Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики шумового акустического сигнала, излучаемого в массив. Способ включает возбуждение в скважине акустического сигнала и прием его после прохождения исследуемого участка околоскважинного массива в двух точках, расположенных симметрично выше и ниже точки излучения, измерении и совместной обработке параметров принятых сигналов. При этом возбуждают сигнал в виде стационарного случайного шума со средним равным нулю. Осуществляют его прием в точках, лежащих от точки излучения на расстоянии, не превышающем 0,3 радиуса корреляции излученного сигнала в ненарушенной горной породе. Измеряют коэффициент взаимной корреляции сигналов в точках приема и интервалы автокорреляции этих сигналов. При этом по коэффициенту взаимной корреляции судят о наличии и степени трещиноватости околоскважинного массива между точками приема, а по соотношению измеренных интервалов корреляции судят о расположении трещиноватой зоны относительно точки приема. Технический результат - повышение точности получаемых данных. 6 ил.

 

Изобретение относится к геофизическим способам исследования околоскважинного пространства массива горных пород, преимущественно к акустическим способам выявления пересекаемых скважиной трещиноватых зон в породах кровли горных выработок.

Известен способ акустического каротажа, заключающийся в размещении в скважине трубки из хрупкого материала, жестко связанной со стенками скважины с помощью цементного раствора, непрерывном перемещении внутри трубки скважинного зонда, излучении и приеме с его помощью импульсных упругих колебаний, по изменению характеристик которых вдоль длины трубки судят о наличии и местоположении расслоений в прискважинной области массива [1] (Авторское свидетельство СССР №996972, кл. G01V 1/40, опубл. в БИ №6, 15.02.1983).

Недостатком известного способа является его низкая чувствительность по отношению к выявляемым расслоениям, раскрытие которых не меняется или мало меняется во времени. Это связано с тем, что такие расслоения не приводят к возникновению трещин в хрупком материале помещаемой в скважину трубки и, как следствие, значимым изменениям акустических характеристик принятого акустического сигнала, который распространяется преимущественно по стенкам трубки.

Известен способ акустического каротажа, заключающийся в возбуждении в скважине акустического сигнала и приеме его после прохождения исследуемого участка околоскважинного массива в двух точках, расположенных симметрично выше и ниже точки излучения, измерении и совместной обработке параметров принятых сигналов [2] (Авторское свидетельство СССР №437036, кл. G01V 1/40, опубл. в БИ №27, 25.07.1974).

В указанном способе осуществляют регистрацию двумя приемными преобразователями сигналов, отраженных от неоднородностей массива, вычитание этих сигналов и регистрацию разностного сигнала в виде зависимости времени прихода от глубины скважины.

Недостатком известного способа является невозможность с его помощью выявлять наличие и местоположение зон трещиноватости массива, пересекаемого скважиной, и степь трещиноватости горных пород в этих зонах.

Техническим результатом предлагаемого способа явится обеспечение возможности выявления наличия и местоположения зон трещиноватости массива, пересекаемого скважиной и степени трещиноватости горных пород в этих зонах.

Для достижения указанного технического результата в способе акустического каротажа, заключающемся в возбуждении в скважине акустического сигнала и приеме его после прохождения исследуемого участка околоскважинного массива в двух точках, расположенных симметрично выше и ниже точки излучения, измерении и совместной обработке параметров принятых сигналов, возбуждают сигнал в виде стационарного случайного шума со средним равным нулю, осуществляют его прием в точках, лежащих от точки излучения на расстоянии, не превышающем 0,3 радиуса корреляции излученного сигнала в ненарушенной горной породе, измеряют коэффициент взаимной корреляции сигналов в точках приема и интервалы автокорреляции этих сигналов, при этом по коэффициенту взаимной корреляции судят о наличии и степени трещиноватости околоскважинного массива между точками приема, а по отношению измеренных интервалов автокорреляции судят о расположении трещиноватой зоны относительно точки излучения.

