Способ контроля формы и положения профиля рабочих лопаток моноколеса

Использование: изобретение относится к способам измерения, а именно к способам измерения профиля сечений, и может быть использовано для контроля профиля и положения рабочих лопаток моноколеса. Сущность изобретения: форму и положение профиля рабочих лопаток моноколеса контролируют в заданном сечении при помощи шаблонов путем совмещения рабочей поверхности шаблона с лопаткой в заданном сечении. Базовое положение шаблона определяют по чертежу. Шаблон перемещают в плоскости, перпендикулярной теоретической оси лопатки. Положение лопатки в заданном сечении контролируют относительно теоретической оси лопатки в тангенциальном и аксиальном направлениях. Контролируют наличие отклонения реальной оси лопатки от теоретической. Лопатки фиксируют в заданном положение и диск закрепляют неподвижно, после перемещают на шаг расположения. Перемещая шаблон в тангенциальном и аксиальном направлениях и поворачивая шаблон, добиваются полного их совмещения. Фиксируют величину смещения шаблона от исходного положения в обоих направлениях, угол и направление поворота лопатки. Затем моноколесо пошагово поворачивают и контролируют положение профиля остальных лопаток. Технический результат: повышение достоверности результата контроля моноколеса. 2 ил.

 

Изобретение относится к способам измерения, а именно к способам измерения профилей сечений, и может быть использовано для контроля профиля и положения рабочих лопаток моноколеса.

Проведенный патентный поиск аналогов заявленного способа контроля формы и положения профиля рабочих лопаток моноколеса показал следующее.

Известен способ контроля формы и положения профиля рабочих лопаток моноколеса, в соответствии с которым лопатку и шаблон неподвижно фиксируют в базовом приспособлении, форму профиля лопатки в заданном сечении контролируют с помощью шаблонов, а положение контролируют в тангенциальном направлении относительно теоретической оси лопатки с помощью глубиномера. Контроль выполняют не менее чем в трех сечениях (Н.Я. Бауман и др. Технология производства паровых и газовых турбин. - М.: Машиностроение, 1973, с. 128-129).

Известен также способ контроля формы и положения профиля рабочих лопаток турбины, в соответствии с которым лопатку закрепляют неподвижно, для чего ее укладывают на стол, представляющий собой профильную подушку, а хвостовик жестко фиксируют. Контроль формы и положения профиля лопатки выполняют не менее чем в трех сечениях относительно теоретической оси лопатки с помощью шаблонов, которые накладывают на поверхность лопатки. О соответствии профиля лопатки эталонному судят по величине зазора между рабочей поверхностью шаблона и контролируемой поверхностью лопатки в тангенциальном направлении (М.Н. Бушуев. Технология производства турбин. - М.: Машиностроение, 1966, с. 68-69).

Известен также способ балансировки лопаточного колеса машины и устройство для определения геометрических параметров лопаток лопаточного колеса машины, в соответствие с которым лопаточное колесо устанавливают горизонтально, выбирают контрольную лопатку и измеряют величину угла хорды ее пера относительно горизонта посредством узла измерения отклонения геометрического параметра лопаток лопаточного колеса в заданном сечении. Переставляя узел измерения в то же выбранное сечение последующих лопаток, измеряют разницу угла установки лопаток относительно контрольной, сравнивают результаты измерений, а затем производят подбор попарных лопаток с заданным допуском на алгебраическую сумму их разностей углов хорды (патент РФ №2082072, МПК G01B 5/20, 20.06.1997).

