Устройство определения погрешностей измерения углов атаки и скольжения

Изобретение относится к технике определения параметров движения и к области оценки и компенсации погрешностей измерения углового положения летательного аппарата (ЛА). Устройство определения погрешностей измерения угла атаки и угла скольжения содержит блок измерения угла скольжения, блок измерения угла атаки, измеритель углового положения летательного аппарата, дополнительно включает в себя спутниковую навигационную систему, блок вычисления воздушной скорости, блок формирования функционала, три блока возведения в квадрат, последовательно соединенные первый сумматор, блок извлечения квадратного корня, первый делитель, блок определения арксинуса аргумента, первый умножитель и второй сумматор, последовательно соединенные второй делитель, блок определения арктангенса аргумента, второй умножитель и третий сумматор, последовательно соединенные третий умножитель и четвертый сумматор, последовательно соединенные четвертый умножитель и пятый сумматор, и блок обработки функционала. Технический результат - повышение точности измерения углов атаки и скольжения непосредственно в полете. 5 ил.

 

Изобретение относится к технике определения параметров движения и к области оценки и компенсации погрешностей измерения углового положения летательного аппарата (ЛА) и может быть использовано для определения и компенсации составляющих погрешностей измерения углов атаки и скольжения летательного аппарата.

Известна система определения характеристик бортовых средств измерения воздушных параметров и летно-технических характеристик летательного аппарата при проведении летных испытаний, описанная в патенте на полезную модель RU 99181 U1, МПК G01P 5/00, опубликовано 10.11.2010, бюл. №31. Система содержит, в частности, измерители угла атаки, угла скольжения и углового положения летательного аппарата. Недостатками известной системы являются следующие. При обработке записи результатов испытательного полета в системе не учитываются составляющие скорости ветра, что приводит к снижению точности определения, в частности, углов атаки и скольжения. Кроме того, использование данной системы требует громоздких, трудоемких подготовительных работ и выполнения сложных программ испытательного полета.

Целью заявляемого изобретения является повышение точности измерения углов атаки и скольжения непосредственно в полете, а также сокращение объема выполняемых операций и снижение требований к выполняемым программам испытательных полетов.

Поставленная цель достигается за счет того, что в устройство определения погрешностей измерения углов атаки и скольжения, содержащее измеритель угла атаки, измеритель угла скольжения и измеритель углового положения летательного аппарата, дополнительно введены спутниковая навигационная система, блок вычисления воздушной скорости, блок формирования функционала, три блока возведения в квадрат, последовательно соединенные первый сумматор, блок извлечения квадратного корня, первый делитель, блок определения арксинуса аргумента, первый умножитель и второй сумматор, последовательно соединенные второй делитель, блок определения арктангенса аргумента, второй умножитель и третий сумматор, последовательно соединенные третий умножитель и четвертый сумматор, последовательно соединенные четвертый умножитель и пятый сумматор, и блок обработки функционала, причем выход измерителя угла скольжения подключен к первым входам третьего умножителя и блока формирования функционала, выход измерителя угла атаки подключен к первому входу четвертого умножителя и ко второму входу блока формирования функционала, к третьему и четвертому входам которого подключены соответственно выходы третьего и второго сумматоров, а выход блока формирования функционала подключен к блоку обработки функционала, выходы измерителя углового положения летательного аппарата по сигналам углов крена, тангажа и рыскания подключены соответственно к первому, второму и третьему входам блока вычисления воздушной скорости, к четвертому, пятому и шестому входам которого подключены соответственно выходы спутниковой навигационной системы по сигналам проекций воздушной скорости на земную систему координат, к седьмому, восьмому и девятому входам подключены соответствующие выходы по сигналам проекций скорости ветра в земной системе координат блока обработки функционала, первый выход блока вычисления воздушной скорости подключен ко второму входу первого делителя и к первому блоку возведения в квадрат, второй выход подключен к первому входу второго делителя и второму блоку возведения в квадрат, третий выход подключен ко второму входу второго делителя и к третьему блоку возведения в квадрат, а выходы блоков возведения в квадрат подключены к соответствующим входам первого сумматора, при этом первый выход блока обработки функционала подключен ко вторым входам первого и четвертого умножителей, второй выход блока обработки функционала подключен ко вторым входам второго и третьего умножителей, третий выход блока подключен ко вторым входам третьего и пятого сумматоров, а четвертый выход блока обработки функционала подключен ко вторым входам второго и четвертого сумматоров.

