Способ угловой ориентации объекта

Изобретение относится к космической навигации и может быть использовано в системах получения информации о навигационных параметрах космических аппаратов (КА) на геостационарных орбитах (ГСО) относительно геоцентрической системы координат (ГЦСК). Технический результат заключается в высокоточном измерении координат и угловой ориентации осей космических аппаратов геостационарных орбит по сигналам бортовой аппаратуры межспутниковых измерений (БАМИ) навигационных космических аппаратов (НКА) ГЛОНАСС. Указанный результат достигается тем, что в качестве сигналов с частотой Доплера используют сигналы межспутниковых измерений бортовой аппаратуры НКА, а угловое положение объекта (КА) определяют за интервал времени, в течение которого объект находится в области радионавигационного поля сигналов БАМИ не менее чем от четырех НКА. 3 ил., 1 табл.

 

Изобретение относится к космической навигации и может быть использовано в системах получения информации о навигационных параметрах космических аппаратов геостационарных орбит (далее - КА) относительно геоцентрической системы координат (ГЦСК).

Известен способ инерциальной навигации КА, в соответствии с которым навигационные параметры, а именно координаты местоположения КА, а также составляющие векторов скорости и ускорения определяют интегрированием измеряемых в процессе движения КА составляющих указанных навигационных параметров [1, 2]. В любом устройстве для осуществления способа инерциальной навигации, как правило, осуществляется несколько измерений, для каждого из которых используются определенные устройства: а) при измерении углового направления - гироскопические приборы; б) при измерении линейного ускорения - подвешенные инертные массы в акселерометрах; в) при измерении времени - прецизионные источники стабилизированной частоты [3]. Основным недостатком такого способа является накапливающаяся с течением времени ошибка определения результирующих данных о значении вектора навигационного состояния КА и необходимость очень точного знания начальных значений координат КА.

Вследствие вышеизложенного, для коррекции определения местоположения КА следует периодически проводить визирование с Земли радаром или квантово-оптическими системами и расчетным путем определять его координаты. Однако в результате осуществления навигационных сверок с Земли не определяются угловые координаты КА и возникает большая зависимость от инфраструктур наземных комплексов управления (НКУ).

Известен также способ геомагнитной навигации КА, включающий в себя сопоставление физических параметров магнитного поля, измеренных датчиками геомагнитной информации на борту объекта, с аналогичными параметрами магнитного поля, распределение которых в пространстве относительно Земли заранее известно (априорная информация). Априорная информация о магнитном поле Земли фиксируется на географических картах с учетом высоты полета, а также в таблицах, в системах памяти ЭВМ или в аналитической форме. Устройство для осуществления этого способа (система геомагнитной навигации) включает в себя датчики геомагнитной информации, датчики угловой информации, системы сравнения, коррекции, вычисления и выдачи выходных сигналов [4]. Недостатком способа геомагнитной навигации является наличие изменений в широких пределах информационных свойств магнитного поля Земли в зависимости от географической широты и расстояния от планеты и, следовательно, возможное использование данного способа только при небольшом удалении объекта от Земли.

Известен также способ вычисления зенитных расстояний двух звезд на основе измерений углов ориентации КА и ориентации оптических осей астровизирующих устройств относительно связанной системы координат. Определяют навигационные параметры КА при статической обработке измерительной информации за мерный участок. В каждом цикле дополнительно уточняют углы ориентации. На основе уточненных значений углов и информации об ориентации оптических осей астровизирующих устройств уточняют значения зенитных расстояний звезд. Используют уточненные значения при решении навигационной задачи в текущий период.

Общим недостатком решения навигационной задачи с помощью перечисленных способов автономной навигации является низкая точность определения параметров движения центра масс КА, обусловленная инструментальными и методическими погрешностями бортовых навигационных измерений, неполным учетом в навигационных алгоритмах сил, фактически воздействующих на КА в полете, погрешностями физических констант, определяющих закон движения [5].

Наиболее близким к заявляемому является способ угловой ориентации объекта по радионавигационным сигналам навигационных космических аппаратов (НКА), основанный на приеме сигналов от n НКА двумя или более антенно-приемными устройствами, расположенными параллельно одной или двум осям объекта, выделении сигнала с частотой Доплера, определении набега фаз за интервал времени измерения, определении координат и углового положения объекта [6].

Недостатком известного способа является невозможность определения ориентации КА, т.к. область применения радионавигационных сигналов НКА ограничена и направлена на потребителей навигационной информации Земли (форма диаграммы направленности бортовых антенн НКА ограничивает зону действия глобальных навигационных спутниковых систем околоземным космическим пространством).

В основу изобретения положена задача высокоточного измерения координат и угловой ориентации осей космического аппарата геостационарной орбиты, используя сигналы бортовой аппаратуры межспутниковых измерений (БАМИ) навигационных космических аппаратов ГЛОНАСС.

Поставленная задача решается тем, что в способе угловой ориентации объекта, по которому принимают сигналы от n навигационных космических аппаратов (НКА) двумя или более антенно-приемными устройствами, расположенными параллельно одной или двум осям объекта, выделяют сигналы с частотой Доплера, измеряют фазовые сдвиги между парами антенно-приемных устройств и определяют угловое положение объекта за интервал времени измерения, согласно изобретению в качестве сигналов с частотой Доплера используют сигналы межспутниковых измерений бортовой аппаратуры НКА, а угловое положение объекта определяют за интервал времени, в течение которого объект находится в области радионавигационного поля сигналов межспутниковых измерений бортовой аппаратуры не менее чем от четырех НКА.