Наиболее близким к предлагаемому является способ контроля формы и положения профиля рабочих лопаток моноколеса, в соответствии с которым последовательно контролируют форму профиля лопатки в заданных сечениях при помощи шаблонов путем совмещения в заданном сечении рабочей поверхности шаблона с лопаткой, исходя из базового положения шаблона по чертежу, при этом шаблон перемещают в плоскости, перпендикулярной теоретической оси лопатки, а положение профиля лопатки в заданном сечении контролируют в тангенциальном направлении относительно теоретической оси лопатки. При этом лопатки и шаблоны закрепляют неподвижно. Контроль формы и положения профиля лопатки выполняют не менее чем в трех сечениях относительно теоретической оси лопатки с помощью шаблонов, которые накладывают на поверхность пера лопатки. О соответствии профиля пера лопатки эталонному судят по величине зазора между рабочей поверхностью шаблона и контролируемой поверхностью лопатки в тангенциальном направлении (патент РФ №2248522, МПК G01B 5/20, 20.03.2005).

Недостаток выявленных способов контроля формы и положения рабочих лопаток моноколеса заключается в следующем. Поскольку в способах шаблон закрепляют неподвижно, это позволяет контролировать форму и положение лопатки относительно теоретической оси лопатки только в одном направлении - в тангенциальном, что снижает достоверность и информативность результатов контроля и не позволяет сократить количество отбраковываемых изделий. Неподвижное закрепление шаблона сужает функциональные возможности выявленных способов. Это объясняется, во-первых, тем, что неподвижное закрепление шаблона не позволяет контролировать форму лопатки в случае, если лопатка в данном сечении развернута. В результате это приводит к необоснованной отбраковке лопатки, так как зачастую в этом случае форма лопатки соответствует норме. Во-вторых, неподвижное закрепление шаблона обуславливает отсутствие возможности контроля формы и положения лопатки в направлении, перпендикулярном тангенциальному (в аксиальном направлении), т.е. отсутствует вторая координата, что не позволяет с помощью выявленных способов определить в контролируемом сечении положение истинной оси лопатки относительно теоретической.

Задачей изобретения является расширение функциональных возможностей способа за счет возможности контроля лопаток моноколеса, а также уменьшение количества отбракованных изделий за счет повышения достоверности результата контроля.

Техническим результатом, вытекающим из поставленной задачи, является повышение достоверности результата контроля моноколеса.

Сущность изобретения заключается в том, что в способе контроля формы и положения профиля рабочих лопаток моноколеса, в соответствии с которым последовательно контролируют форму профиля лопатки в заданных сечениях при помощи шаблонов путем совмещения в заданном сечении рабочей поверхности шаблона с лопаткой, при этом шаблон перемещают в плоскости, перпендикулярной теоретической оси лопатки, а положение лопатки в заданном сечении контролируют в тангенциальном направлении путем определения положения ее профиля относительно теоретической оси лопатки, согласно изобретению дополнительно в заданном сечении контролируют положение профиля лопатки в аксиальном направлении и наличие отклонения реальной оси лопатки от теоретической, для чего лопатки фиксируют в заданном положении и моноколесо закрепляют неподвижно, после перемещают на шаг расположения с возможностью поворота шаблона вокруг теоретической оси, затем в заданном сечении прикладывают рабочую поверхность шаблона к поверхности лопатки и, перемещая шаблон в тангенциальном и аксиальном направлениях и поворачивая шаблон, добиваются наиболее полного совмещения поверхности лопатки с рабочей поверхностью шаблона, при этом фиксируют величину смещения шаблона от исходного положения в тангенциальном, в аксиальном направлении, угол и направление поворота лопатки, затем моноколесо пошагово поворачивают относительно его продольной оси и контролируют положение профиля остальных лопаток.

Технический результат достигается следующим образом. Использование шаблонов для контроля формы профиля лопатки путем совмещения рабочей поверхности шаблона с поверхностью лопатки позволяет выявить в контролируемом сечении наличие отклонения истинной формы профиля лопатки от теоретической. Последовательное выполнение контроля формы и положения профиля лопатки в заданных сечениях позволяет контролировать любое сечение лопатки, а также получить общее представление о соответствии изготовленной лопатки требуемым нормам, что позволяет исключить брак изделий.