Сущность изобретения поясняется чертежами, на которых представлены структурная схема заявляемого устройства (фиг. 1), графики (фиг. 2 и фиг. 3) совпадения углов атаки и скольжения по результатам обработки данных стендового моделирования, графики (фиг. 4 и фиг. 5) измеренных и смоделированных углов атаки и скольжения соответственно по результатам обработки летных экспериментальных данных режима "торможение в горизонтальном полете".

Устройство содержит измеритель 1 угла скольжения, измеритель 2 угла атаки, измеритель 3 углов пространственной ориентации летательного аппарата, спутниковую навигационную систему 4, блок 5 вычисления воздушной скорости, блок 6 формирования функционала, три блока 7, 8, 9 возведения в квадрат, первый сумматор 10, первый умножитель 11, второй сумматор 12, блок 13 извлечения квадратного корня, третий сумматор 14, первый делитель 15, второй делитель 16, второй умножитель 17, третий умножитель 18, четвертый умножитель 19, блок 20 определения арксинуса аргумента, блок 21 определения арктангенса аргумента, четвертый сумматор 22, пятый сумматор 23, блок 24 определения функционала.

Выходными параметрами устройства являются составляющие скорости ветра в нормальной земной системе координат, погрешности датчиков угла атаки Cα и угла скольжения Cβ, и измеренные значения углов атаки и скольжения с скомпенсированными погрешностями

В устройстве осуществляется сравнение значений углов атаки и скольжения, определенных расчетным путем, с измеренными значениями углов. По результатам сравнения составляется функционал. Далее путем минимизации функционала, методом Ньютона, рекуррентным способом определяются составляющие скорости ветра в нормальной земной системе координат, погрешности измерения углов атаки и скольжения и осуществляется их компенсация.

Предполагается, что ветер имеет постоянную скорость и направление на коротком обрабатываемом участке полета. Это означает, что проекции скорости ветра Vxgw, Vygw, Vzgw на оси земной нормальной системы координат постоянны.

Определим выражения для получения оценок составляющих скорости ветра.

Сформируем модель объекта. Уравнения проекций воздушной скорости летательного аппарата в земной нормальной системе координат имеют вид:

где vxg_CHC(ti), Vyg_CHC(ti), Vzg_CHC(ti) - измеренные спутниковой навигационной системой значения проекций скорости летательного аппарата на оси нормальной земной системы;

Vxg_W, Vyg_W, Vzg_W - подлежащие идентификации неизвестные значения проекций скорости ветра на оси нормальной земной системы.

Выражение для модуля вектора воздушной скорости имеет следующий вид:

Проекции воздушной скорости на связанную с ЛА систему координат получаем, умножая значения воздушной скорости (1) на известную матрицу перехода от земной нормальной к связанной системе координат:

Значения углов тангажа, крена и рыскания получаем от измерителя углов пространственной ориентации, в качестве которых можно использовать инерциальную навигационную систему.

В современных измерителях углов пространственной ориентации погрешности измерения углов тангажа и крена имеют порядок угловых минут, поэтому в рассматриваемой задаче ими допустимо пренебречь. Угол рыскания ψ измеряется с медленно меняющейся погрешностью, которая может достигать десятых долей градуса. Для того чтобы выполнить идентификацию мультипликативной составляющей систематических погрешностей измерения углов атаки и скольжения, введем следующие идентифицируемые параметры:

Kα - коэффициент наклона градуировочной характеристики датчика угла атаки;

Kβ - коэффициент наклона градуировочной характеристики датчика угла скольжения.

В этом случае количество идентифицируемых параметров возрастет.

Используя проекции (3) воздушной скорости на связанные оси, запишем выражения для значений углов атаки и скольжения:

где αu(ti), βu(ti) - косвенно определенные значения углов атаки и скольжения.

Итак, модель объекта определяется уравнениями (1)-(4).

Модель наблюдений принимает вид:

Cα, Cβ - постоянные (аддитивные) составляющие систематических погрешностей измерения углов атаки и скольжения;

ξα(ti), ξβ(ti) - шумы измерений, представляющие собой последовательности независимых нормально распределенных случайных величин, имеющих нулевое математическое ожидание и постоянную дисперсию.

z1(t), z2(t) - измерения, полученные с датчиков угла атаки α и угла скольжения β.