При использовании шумового акустического сигнала необходимо учитывать следующие его особенности: случайная природа подобного сигнала позволяет в значительной степени избежать резонансных и интерференционных искажений, присущих периодическим сигналам; среднее значение шумового сигнала, равное нулю, обеспечивает величину коэффициента корреляции R=0 при некоррелированности исследуемых сигналов; стационарность процесса позволяет отказаться от жестких требований к времени интегрирования в корреляторе приемного устройства.

Предлагаемый способ базируется на установленных экспериментально и на основе компьютерного моделирования закономерностях изменения корреляционных характеристик шумового стационарного акустического сигнала со средним равным нулю при его распространении между точкой излучения и двумя симметричными точками приема в геосреде, содержащей и не содержащей зоны повышенной трещиноватости. Суть этих закономерностей заключается в следующем.

Во-первых, при распространении указанных сигналов в каждом конкретном типе горной породы, не содержащей зон повышенной трещиноватости, существует свой характерный радиус корреляции r. Это расстояние l, в пределах которого зарегистрированные акустические сигналы от одного источника коррелированы между собой (т.е. их коэффициент взаимной корреляции R>0,1), а при l>r эти сигналы независимы друг от друга и для них R<0,1. Учитывая природную неоднородность свойств однотипных горных пород даже при отсутствии в них зон повышенной трещиноватости, два сигнала могут быть независимы друг от друга уже на расстоянии 0,6 r. Таким образом, взаимные корреляционные измерения сигналов в двух точках приема, симметричных относительно точки излучения, имеют смысл только при условии, что они лежат от точки излучения на расстоянии l≤0,3 r.

Во-вторых, наличие зоны и степень трещиноватости горных пород между точками приема влияют на коэффициент R взаимной корреляции между зарегистрированными в этих точках сигналами. Если при отсутствии трещиноватости R→1, то с ее увеличением трещиноватость уменьшает взаимосвязь сигналов, зарегистрированных в точках приема. Физически это влияние вполне понятно, если учесть, что трещиноватость приводит как к уменьшению величины r, так и к различному изменению амплитудных, частотных и фазовых характеристик сигналов, регистрируемых в двух точках приема.

В-третьих, интервалы автокорреляции сигналов в точках приема тем меньше, чем больше нарушен трещиноватостью участок массива между точкой излучения и соответствующей точкой приема, а значит соотношение между указанными интервалами несет информацию о том, к какой из точек приема находится ближе трещиноватая зона.

Способ акустического каротажа иллюстрируется фиг. 1 - фиг. 6, где: на фиг. 1 представлена схема расположения ультразвукового зонда на глубине скважины H1 однородного массива, не содержащего зоны трещиноватости, пересекаемой скважиной; на фиг. 2 - схема расположения ультразвукового зонда на глубине Н2 массива, содержащего трещиноватую зону между точкой излучения и верхней точкой приема шумового акустического сигнала; на фиг. 3 - схема расположения ультразвукового зонда на глубине Н3 массива, содержащего трещиноватую зону, расположенную на одинаковом расстоянии от точек приема шумового акустического сигнала; на фиг. 4 - схема расположения ультразвукового зонда на глубине Н4 массива, содержащего трещиноватую зону, расположенную между точкой излучения и нижней точкой приема шумового акустического сигнала; на фиг. 5 - результаты измерения коэффициента R взаимной корреляции шумовых акустических сигналов в точках приема, а на фиг. 6 - отношения интервалов автокорреляции этих сигналов при расположении ультразвукового зонда на глубинах Н1, Н2, Н3 и Н4 соответственно.

Схемы, представленные на фиг. 1-4, включают скважину 1, в которой размещен ультразвуковой зонд 2, который дискретно перемещают в глубину скважины 1. Ультразвуковой зонд 2 содержит излучающий акустический преобразователь 3, верхний приемный акустический преобразователь 4, а также нижний приемный акустический преобразователь 5. Излучающий акустический преобразователь 3 подключен к выходу генератора 6 шумового стационарного сигнала со средним равным нулю. Верхний приемный акустический преобразователь 4 и нижний приемный акустический преобразователь 5 подключены ко входам корреляционного анализатора 7. Излучающий акустический преобразователь 3 контактирует со стенкой скважины 1 в точке 8 излучения, верхний приемный акустический преобразователь 4 - в точке 9 приема и нижний приемный акустический преобразователь 5 - в точке 10 приема. Точки 9, 10 приема симметричны относительно точки 8 излучения и находятся от нее на расстоянии, не превышающем 0,3 радиуса r корреляции излученного шумового акустического сигнала.