Благодаря тому что при контроле шаблон перемещают в плоскости, перпендикулярной теоретической оси лопатки, обеспечивается возможность контроля формы и положения профиля лопатки в тангенциальном и в аксиальном направлениях относительно теоретической оси лопатки, что повышает достоверность и информативность заявленного способа. Возможностью поворота шаблона позволяет, перемещая шаблон в тангенциальном и аксиальном направлениях и поворачивая шаблон, получить наиболее полное совмещение поверхности профиля лопатки с рабочей поверхностью шаблона. В результате возможность поворота шаблона вокруг теоретической оси позволяет получить информацию о форме профиля и положении лопатки в заданном сечении относительно теоретической оси лопатки, т.е. получить информацию, максимально приближенную к реальной, максимально снизить ошибку результатов контроля и тем самым исключить брак изделий.

Кроме того, возможность поворота шаблона автоматически позволяет проконтролировать форму профиля лопатки в случае, если она развернута, что расширяет функциональные возможности способа. В результате повышается информативность и достоверность способа, что уменьшает количество забракованных изделий.

Закрепление шаблона с возможностью поворота позволяет контролировать наличие отклонения реальной оси лопатки от теоретической, для чего фиксируют угол и направление поворота шаблона относительно лопатки, что расширяет функциональные возможности заявленного способа. Кроме того, фиксируемые величины смещения шаблонов от исходного состояния в тангенциальном и аксиальном направлениях можно рассматривать как пространственные координаты, определяющие истинное положение реальной оси лопатки относительно теоретической, что в совокупности с вышеизложенным позволяет не только зафиксировать наличие отклонения реальной оси лопатки от теоретической, но и определить пространственное положение реальной оси лопатки в контролируемом сечении. В результате повышается информативность способа, достоверность, что позволяет исключить брак изделий.

Благодаря тому, что фиксируют величину смещения шаблона относительно теоретической оси лопатки в тангенциальном и в аксиальном направлениях, а также фиксируют направление и угол поворота лопатки, обеспечивается возможность количественной оценки результатов контроля. Наличие количественных результатов, характеризующих истинную форму и положение лопатки, позволяет сравнить их с расчетными параметрами и сделать выводы в отношении пригодности моноколеса к эксплуатации, что повышает информативность и достоверность способа и позволяет исключить брак изделий.

Кроме того, возможность получения по сравнению с прототипом более полной информации о форме профиля и положении лопатки в моноколесе, позволяет уменьшить количество забракованных изделий.

Из вышеизложенного следует, что заявленный способ контроля формы и положения профиля рабочих лопаток моноколеса (блисков) позволяет получить по сравнению с прототипом наиболее полную информацию о форме и положении профиля лопатки в контролируемом сечении с учетом положения реальной оси лопатки относительно теоретической. Это обеспечивается благодаря тому, что с возможностью поворота шаблона вокруг теоретической оси лопатки, что обеспечивает возможность наиболее полного совмещения поверхности лопатки с рабочей поверхностью шаблона и возможность контроля наличия отклонения реальной оси лопатки от теоретической, для чего фиксируют угол и направление поворота шаблона относительно теоретической оси лопатки, а также фиксируют величины смещения шаблона от исходного положения в тангенциальном и в аксиальном направлениях, затем моноколесо пошагово поворачивают и контролируют положение профиля остальных лопаток.

Таким образом, заявленный способ контроля формы и положения профиля рабочих лопаток моноколеса (блисков) при осуществлении обеспечивает достижение технического результата, заключающегося в повышении достоверности и информативности результатов контроля, в расширении функциональных возможностей, в возможности исключения брака изделий.

На фиг. 1 изображено устройство для контроля формы и положения рабочих лопаток моноколеса, реализующее заявленный способ; на фиг. 2 - устройство для контроля формы и положения рабочих лопаток моноколеса - вид сверху (сечение).