Вектор идентифицируемых параметров имеет вид:

Представленные выше модели объекта и наблюдений можно представить в следующей общей векторной форме:

где y(t), u(t) - векторы выходных и входных сигналов размерности n и m соответственно,

z(ti) - вектор наблюдений размерности r,

η(ti) - шум наблюдений, представляющий собой векторную нормальную случайную последовательность типа белого шума с нулевым математическим ожиданием и известной дисперсионной матрицей R(ti),

α - вектор неизвестных параметров, подлежащий идентификации.

Предполагается, что u(t) есть известная функция времени. Начальные условия y(t0) предполагаются известными или включаются в вектор оцениваемых параметров.

Шумы наблюдений представляют собой нормальные и независимые случайные векторные величины. Поэтому их совместная плотность распределения вероятностей равна произведению плотностей для каждого момента ti,

Известно, что максимум функции правдоподобия при указанных допущениях о свойствах шумов приводит к несмещенным и эффективным оценкам. В итоге функционал максимума правдоподобия принимает вид

Несложно заметить, что (9) представляет собой функционал метода наименьших квадратов с матрицей весовых коэффициентов R(ti)-1. Таким образом, при указанных выше допущениях о свойствах шумов, функционал максимума правдоподобия совпадает с взвешенным функционалом метода наименьших квадратов.

Для минимизации (9) предлагается использовать одну из модификаций классического метода Ньютона

где

При реализации алгоритма производные оценок прогноза определяются численно для моментов времени ti, по формулам:

где ej - вектор размерности p, все элементы которого равны нулю, за исключением j-го элемента, который равен 1; ε - малое число, обычно задаваемое на уровне 0,001-0,1% от номинального значения параметров.

Оценки z(ti,a), определяются численным решением уравнений объекта и наблюдений при η(ti)=0. Окончание идентификации обычно осуществляется по условию |a k+1-a k|<δ|ak|, где δ=0,005. При обработке в реальном масштабе времени целесообразно жестко задать число шагов, например, пять, чтобы зафиксировать число операций, то есть время работы алгоритма. Для обеспечения идентифицируемости указанных параметров предлагается выполнять маневры типа "змейка" или установившийся разворот с изменением курса на 180-360 градусов.

Устройство определения погрешностей измерения углов атаки и скольжения работает следующим образом. В блоке 5 вычисления воздушной скорости, по значениям земных скоростей из спутниковой навигационной системы 4 и по значениям составляющих скорости ветра из блока 24 обработки функционала, определяются значения составляющих воздушной скорости в нормальной земной системе координат. Используя матрицу направляющих косинусов по значениям углов крена, рыскания и тангажа от блока 3 измерения углового положения летательного аппарата, определяют составляющие воздушной скорости в связанной с ЛА системе координат. Реализуемые соотношения в блоке 5 вычисления воздушной скорости имеют вид:

Vxg_a(ti)=Vxg_CHC(ti)+Vxg_W

Vyg_a(ti)=Vyg_CHC(ti)+Vyg_W

Vzg_a(ti)=Vzg_CHC(ti)+Vzg_W

Блоки 7,8,9 возведения в квадрат, первый сумматор 10, блок 13 извлечения квадратного корня предназначены для определения абсолютного значения воздушной скорости Va, согласно выражению: Используя выходные сигналы блока 5 вычисления воздушной скорости, второй делитель 16 и блок 21 определения арктангенса аргумента косвенно определяют значение угла скольжения β(t).

Используя выходной сигнал блока 5 вычисления воздушной скорости и абсолютное значение воздушной скорости из блока 13 извлечения квадратного корня, первый делитель 15, блок 20 определения арксинуса аргумента, косвенно определяют значение угла атаки α(t).

В третьем и четвертом умножителях 18 и 19 вычисленные значения угла атаки и угла скольжения умножаются на коэффициенты наклона градуировочных характеристик соответствующих углов, полученных из блока 24 обработки функционала.