Результаты измерения коэффициентов R взаимной корреляции, принимаемых шумовых акустических сигналов на фиг. 5, представлены: значением 12 этого коэффициента, полученного на глубине H1 расположения ультразвукового зонда 2 в скважине 1; значением 13, полученным на глубине Н2 расположения зонда 2 в скважине 1; значением 14, полученным на глубине Н3 расположения зонда 2 в скважине 1; значением 15, полученным на глубине Н4 расположения зонда 2 в скважине 1.

Результаты измерения относительно интервала τ и к в автокорреляции сигнала, принятого в верхней точке 9 приема, и интервала τ и к н автокорреляции сигнала, принятого в нижней точке 10 приема, представлены на фиг. 6 значениями этого отношения: 16, которое соответствует глубине H1 расположения ультразвукового зонда 2 в скважине 1; 17, которое соответствует глубине Н2 расположения ультразвукового зонда 2 в скважине 1; 18, которое соответствует глубине Н3 расположения ультразвукового зонда 2 в скважине 1; 19, которое соответствует глубине Н4 расположения ультразвукового зонда 2 в скважине 1.

Способ акустического каротажа скважин осуществляют следующим образом.

В кровле горной выработки бурят измерительную скважину 1, в которую помещают ультразвуковой зонд 2, содержащий излучающий акустический преобразователь 3 и симметричные ему верхний приемный акустический преобразователь 4 и нижний приемный акустический преобразователь 5. Расстояние l между излучающим акустическим преобразователем 3 и каждым из приемных акустических преобразователей 4 и 5 изменяют так, чтобы выполнялось условие l≤0,3 r, где r - радиус корреляции излучаемого акустического сигнала в ненарушенной горной породе. Значение г получают на основе предварительных измерений на образцах соответствующих горных пород, не содержащих нарушений в виде трещин.

Излучающий акустический преобразователь 3 подключают к выходу генератора 6 стационарного электрического шумового сигнала со средним равным нуля, а приемные акустические преобразователи - к соответствующим входам корреляционного анализатора 7.

Ультразвуковой зонд 2 дискретно перемещают вглубь скважины 1 с шагом ΔН и на каждом шаге обеспечивают надежные контактные условия излучающего акустического преобразователя 3 в точке 8 излучения, верхнего приемного акустического преобразователя 4 - в точке 9 приема и нижнего приемного акустического преобразователя 5 - в точке 10 приема.

На каждой дискретной глубине Hi измерительной скважины 1, на которой акустические преобразователи 3, 4, 5 контактируют с ее стенкой, измеряют с помощью корреляционного анализатора 7 коэффициент R взаимной корреляции шумовых акустических сигналов в точках 9, 10 приема и интервалы автокорреляции τ и к в и τ и к н указанных сигналов в этих точках. Затем определяют отношение τ и к в / τ и к н интервалов корреляции шумовых акустических сигналов, измеренных в верхней точке 9 приема и в нижней точке 10 приема.

В случае, если на базе 2l между верхней точкой 9 приема и нижней точкой 10 приема массив горных пород не содержит трещиноватой зоны 11, пересекающей измерительную скважину 1 (см. фиг. 1), изменения характеристик сигналов в точках 9 и 10 приема будут примерно одинаковы и незначительны. Как следствие, коэффициент взаимной корреляции R этих сигналов будет стремиться к 1 (R→1), что отражено значением 12 на фиг. 5. По тем же причинам в точках 9,10 приема будут близки также интервалы τ и к в и τ и к н автокорреляции принятых акустических сигналов, а значит отношение интервалов автокорреляции этих сигналов ( τ и к в / τ и к н ) имеет значение 16 на фиг. 6, т.е. стремится к 1.