Для реализации предлагаемого способа может быть использовано следующее устройство, содержащее моноколесо 1, фиксатор для закрепления лопатки, выполненный с пазом 2, вертикальную стойку 3, каретку 4, шаблоны 5 для контроля формы профиля рабочей лопатки моноколеса. Рабочая поверхность шаблонов 5 имеет форму, конгруэнтную форме теоретического профиля лопатки в контролируемом сечении. Фиксатор для закрепления лопатки имеет паз 2, который может, например, совпадать по форме и геометрическим размерам с центральным отверстием на диске моноколеса. Фиксатор снабжен нониусом со шкалой для фиксации угла поворота. Вертикальная стойка 3 перпендикулярна фиксатору и соединена с ним с возможностью поворота относительно пера лопатки моноколеса. На вертикальной стойке 3 под прямым углом установлен с возможностью перемещения в тангенциальном и аксиальном направлениях шаблон 5. На вертикальной стойке 3 выполнены отметки для установки шаблона 5 в контролируемое сечение лопатки. Шаблоны 5 - сменные. Для этого на вертикальной стойке 3 установлена каретка 4 с пазом 6 для шаблона 5. Шаблон 5 размещен в пазу 6 каретки 4 с возможностью перемещения в тангенциальном направлении, а каретка 4 закреплена на горизонтальной рейке 7 с возможностью перемещения в аксиальном направлении. Для количественной оценки величины отклонения положения шаблонов от исходного при их перемещении в тангенциальном и аксиальном направлениях устройство содержит нониусы 8, 9, которые выполнены на поверхностях шаблона 5 и горизонтальной рейки 7 соответственно. При этом одна из встречных кромок 10 паза 6 каретки 4 снабжена указателем 11 перемещения шаблона в тангенциальном направлении. Выполнение паза 2 совпадающим по форме и геометрическим размерам с центральным отверстием моноколеса обеспечивает возможность надежного закрепления моноколеса в фиксаторе. Использование вертикальной стойки 3, перпендикулярной фиксатору, и расположение контролируемых лопаток в вертикальном положении, а также положение оси вертикальной стойки 3 параллельно теоретической оси лопатки позволяют зафиксировать в пространстве теоретическую ось лопатки и обеспечивают возможность перемещения шаблонов в плоскости, перпендикулярной теоретической оси лопатки.

Способ контроля формы и положения профиля рабочих лопаток моноколеса выполняют следующим образом. Контроль формы и положения профиля лопатки выполняют последовательно в заданных сечениях при помощи шаблонов. Для контроля формы профиля лопатки рабочую поверхность шаблона совмещают в заданном сечении с лопаткой, при этом шаблон перемещают в плоскости, перпендикулярной теоретической оси лопатки, а положение профиля лопатки в заданном сечении контролируют относительно теоретической оси лопатки в тангенциальном и аксиальном направлениях и, кроме того, контролируют наличие отклонения реальной оси лопатки от теоретической. Для этого в заданном сечении прикладывают шаблон к поверхности лопатки и, перемещая шаблон в тангенциальном и аксиальном направлениях и поворачивая шаблон, добиваются наиболее полного совмещения поверхности шаблона с рабочей поверхностью лопатки, при этом фиксируют величину смещения шаблона от исходного положения в тангенциальном и аксиальном направлениях, угол и направление поворота шаблона.

Пример конкретной реализации способа

Способ контроля формы и положения профиля рабочих лопаток моноколеса реализуют с помощью устройства для контроля формы и положения профиля рабочих лопаток, которое работает следующим образом. Лопатку моноколеса высотой 300 мм устанавливают вертикально, для чего моноколесо диаметром 145 мм поворачивают относительно его продольной оси в пазу 2 и закрепляют в рабочем положении. В паз 6 каретки 4 вставляют шаблон 5. Каретку 4 с шаблоном 5, перемещая вверх или вниз по горизонтальной рейке 7 до соответствующей отметки, устанавливают в контролируемое сечение пера лопатки. Фиксируют по нониусам 8 и 9 исходное положение шаблона 5 в тангенциальном и аксиальном направлениях соответственно. В исходном положении нониус фиксатора установлен в нуль. Совмещают шаблон 5 с контролируемой поверхностью лопатки, перемещая шаблон в тангенциальном и аксиальном направлениях и одновременно поворачивая шаблон до наилучшего совмещения рабочей поверхности шаблона 5 с контролируемой поверхностью пера лопатки. При этом фиксируют направление поворота и угол поворота фиксатора по нониусу. По направлению поворота шаблона относительно пера лопатки и величине угла поворота шаблона определяют направление и наличие отклонения реальной оси лопатки от ее теоретической оси. После окончательного совмещения шаблона 5 с поверхностью лопатки по нониусам 8, 9 фиксируют результирующее положение шаблона 5 в тангенциальном и аксиальном направлениях соответственно. Вычисляют величины отклонений формы профиля лопатки от исходного положения в тангенциальном и аксиальном направлениях. Затем моноколесо пошагово поворачивают относительно его продольной оси и контролируют положение профиля остальных лопаток (моноколесо содержит 23 лопатки).