Во втором и четвертом сумматорах 12 и 14 к исправленным значениям углов атаки и скольжения прибавляются поправки, соответствующие величине определенных погрешностей углов атаки и скольжения, полученных из блока 24 обработки функционала, имеющие вид:

В блоке 6 формирования функционала сравниваются косвенно определенные и измеренные значения угла атаки из измерителя 2 угла атаки и угла скольжения из измерителя 1 угла скольжения. По полученным невязкам формируется функционал вида:

В блоке 24 обработки функционала минимизируется функционал, с использованием модифицированного классического метода Ньютона

где:

Выходными сигналами блока 24 обработки функционала являются оценки искомых величин, входящих в состав вектора αT=[vxg_W Vyg_W Vzg_W Cα Cβ Kα Kβ].

Первый и второй умножители 11 и 17 и четвертый и пятый сумматоры 22 и 24 служат для компенсации погрешностей сигналов измерителя 2 угла атаки и измерителя 1 угла скольжения на величину постоянных составляющих систематических погрешностей Cα, Cβ и на Kα и Kβ - коэффициенты наклона градуировочных характеристик измерителей углов атаки и скольжения, характеризующих мультипликативную составляющую систематических погрешностей соответственно.

Таким образом, только по сигналам, пропорциональным значениям скоростей, полученным от спутниковой навигационной системы, измерителей углов атаки и скольжения, измерителя углового положения летательного аппарата, предложенное устройство позволяет определить проекции скорости ветра на земную нормальную систему координат, погрешности измерения углов атаки и скольжения и коэффициенты наклона градуировочных характеристик соответствующих углов и скомпенсировать эти погрешности.

В качестве входных сигналов устройства могут быть использованы выходные сигналы бортовых навигационных комплексов, а вычислительная часть устройства может быть выполнена на стандартных элементах вычислительной техники. Заявленное устройство просто в реализации и применении, обладает высокой точностью и может быть использовано во всех типах ЛА.

Устройство определения погрешностей измерения углов атаки и скольжения, содержащее измеритель угла атаки, измеритель угла скольжения и измеритель углового положения летательного аппарата, отличающееся тем, что в него дополнительно введены спутниковая навигационная система, блок вычисления воздушной скорости, блок формирования функционала, три блока возведения в квадрат, последовательно соединенные первый сумматор, блок извлечения квадратного корня, первый делитель, блок определения арксинуса аргумента, первый умножитель и второй сумматор, последовательно соединенные второй делитель, блок определения арктангенса аргумента, второй умножитель и третий сумматор, последовательно соединенные третий умножитель и четвертый сумматор, последовательно соединенные четвертый умножитель и пятый сумматор и блок обработки функционала, причем выход измерителя угла скольжения подключен к первым входам третьего умножителя и блока формирования функционала, выход измерителя угла атаки подключен к первому входу четвертого умножителя и ко второму входу блока формирования функционала, к третьему и четвертому входам которого подключены соответственно выходы третьего и второго сумматоров, а выход блока формирования функционала подключен к блоку обработки функционала, выходы измерителя углового положения летательного аппарата по сигналам углов крена, тангажа и рыскания подключены соответственно к первому, второму и третьему входам блока вычисления воздушной скорости, к четвертому, пятому и шестому входам которого подключены соответственно выходы спутниковой навигационной системы по сигналам проекций воздушной скорости на земную систему координат, к седьмому, восьмому и девятому входам подключены соответствующие выходы по сигналам проекций скорости ветра в земной системе координат блока обработки функционала, первый выход блока вычисления воздушной скорости подключен ко второму входу первого делителя и к первому блоку возведения в квадрат, второй выход подключен к первому входу второго делителя и второму блоку возведения в квадрат, третий выход подключен ко второму входу второго делителя и к третьему блоку возведения в квадрат, а выходы блоков возведения в квадрат подключены к соответствующим входам первого сумматора, при этом первый выход блока обработки функционала подключен ко вторым входам первого и четвертого умножителей, второй выход блока обработки функционала подключен ко вторым входам второго и третьего умножителей, третий выход блока подключен ко вторым входам третьего и пятого сумматоров, а четвертый выход блока обработки функционала подключен ко вторым входам второго и четвертого сумматоров.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно к измерениям воздушной скорости, и может быть использовано для определения и компенсации погрешности измерения воздушной скорости и определения скорости ветра на высоте полета летательного аппарата.

Изобретение относится к области измерительной техники, в частности к способам калибровки средств измерений, применяемых на стендах для определения моментов инерции изделий ракетной, авиационной и космической техники.