При наличии трещиноватой зоны 11 между верхней точкой 9 приема и точкой 8 излучения (см. фиг. 2) декорреляция акустического сигнала в точке 9 приема будет существенно больше, чем акустического сигнала, регистрируемого в точке 10 приема. В результате измеренные на глубине Н2 значение 13 величины R<<1 и значение 18 отношения ( τ и к в / τ и к н )<<1. Причем и R и τ и к в / τ и к н будут тем меньше, чем больше трещиноватость в зоне 11.

При наличии и симметричном расположении трещиноватой зоны 11 относительно точек 9 и 10 приема (см. фиг 3) изменения характеристик шумовых акустических сигналов, регистрируемых в этих точках, будут примерно одинаковы и, как следствие, измеренные на глубине Н3 значение 14 величины R и значение 18 отношения τ и к в / τ и к н будут близки к 1 (см. фиг. 5 и фиг. 6). Однако, поскольку абсолютная симметрия трещиноватой зоны 11 относительно точек 9 и 10 приема на практике маловероятна, значения 14 величины R и 18 отношения ( τ и к в / τ и к н ) будут все же несколько меньше, чем в случае полного отсутствия трещиноватой зоны (см. фиг. 1).

Для случая, представленного на фиг. 4, когда трещиноватая зона 11 находится между излучающим акустическим преобразователем 8 и нижним приемным акустическим преобразователем 10, декорреляция акустического сигнала в точке 10 приема будет существенно больше, чем в точке 9 приема. В результате, измеренные на глубине H4 значение 15 величины R<<1, а значение 19 отношения ( τ и к в / τ и к н )>1.

Описанный способ испытывался в лабораторных условиях. В кубическом блоке известняка со стороной 400 мм пробуривалось сквозное отверстие диаметром 42 мм. С помощью аппаратуры телевизионного каротажа производилось обследование стенок пробуренной скважины, которое показало, что на глубине 230 мм существует зона повышенной трещиноватости, пересекающая исследуемую скважину. Далее в скважину помещался каротажный зонд, состоящий из одного излучающего акустического преобразователя и двух размещенных на равном расстоянии по разные стороны от него приемных акустических преобразователей. Резонансная частота всех преобразователей составляла 150 кГц, добротность - 10. На вход излучающего преобразователя с шумового генератора ГШ-1 подавался электрический шумовой сигнал в полосе частот 10-500 кГц со средним равным нулю. Электрические сигналы с приемных акустических преобразователей поступали на двухканальный АЦП с частотой дискретизации 1 МГц, подключенный к персональному компьютеру, на котором программным путем вычислялись коэффициенты корреляции R и отношение интервалов автокорреляции τ и к в / τ и к н . Для вычисления радиуса корреляции r в блоке известняка производилось пошаговое увеличение расстояния l между излучающим и приемными акустическими преобразователями. Экспериментально установлено, что при достижении значением l величины в 180 мм коэффициент корреляции R падает ниже значения 0,1. Таким образом, для дальнейших исследований расстояние l было принято равным 50 мм.

Описанный каротажный зонд перемещался вглубь скважины так, чтобы при первом измерении трещиноватая зона оказалась вне каротажного зонда (см. фиг. 1), при втором - трещиноватая зона оказалась между верхним приемным преобразователем и излучателем (см. фиг. 2), при третьем - трещиноватая зона оказалась совмещена по координате с излучателем (см. фиг. 3), при четвертом - трещиноватая зона оказалась между излучателем и нижним приемным акустическим преобразователем (см. фиг. 4). В каждом из случаев производилось вычисление коэффициента корреляции R и отношения интервалов корреляции ( τ и к в / τ и к н ).

По результатам измерений было установлено, что для случая первого измерения R=0,86 и τ и к в / τ и к н =0,90, для второго случая R=0,23 и ( τ и к в / τ и к н )=0,31, для третьего случая R=0,71 и τ и к в / τ и к н =0,84, для последнего случая R=0,21 и τ и к в / τ и к н =1,48.