Итак, заявляемое изобретение способствует расширению функциональных возможностей способа за счет возможности контроля лопаток моноколеса, а также уменьшение количества отбракованных изделий за счет повышения достоверности результата контроля.

Способ контроля формы и положения профиля рабочих лопаток моноколеса, в соответствии с которым последовательно контролируют форму профиля лопатки в заданных сечениях при помощи шаблонов путем совмещения в заданном сечении рабочей поверхности шаблона с лопаткой, при этом шаблон перемещают в плоскости, перпендикулярной теоретической оси лопатки, а положение профиля лопатки в заданном сечении контролируют в тангенциальном направлении относительно теоретической оси лопатки, отличающийся тем, что дополнительно в заданном сечении контролируют положение профиля лопатки в аксиальном направлении и наличие отклонения реальной оси лопатки от теоретической, для чего лопатки фиксируют в заданном положении и моноколесо закрепляют неподвижно, после перемещают на шаг расположения с возможностью поворота вокруг теоретической оси, затем в заданном сечении прикладывают рабочую поверхность шаблона к поверхности лопатки и, перемещая шаблон в тангенциальном и аксиальном направлениях и поворачивая шаблон, добиваются наиболее полного совмещения поверхности лопатки с рабочей поверхностью шаблона, при этом фиксируют величину смещения шаблона от исходного положения в тангенциальном и аксиальном направлениях, угол и направление поворота лопатки, затем моноколесо пошагово поворачивают относительно его продольной оси и контролируют положение профиля остальных лопаток.



 

Похожие патенты:

Изобретение относится к области красильно-отделочного производства текстильной промышленности, а также может быть использовано в целлюлозно-бумажной, полиграфической, химической и других отраслях, где применяется валковое оборудование.

Изобретение может быть использовано для контроля крупногабаритных изделий, отладки и контроля стабильности и точности технологических процессов механической обработки, для определения отклонений формы и расположения деталей машин в полевых условиях.

Изобретение относится к инженерной биологии и биоиндикации загрязнения окружающей среды измерениями качества ростовых органов различных видов растений, преимущественно древесных растений, например проб в виде отдельных листьев древесных растений с равномерной выпукло-волновой листовой пластинкой, например, дуба.

Изобретение относится к машиностроению и может быть использовано при производстве турбинных и компрессорных лопаток газотурбинных двигателей (ГТД), а также для контроля других деталей, имеющих сложный профиль поверхности.

Изобретение относится к метрологии и может быть использовано в машиностроении. .

Изобретение относится к области эксплуатации канальных ядерных реакторов, в частности реакторов типа АДЭ, и может быть использовано для непрерывного контроля искривления технологических каналов.

Изобретение относится к измерительной технике, в частности к области контроля геометрических параметров сложных поверхностей изделий, например пера лопаток газотурбинных двигателей, на координатных измерительных машинах.

Изобретение относится к измерительной технике и может быть использовано для измерения линейных размеров колесных пар, в частности, на железнодорожном и других видах транспорта.

Изобретение относится к балансировочной технике и может быть использовано для балансировки лопаточных колес, для снижения эксплуатационной разбалансировки. .