Изобретение относится к измерительной технике, а именно к стендам поверочным для градуировки акселерометров с использованием более точных средств измерения. Стенд для градуировки акселерометров содержит тензометрическое устройство с градуируемым акселерометром, тензодатчиками и бойком, и наковальню.

Изобретение относится к области пьезотехники и используется для измерения коэффициента преобразования акселерометров методом сравнения с калибровочным акселерометром.

Изобретение относится к измерительной технике и может быть использовано для обеспечения взаимозаменяемости пьезоэлектрических вибропреобразователей ускорения (вибродатчиков ускорения), входящих в состав акселерометров или измерительных систем, без дополнительной настройки электронных согласующих элементов акселерометра или измерительных систем.

Изобретение относится к области сейсмоакустических исследований и касается устройства контроля динамических характеристик сейсмоакустических преобразователей.

Устройство (12) определения ускорения содержит блок (21) корректировки нулевой точки для корректировки положения нулевой точки значения сигнала (Gsen) датчика, используя величину корректировки (абсолютное значение для значения (Gd) корректировки) на основе ускорения (Gout), когда транспортное средство переходит от остановленного состояния на наклонной дороге к состоянию движения, и блок (20) ограничения величины корректировки для ограничения величины корректировки, тем самым пресекая вычисление избыточной величины корректировки вследствие неровностей поверхности дороги или перемещения пассажира.

Изобретение относится к калибровке датчика ускорения. Способ калибровки датчика ускорения для определения показателей ускорения транспортного средства содержит этап определения характеристической постоянной для датчика ускорения.

Изобретение относится к измерительной технике и может быть использовано для определения погрешностей инерциальных измерительных приборов, в частности лазерных гироскопов и маятниковых акселерометров, при стендовых испытаниях на ударные и вибрационные воздействия.

Изобретение относится к области пьезотехники, а конкретно к измерению параметров пьезоэлектрических акселерометров, вибродатчиков, сейсмодатчиков и других устройств, реагирующих на ускорение (вибрацию).

Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА). Технический результат - обеспечение тарировки датчика микроускорений в космическом полете. Способ тарировки датчика микроускорений в космическом полете, включает в себя сопоставление измерений с калиброванными значениями и определение погрешностей в измерениях датчика, фиксирование в связанной с космическим аппаратом системе координат вектор определяющий положение датчика микроускорений, измерение угловой скорости космического аппарата и его угловое ускорение определение углового положения и орбиты космического аппарата, по изменению орбиты космического аппарата и определенному его угловому положению оценивают плотность атмосферы ρа на высоте полета космического аппарата и ускорение его торможения, калиброванное значение микроускорения определяют по формуле где: - микроускорение в связанной с космическим аппаратом системе координат; µe - гравитационный параметр Земли; r - расстояние от центра Земли до центра масс космического аппарата; - орт оси орбитальной системы координат, направленной по радиус-вектору космического аппарата; - скорость космического аппарата; с - баллистический коэффициент космического аппарата, и сопоставляя калиброванное значение микроускорения и измеренное значение, определяют погрешность в измерениях датчика микроускорений.

Изобретение относится к метрологии и предназначено для контроля дополнительной нелинейности микроэлектромеханических преобразователей линейного ускорения (МПЛУ) при испытании на виброустойчивость. Устройство для контроля дополнительной нелинейности преобразователей линейного ускорения при испытании на виброустойчивость содержит вибратор, неподвижно закрепленный на приспособлении, которое неподвижно закреплено на валу угломерного устройства. На столе вибратора закреплены вибродатчик и испытуемый микроэлектромеханический преобразователь линейных ускорений, выход которого соединен со входом преобразователя, выход которого подключен ко входу компьютера, выход вибродатчика соединен со входом осциллографа и со входом измерителя вибрации, выход генератора вибростенда подключен ко входу усилителя вибростенда, выход которого соединен со входом вибратора. При этом в устройство введен уровень, регулировочные винты, с помощью которых выставляют стол вибратора в горизонтальное положение, которое контролируется уровнем, устройство содержит виброгасящую прокладку, выполненную с возможностью уменьшения вибрации. Технический результат - повышение точности. 1 ил.