Таким образом, предложенный способ обеспечивает технический результат, заключающийся в обеспечении возможности выявления наличия и местоположения зон трещиноватости массива, пересекаемого скважиной, и степени трещиноватости горных пород в этих зонах.

Способ акустического каротажа, заключающийся в возбуждении в скважине акустического сигнала и приеме его после прохождения исследуемого участка околоскважинного массива в двух точках, расположенных симметрично выше и ниже точки излучения, измерении и совместной обработке параметров принятых сигналов, отличающийся тем, что возбуждают сигнал в виде стационарного случайного шума со средним равным нулю, осуществляют его прием в точках, лежащих от точки излучения на расстоянии, не превышающем 0,3 радиуса корреляции излученного сигнала в ненарушенной горной породе, измеряют коэффициент взаимной корреляции сигналов в точках приема и интервалы автокорреляции этих сигналов, при этом по коэффициенту взаимной корреляции судят о наличии и степени трещиноватости околоскважинного массива между точками приема, а по соотношению измеренных интервалов корреляции судят о расположении трещиноватой зоны относительно точки приема.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано при проведении геологоразведочных работ при поиске нефти и газа. Согласно заявленному предложению выполняют измерения скоростей продольных волн в геологическом пласте, окружающем первую скважину, для получения данных об измеренных скоростях продольных волн и для последующего определения скорректированных скоростей продольных волн для первой скважины.

Изобретение относится к области сейсмических исследований и может быть использовано в нефтяной промышленности для непрерывного контроля местоположения бурового инструмента при бурении скважин.

Изобретение относится к области геофизики и может найти применение при разработке нефтяных залежей. Способ включает проведение геолого-геофизических и промысловых исследований скважин, комплексный анализ их результатов, выделение литотипов по данным ГИС, оценку разделения литотипов в полях скоростей продольных, поперечных волн и плотности, проведение синхронной инверсии частичных угловых сумм сейсморазведочных работ 3Д, в результате чего получают трехмерные кубы скоростей продольной, поперечной волн и плотности.

Изобретение относится к средствам измерения в скважинах в процессе бурения, в частности к средствам передачи сейсмических данных в реальном времени. Техническим результатом является повышение точности и скорости передачи данных.

Изобретение относится к области геофизики и может быть использовано при проведении каротажных работ. Предложен спектральный шумомер, содержащий акустический детектор, первый частотный канал с первым каскадом усиления, выполненный с возможностью усиления первой составляющей электрического выходного сигнала, генерируемого акустическим детектором, второй частотный канал с фильтром нижних частот и вторым каскадом усиления, выполненный с возможностью фильтрации и усиления второй составляющей электрического выходного сигнала, генерируемого акустическим детектором.

Изобретение относится к области геофизики и может быть использовано при оценке продуктивности скважины и эффективности ее эксплуатации. .

Изобретение относится к области геофизики и может быть использовано при разведке месторождений углеводородов (УВ) с использованием измерений параметров геофизических полей различной природы при обработке данных для определения детальных (тонкослоистых) фильтрационно-емкостных свойств коллекторов и типа их насыщения в межскважинном и околоскважинном пространстве.

Изобретение относится к области геофизики и может быть использовано для изучения анизотропии и трещиноватости пород методами скважинной сейсморазведки. .

Изобретение относится к области исследования геологических разрезов по данным сейсмоакустических исследований нефтегазовых скважин. .

Изобретение относится к области геофизики и может быть использовано для получения информации о подземной формации. В некоторых вариантах осуществления способ получения информации о по меньшей мере одной переменной, существующей при целевом местоположении в стволе подземной скважины и/или окружающей подземной формации, включает в себя этапы, на которых доставляют множество генерирующих сигнал устройств в целевое местоположение(я), излучают по меньшей мере один детектируемый сигнал из целевого местоположения и принимают по меньшей мере один такой сигнал.

Изобретение относится к области геофизики и может быть использовано для регистрации волновых процессов в вертикальных и наклонных скважинах при сейсмическом профилировании.