Изобретение относится к области управления качеством продукции, в частности, крупногабаритных топливных баков ракет. Способ заключается в выборе информативных параметров качества (ИПК) изготовления тонкостенной оболочки бака. При этом выделяют так называемые реперные точки, определяющие слабейшие места его конструкции, содержащие граничные характеристики ИПК. В качестве последних выбирают начальные неправильности формы, замеренные по всей поверхности оболочки топливного бака в нескольких взаимосвязанных сечениях. Полученные данные преобразуют и обрабатывают для использования в приемочном и выборочном контроле. Технический результат изобретения заключается в повышении достоверности принятия решения о допуске изделия в серию, в автоматизации и повышении производительности контроля. 1 з.п. ф-лы, 4 табл., 5 ил.

Предложенная группа изобретений относится к средствам для измерения размеров деталей в турбомашинах. Заявленный способ измерения деформации детали в турбомашине заключается в том, что проверяют профиль стержня в трех измерениях при помощи трехмерной модели профиля части эталонной детали; вставляют стержень в эндоскопическое отверстие корпуса турбомашины; позиционируют и закрепляют профилированную часть стержня на части контролируемой детали, соответствующей части эталонной детали; вводят эндоскоп внутрь корпуса турбомашины; измеряют деформацию части контролируемой детали при помощи эндоскопа, затем извлекают стержень из турбомашины и осуществляют новую проверку профиля стержня в трех измерениях, чтобы убедиться, что она не подверглась деформации в корпусе турбомашины. Устройство измерения деформации детали в турбомашине содержит стержень, часть которого имеет профиль, соответствующий профилю части эталонной детали такого же типа, что и исследуемая деталь, при этом упомянутая часть стержня дополнительно содержит визуальные метки для измерения расстояния, выполненные по ее длине. Кроме того, указанное устройство содержит средства крепления и позиционирования упомянутой части стержня в неподвижном положении и выровненной с частью исследуемой детали, соответствующей части эталонной детали. Данная группа изобретений позволяет повысить точность и упростить процедуру определения начала деформации контролируемой детали турбомашины. 3 н. и 10 з.п. ф-лы, 15 ил.

Изобретение относится к измерительной технике в машиностроении и может быть использовано для контроля формы цилиндрических поверхностей тонкостенных цилиндрических оболочек в научных исследованиях и производственной практике. Достигаемый технический результат изобретения заключается в повышении достоверности и точности измерения начальных неправильностей формы, в автоматизации и повышении производительности контроля. Сущность способа заключается в том, что измерения начальных неправильностей формы проводят по всей поверхности оболочки в нескольких взаимосвязанных сечениях оболочки, вращая оболочку относительно измерительной системы, аналоговый сигнал от датчиков измерительной системы преобразуют в цифровую форму, формируя матрицу квантованных отсчетов, по значениям ее элементов вычисляют с помощью двумерного дискретного косинусного преобразования матрицу коэффициентов, элементы которой используют в качестве параметров начальных неправильностей формы. 1 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике в области диагностики цилиндрических и сферических резервуаров и может быть использовано для оценки остаточного ресурса стенки резервуара по малоцикловой усталости. Устройство содержит лазерный дальномер с датчиком температуры, закрепленный на внутренней стенке резервуара, сопряженный с вычислительным комплексом на базе ЭВМ для обработки информации и выдачи результатов. Технический результат - повышение точности измерения за счет устранения зависимости от погодных условий и прочих внешних воздействий температурного расширения. 1 ил.

