударную и противофильтрационную стену. Перед противоударной стеной размещают еще один ряд опор из металлических свай круглого сечения, которые снабжают по внешнему диаметру роторными фрезами. Технический результат заключается в повышении эффективности и снижении трудоемкости способа инженерной защиты добывающей платформы плавучего типа от ледовых воздействий в условиях арктического шельфа.

Группа изобретений относится к области гидротехнического строительства и может быть применена для создания и эксплуатации морских свайно-гравитационных платформ для освоения углеводородных ресурсов континентального шельфа. Платформа содержит верхнее строение, корпус с фундаментом, оборудованным слотами в виде прямого правильного цилиндра, через которые установлены сваи. При этом сваи снабжены оголовками в виде обратных усеченных правильных конусов с диаметром основания, меньшим диаметра слотов в фундаменте, установленном на сваях, заглубленных в слотах с возвышением основания конуса оголовка над верхом слота. Технический результат заключается в повышении устойчивости платформы и снижении материалоемкости платформы. 2 н. и 8 з.п. ф-лы, 5 ил.

Группа изобретений относится к самоподъемным системам для бурения и добычи на морских участках, подверженных воздействию льда. Технический результат – обеспечение поддержки самоподъемного узла. Самоподъемная система с опорной конструкцией содержит рабочую палубную конструкцию, множество опорных колонн, подвижно соединенных с рабочей палубной конструкцией, выдвижную консоль, расположенную на рабочей палубной конструкции, буровую вышку, расположенную на выдвижной консоли, две или более опорных основных конструкций, расположенных на морском дне, и множество подвижных опор, каждая из которых прочно соединена с рабочей палубной конструкцией. При этом рабочая палубная конструкция, множество опорных колонн, выдвижная консоль и буровая вышка формируют самоподъемный буровой узел. Способ заключается в том, что во время процесса сборки самоподъемной системы с опорной конструкцией множество подвижных опор проходят от рабочей палубной конструкции до верхней поверхности указанных двух или более опорных основных конструкций, в то время как множество опорных колонн обеспечивают поддержку самоподъемного бурового узла, и после сборки самоподъемной системы с опорной конструкцией указанные две или более опорных основных конструкций обеспечивают поддержку рабочей палубной конструкции через подвижные опоры, а указанное множество опорных колонн извлечено из воды в необходимое положение. 2 н. и 6 з.п. ф-лы, 9 ил.

Группа изобретений относится к самоподъемным системам для бурения и добычи на морских участках, подверженных воздействию льда. Технический результат – обеспечение поддержки самоподъемного узла, простота демонтажа для повторного использования после завершения бурения необходимых скважин. Самоподъемная система с вспомогательной конструкцией содержит рабочую палубную конструкцию, множество опорных колонн, подвижно соединенных с рабочей палубной конструкцией, выдвижную консоль, расположенную на рабочей палубной конструкции, буровую вышку, расположенную на выдвижной консоли, одну или более опорных основных конструкций, расположенных на морском дне, и множество подвижных опор, каждая из которых прочно соединена с основной палубной конструкцией. При этом рабочая палубная конструкция, множество опорных колонн, выдвижная консоль и буровая вышка образуют самоподъемный буровой узел. Способ заключается в том, что во время первоначальной сборки самоподъемной системы множество опорных колонн опущено на морское дно так, чтобы поднять рабочую палубную конструкцию с необходимым возвышением. Во время процесса сборки самоподъемной системы множество подвижных опор проходит от рабочей палубной конструкции к указанным одной или более опорным основным конструкциям так, чтобы указанные одна или более опорных основных конструкций обеспечивают поддержку массы основной рабочей палубной конструкции при замене одной или более из указанного множества опорных колонн. Причем указанные одна или более из множества опорных колонн, заменяемые на указанные одну или более опорных основных конструкций, определены как не поддерживающие вес опорные колонны, а остальные из множества опорных колонн, не заменяемые на указанные одну или более опорных основных конструкций, определены как поддерживающие вес опорные колонны. После сборки самоподъемной системы с вспомогательной конструкцией эти не поддерживающие вес опорные колонны извлечены из воды в необходимое положение, а поддерживающие вес опорные колонны вместе с указанными одной или более опорными основными конструкциями через подвижные опоры поддерживают рабочую палубную конструкцию. 2 н. и 8 з.п. ф-лы, 9 ил.

Изобретение относится к строительству и касается конкретно сооружения опорной части морских стационарных платформ (МСП), предназначенных для освоения месторождений нефти и газа на континентальном шельфе морей, в том числе арктических. Конструкция опорной части морской стационарной платформы на шельфе морей включает опорную колонну и вертикальные, радиально размещенные по периметру стен опорной колонны ребра, предназначенные для передачи всех видов нагрузок от платформы. Каждое ребро передает все виды нагрузок от платформы на свой отдельный, заглубляемый в грунт и независимо работающий полый цилиндр, снабженный оборудованием для гидравлического размыва грунта под стенами цилиндра и его погружения. Число таких цилиндров для одной платформы должно быть не менее трех. Изобретение позволяет повысить надежность и ускорить процесс возведения опорной части МСП с использованием заглубляемых в морское дно опорных элементов платформы. 3 ил.
Наверх