Группа изобретений относится к области измерений, а именно к калибровке комплекса измерения скорости транспортных средств. Система и способ калибровки комплекса измерения скорости транспортных средств (ТС) содержат электронно-вычислительное устройство (ЭВУ), соединенное с видеокамерой, с поворотной платформой и с лазерным дальномером. Видеокамера выполнена с возможностью формирования изображения дорожного полотна и находящихся на нем ТС, а также с возможностью передачи изображения в ЭВУ. Лазерный дальномер выполнен с возможностью проецирования в точку измерения расстояния световой метки из трех разных угловых позиций. ЭВУ выполнено с возможностью анализа изображения, а также с возможностью вычисления калибровочных параметров и функций, необходимых для позиционирования объектов, с использованием данных о расстоянии до световых меток и их пиксельных координат, а также с использованием данных внутренней калибровки объектива и чувствительной матрицы видеокамеры. Технический результат заключается в упрощении калибровки комплекса измерения скорости ТС, содержащего видеокамеру, осуществлении калибровки в автоматическом режиме с возможностью внесения поправок в значения калибровочных параметров во время эксплуатации комплекса измерения скорости ТС. 2 н.п. ф-лы, 4 ил.

Изобретения относятся к области измерительной техники и могут быть использованы для определения частотных характеристик средств измерения параметров вибрации. Устройство для осуществления способа определения значения частоты установочного резонанса пьезоэлектрического вибропреобразователя содержит колебательную систему, состоящую из пьезоэлектрического вибропреобразователя и рабочего тела, прикрепленный к рабочему телу пьезоэлектрический вибратор, подсоединенный к нему генератор импульсных электрических сигналов с регулировкой импульса по длительности и амплитуде и подключенный к вибропреобразователю блок регистрации со схемой для преобразования Фурье выходного сигнала пьезоэлектрического вибропреобразователя. Для осуществления способа от генератора импульсных электрических сигналов на пьезоэлектрический вибратор подают одиночный электрический импульс, возбуждают затухающие вибрационные колебания в колебательной системе и регистрируют в блоке регистрации выходной сигнал - отклик пьезоэлектрического вибропреобразователя на воздействующую вибрацию в функции от времени. В схеме для преобразования Фурье блока регистрации преобразуют поступивший выходной сигнал в его спектральный вид и по преобразованному виду сигнала определяют искомое значение частоты установочного резонанса пьезоэлектрического вибропреобразователя. Технический результат - упрощение процедуры определения частоты установочного резонанса пьезоэлектрического вибропреобразователя, расширение частотного диапазона определяемых значений резонансных частот, расширение функциональных возможностей технического решения. 2 н.п. ф-лы, 4 ил., 4 табл.

Изобретение относится к области измерительной техники, в частности к способам определения поперечной чувствительности пьезоэлектрических акселерометров. Способ определения поперечной чувствительности акселерометра с использованием диаграммы направленности заключается в том, что на поворотную платформу стенда устанавливают акселерометр плоскостью его основания в направлении воздействия возмущения, осуществляют поворот акселерометра в гравитационном поле Земли с помощью поворотной платформы, при этом акселерометр устанавливают соосно оси вращения платформы и фиксируют его радиальное положение относительно горизонтальной оси, измеряют максимальные значения электрического напряжения при каждом повороте платформы на угол более 90°, которые используют для построения диаграммы направленности, по которой определяют максимальное значение поперечной чувствительности акселерометра, при этом значение относительного коэффициента влияния поперечного ускорения определяют из отношения значений максимальной поперечной чувствительности к осевой чувствительности, которую измеряют при установке акселерометра на поворотную платформу с ориентацией оси чувствительности перпендикулярно оси вращения вала, совмещении с ней центра масс инерционного элемента акселерометра и повороте акселерометра в гравитационном поле Земли. Технический результат - исключение инструментальной погрешности воспроизведения единицы ускорения. 4 ил.