Изобретение относится к измерительной технике, а именно к способам измерения геометрических параметров длинномерных деталей. Способ заключается в том, что длинномерную деталь устанавливают горизонтально на двух опорах с концов детали или консольно, обеспечивают ее неподвижность в процессе измерения, производят измерение в единой системе координат круглограмм сечений поверхности детали в поперечных плоскостях, расположенных вдоль продольной координатной оси и перпендикулярных ей. По полученным круглограммам определяют координаты центров сечений. После первого измерения круглограмм сечений во всех заданных поперечных плоскостях вдоль продольной координатной оси производят поворот детали на угол, равный 360/n, затем повторно производят измерение круглограмм сечений в тех же поперечных плоскостях. Соответствующие повороты детали и измерения круглограмм сечений в поперечных плоскостях производят n раз, причем число позиций n принимают целым не менее трех и кратным порядку осевой симметрии профиля детали. Далее строят радиус-векторы от продольной координатной оси до центров сечений, а за координаты точки оси детали в каждой поперечной плоскости принимают координаты конца суммарного радиус-вектора, определяемого путем сложения в каждой поперечной плоскости n радиус-векторов к центрам сечений, предварительно повернутых вокруг продольной координатной оси на угол, соответствующий углу поворота детали, при котором они были получены. По полученным значениям координат точек оси детали в каждой поперечной плоскости судят о непрямолинейности оси детали. Технический результат заключается в возможности измерения непрямолинейности оси длинномерных нежестких деталей с криволинейным осесимметричным профилем поперечного сечения, располагаемых в горизонтальном положении. 3 ил.

Группа изобретений относится к ядерной технике. Способ измерения искривления технологического канала ядерного реактора типа РБМК, заключающийся в том, что гибкий стержневой элемент, оснащенный оптоволоконными датчиками деформации, помещают в центральный канал тепловыделяющей сборки, пропускают через оптоволоконный датчик световой сигнал, а регистрацию изгиба стержневого элемента осуществляют за счет анализа отраженных световых сигналов. Устройство для осуществления указанного измерения, включающее гибкий стержневой элемент, снабжённый датчиками деформации. Причем оптоволоконные датчики деформации, соединённые с перестраиваемым лазером и фотоприемником, представляют собой решётки Брэгга, внедренные в структуру радиационно-стойкого кварцевого оптического волокна. Технический результат заключается в упрощении и повышении точности измерений. 2 н. и 5 з.п. ф-лы, 4 ил.

Способ относится к области технических измерений и может быть использован при измерении формы поперечных сечений сложного профиля, а также отклонений от круглости номинально круглых сечений. Техническая задача, решаемая данным изобретением, состоит в повышении точности измерения на кругломерах поперечных сечений при высокой производительности, снижении требований по точности изготовления элементов конструкции кругломера, по точности юстировки измерительных осей прибора, а также в снижении требований к условиям его эксплуатации. Способ измерения формы поперечных сечений изделий на кругломерах заключается в том, что устанавливают изделие на стол с образцовым вращением без точного центрирования, определяют с помощью датчика координаты точек профиля сечения относительно оси вращения, итерационным методом, по критерию минимизации амплитуды первой гармоники очередного приближения профиля сечения в его угловых координатах определяют с учетом известного смещения измерительной оси датчика относительно оси вращения эксцентриситет центра средней окружности сечения и его фазу, рассчитывают радиусы, соединяющие точки профиля сечения с центром его средней окружности в функции угла поворота стола, приводят полученные радиусы к угловым координатам точек профиля сечения. Координаты точек профиля сечения относительно оси вращения определяют для трех различных расположений изделия относительно стола, для каждого расположения изделия итерационным методом, по критерию минимизации амплитуды первой гармоники очередного приближения формы профиля сечения в его угловых координатах находят совокупность различных значений эксцентриситетов, их фаз и амплитуд выбранной гармоники спектра профиля при различных сочетаниях смещений измерительной оси датчика и его базы относительно оси вращения, выбранных из заданных диапазонов возможных значений указанных смещений, итерационным методом из полученной совокупности сочетаний амплитуд выбранной гармоники спектра профиля и возможных значений смещений по критерию равенства их соответствующих значений для одного сечения при трех его различных расположениях определяются указанные смещения, а по найденным смещениям для любого из указанных расположений определяют соответствующие величины эксцентриситета центра средней окружности, его фазы и радиусы, описывающие профиль сечения в его угловых координатах. 1 ил.
Наверх