Устройство относится к геофизике, в частности геофизическим исследованиям газовых скважин. Устройство содержит в скважинном приборе три взаимоортогональных датчика геоакустических сигналов, усилитель, полосовые фильтры, аналого-цифровой преобразователь, блок управления.

Изобретение относится к области геофизики и горного дела и может быть использовано в процессе осуществления буровых работ. Согласно общему аспекту заявленного предложения телеметрический прибор с гидроимпульсным каналом связи используют в бурильной колонне, которая содержит буровой раствор, протекающий внутри.

Изобретение относится к области геофизики и может быть использовано для определения характеристик буровой скважины для проведения операции бурения. Заявлены способы и системы для сбора, получения и отображения индекса азимутальной хрупкости буровой скважины.
В заявке описан акустический излучатель, содержащий акустическую диафрагму, предназначенную для передачи акустических волн в среду, узел пьезоэлектрического актюатора, деформируемого в осевом направлении под действием приложенного электрического сигнала, и упругий материал с высокой степенью несжимаемости, расположенный между пьезоэлектрическим актюатором и акустической диафрагмой и предназначенный для передачи волн давления на акустическую диафрагму в результате движения пьезоэлектрического актюатора.

Изобретение относится к области геофизики и может быть использовано при проведении скважинных сейсморазведочных мероприятий. Заявлен способ скважинной сейсморазведки, заключающийся в возбуждении упругих колебаний каким-либо источником, устанавливаемым в приповерхностной зоне, и регистрации сейсмических колебаний.

Устройство для измерения спектральных характеристик геоакустических шумов в скважине, содержащее в скважинном приборе три взаимно ортогональных датчика геоакустических сигналов, коммутатор датчиков, усилитель, микроконтроллер со встроенным высокоскоростным аналого-цифровым преобразователем, датчик температуры, предназначенный для непосредственной корректировки результатов измерений, автономный блок питания, блок контроля питающего напряжения, SD карту для хранения получаемой информации, коммутатор SD карты для возможности переключения режимов работы по протоколам SPI и ММС, блок сопряжения с персональным компьютером по протоколу СОМ для настройки параметров работы устройства, блок сопряжения с персональным компьютером по протоколу MMC-USB для передачи данных измерений.

Изобретение относится к области геофизики и может быть использовано при каротажных работах. Сущность: устройство содержит следующие элементы: датчики (1-3) геоакустических сигналов, первый коммутатор (4), первый усилитель (5), блок фильтров (6), блок выпрямителей (7), второй коммутатор (8), аналого-цифровой преобразователь (9), блок (10) передачи цифрового сигнала, датчик (11) магнитной восприимчивости, измерительная схема (12) магнитометра, аналоговые запоминающие устройства (13, 14), вычитающий усилитель (15), генератор (16) прямоугольного напряжения, ферритовая антенна (17), третий коммутатор (18), три конденсатора (19), второй усилитель (20), смеситель (21), фильтр нижних частот (22), переключаемый генератор (23), выпрямитель (24), блок (25) управления, блок (26) питания.

Изобретение относится к области геофизики и может быть использовано для определения свойств горных пород в процессе акустического каротажа. Акустическое каротажное устройство содержит по меньшей мере один излучатель и по меньшей мере два приемника, причем приемники расположены в точках с разными азимутальными координатами и выполнены с возможностью проведения измерений волнового поля в точках, расположенных на разных расстояниях от вертикальной оси устройства.

Изобретение относится к области геофизики и может быть использовано в процессе геофизических исследований скважин. Согласно заявленному способу в скважине размещают с возможностью перемещения акустический каротажный прибор, содержащий по меньшей мере один источник направленных акустических сигналов и по меньшей мере один приемник. На каждом шаге акустического каротажа перед проведением измерений определяют положение акустического каротажного прибора в скважине и/или форму скважины. Определяют необходимое направление для испускания направленного акустического сигнала и вычисляют угол поворота источника вокруг оси прибора для обеспечения необходимого направления. Осуществляют поворот источника направленных акустических сигналов на вычисленный угол и осуществляют акустические измерения. Технический результат - повышение качества каротажных данных. 6 з.п. ф-лы, 3 ил.
Наверх