Изобретения относятся к измерительной технике и могут быть использованы для проведения калибровки инерциальных измерительных модулей (ИИМ), в состав которых входят датчики угловой скорости (ДУС) и акселерометры. Технический результат - расширение функциональных возможностей. Для этого способ калибровки ИИМ включает установку ИИМ с блоком записи информации на платформу устройства для калибровки, обеспечивающего задание угловой скорости двигателем вокруг трех приблизительно ортогональных осей (отклонение от ортогональности не должно превышать 5°), связанных с ИИМ, вращение ИИМ вокруг приблизительно горизонтальной оси (отклонение оси вращения от плоскости горизонта не должно превышать 20°) с переменными угловыми скоростями и идентификацию математических моделей ошибок датчиков ИИМ. При этом вращения вокруг трех приблизительно ортогональных осей системы координат, связанной с ИИМ, осуществляются после однократного закрепления ИИМ на платформе устройства, а оценивание составляющих как моделей ошибок ДУС, так и моделей ошибок акселерометров осуществляется на основе сопоставления углов разворота ИИМ по показаниям акселерометров и ДУС в результате единого цикла калибровочных движений. Записанные данные инерциальных датчиков используют для идентификации математических моделей ошибок датчиков ИИМ, в частности постоянных составляющих нулевых сигналов и погрешностей масштабных коэффициентов ДУС и акселерометров, углов отклонения измерительных осей ИИМ от оси вращения устройства для калибровки и коэффициентов g-чувствительности ДУС. Устройство, реализующее данный способ, содержит двигатель, который вращает внешнюю рамку карданового подвеса (КП), фиксатор внутренней рамки, позволяющий устанавливать в определенные угловые положения внутреннюю рамку КП относительно внешней рамки, фиксатор платформы, позволяющий устанавливать в определенные угловые положения платформу относительно внутренней рамки КП. На платформе устройства располагается испытуемый ИИМ с устройством записи информации. Платформа устройства может быть снабжена интерфейсом беспроводной передачи информации. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и предназначено для определения коэффициента преобразования датчика ускорения в узкой полосе частот. Способ измерения коэффициента преобразования датчика ускорения заключается в поднятии штока, имеющего свободный или скользящий ход по отношению к трубке, внутри которой он движется, на высоту Н. При отпускании шток совершает свободное падение до удара об упругий массив с частотой отскока, определяемой формулой где w0 - угловая частота отскока штока (рад/с); g=9,8 м/с2; λ0 - рабочий ход упругого массива, мм, при ударе об него штока, падающего с высоты Н. Расчетная величина ускорения будет определяться формулой (2),где а0 - расчетное значение ускорения штока, падающего с высоты Н, при собственной частоте колебаний упругого массива w0=2πf0. Датчик, который закреплен на верхнем торце штока с помощью коаксиального кабеля, подключен к входу спектранализатора с установленным в нем полосовым фильтром с центральной частотой w0, к выходу которого подключен вольтметр; он вырабатывает сигнал напряжения u0, соответствующий расчетной величине ускорения а0 при равенстве параметров w0 и wn, по которым вычисляется коэффициент преобразования датчика. Заявляемый способ позволяет без применения вибростенда оперативно и достоверно определять качество покрытия упругого массива по коэффициенту преобразования датчика ускорения в требуемой полосе частот. 1 табл., 1 ил.

Способ обеспечения линейности масштабного коэффициента маятникового широкодиапазонного акселерометра компенсационного типа относится к измерительной технике и может быть использован в области производства приборов для измерения линейного ускорения. В процессе наладки устанавливают акселерометр на центрифугу, задают последовательно ряд линейных ускорений в диапазоне измерения акселерометра, измеряют выходной сигнал акселерометра в зависимости от величины заданного линейного ускорения, корректируют параметры системы, обеспечивая линейность зависимости выходного сигнала от заданного линейного ускорения. Согласно изобретению после измерения последовательности значений зависимости выходной информации Qвых n от заданных линейных ускорений an=g⋅n, где n - значение перегрузки, определяют значения корректирующих коэффициентов Ккорр(n)=Qвых 1⋅n/Qвых n, где Qвых 1 - выходная информация при действии линейного ускорения a1=g, Qвых 1⋅n - значение выходной информации, которое должно было быть получено при условии линейности масштабного коэффициента; посредством внешнего компьютера выполняют аппроксимацию функции Ккорр(n), вводят в память микроконтроллера обратной связи акселерометра данные аппроксимирующего полинома, при эксплуатации акселерометра определяют микроконтроллером частичные отрезки полинома, к которым относятся измеренные акселерометром ускорения, определяют посредством микроконтроллера для измеренных ускорений корректирующие коэффициенты и выполняют корректировку микроконтроллером измеренной выходной информации путем ее умножения на соответствующие корректирующие коэффициенты. Технический результат изобретения – обеспечение линейности масштабного коэффициента широкодиапазонного маятникового акселерометра компенсационного типа. 5 ил.
Наверх