На фиг. 1 отображена область распространения сигналов БАМИ НКА, на фиг. 2 приведен примерный вид диаграммы направленности антенной системы БАМИ НКА «Глонасс-М», на фиг. 3 - график количества одновременно наблюдаемых НКА по каналу БАМИ: ГЛОНАСС (сплошной) и GPS (прерывистой).

Сущность изобретения заключается в следующем.

Классические методы определения местоположения при помощи глобальных навигационных спутниковых систем (ГНСС) предполагают наличие одномоментных измерений не менее чем от четырех НКА одной системы (ГЛОНАСС или GPS), что обусловлено количеством неизвестных - 3 координаты X, Y, Z и временная задержка Δt. При использовании измерений от двух ГНСС минимальное количество НКА будет составлять не менее 5 (2 НКА одной и 3 НКА другой системы). Количество неизвестных в этом случае возрастает до 5, т.е. 3 координаты X, Y, Z и 2 временные задержки Δt1 и Δt2, обусловленные тем, что шкалы времени различных ГНСС не синхронизированы между собой.

В общем случае, при определении угловых координат объекта используют результаты измерений косинусов углов между вектором-базой объекта и вектором-направлением на i-й НКА ГНСС. Фазовый сдвиг сигнала НКА, принимаемого на две разнесенные антенны объекта, и косинус угла между вектором-базой и вектором-направлением на НКА связаны выражением:

где λ - длина волны сигнала НКА,

φ - фазовый сдвиг сигналов НКА между разнесенными антеннами (антенно-приемными устройствами) объекта,

B - длина базы антенно-приемных устройств объекта,

α - угол между вектором-базой объекта и вектором-направлением на НКА.

Выражение (1) является уравнением интерферометрических методов (использование разнесенных в пространстве приемных антенн) и широко применяется в теории фазовых пеленгаторов, многобазовых интерферометров и антенных решеток [7, 8].

При определении угловых координат КА (объекта), направляющие косинусы вектора-базы могут быть определены из уравнения на основе скалярного произведения векторов:

где λi - длина волны сигнала БАМИ i-го НКА;

Ф - фазовый сдвиг сигналов БАМИ НКА между парами антенно-приемных устройств КА;

ΔR - разность хода сигналов БАМИ НКА между парами антенно-приемных устройств КА;

X, Y, Z - координаты вектора-базы КА (объекта);

kxi,yi,zi - направляющие косинусы векторов-направлений между КА и i-м НКА, равные:

где x, y, z - координаты KA в ГЦСК;

xci, yci, zci - координаты i-го НКА в ГЦСК;

- расстояние между КА и i-m НКА;

i - номер навигационного космического аппарата, i=1, 2, …,n.

Координаты КА определяются на основе измерений задержек сигналов БАМИ, принятых с борта каждого НКА. Для проведения таких измерений сигналы БАМИ каждого НКА модулируются псевдослучайными последовательностями (ПСП) и имеют схожую структуру с радионавигационными сигналами. Отличием является длительность бита цифровой информации, которая в сигналах БАМИ составляет 1 мс, а в радионавигационных сигналах - 20 мс.

В БАМИ НКА ГЛОНАСС используется частотное, кодовое и временное разделение сигналов. Для передачи сигналов БАМИ используется 7 литерных частот, причем на каждой литерной частоте используется своя псевдослучайная последовательность. Длительность сеанса составляет 20 с, который разделен на 4 временных интервала по 5 с. В каждом временном интервале производится передача сигнала двумя антиподными НКА в каждой плоскости (на передачу одновременно работают 6 НКА, каждый своим модулирующим кодом ПСП), остальные НКА в этом временном интервале ведут прием сигнала. БАМИ работает по жесткой циклограмме. На каждом НКА 5 секунд - передача сигнала в своем временном интервале, 15 секунд - прием. На каждом часовом интервале БАМИ работает 15 минут, остальные 45 минут - перерыв.

Таким образом, проведение навигационных измерений по сигналам БАМИ мало чем отличается, по существу, от измерений по радионавигационным сигналам. По структуре приемник сигналов межспутниковой радиолинии имеет много общего с приемником радионавигационных сигналов, что обусловлено схожей структурой сигналов и функциональным назначением. В части канала БАМИ должны решаться задачи измерения текущих навигационных параметров с учетом особенностей формата сигналов в канале БАМИ.

Так как угловое положение КА определяют за интервал времени, в течение которого КА находится в области радионавигационного поля сигналов БАМИ не менее чем от четырех НКА, возможность угловой ориентации КА ограничивается из расчета продолжительности и количества, одновременно наблюдаемых НКА. Диаграмма направленности антенны БАМИ НКА конусообразная с провалом, направленным на центр Земли, что обеспечивает одинаковую мощность сигналов, принимаемых от всех видимых НКА. БАМИ НКА ГЛОНАСС формирует два максимума диаграммы направленности антенны в диапазоне углов от 18° до 70° (фиг. 2) от нормали каждый [9]. Для НКА GPS предполагается, что нижняя и верхняя границы диаграммы направленности антенны, излучающей сигналы БАМИ, составляют 16,2° и 32,5° соответственно [10]. Исходя из форм диаграмм направленности антенн БАМИ и областью распространения сигналов БАМИ данный способ угловой ориентации эффективен для КА, высота орбиты которых близка к геостационарной и выше.

Для примера рассмотрим формирование радионавигационного поля сигналов БАМИ для КА геостационарных орбит, отдельно по каждой из ГНСС и их совместной группировкой. Все расчеты будем проводить в геоцентрической системе координат (ГЦСК) OXYZ, центр которой совмещен с центром масс Земли, ось OZ направлена по оси вращения Земли в сторону Северного полюса, ось OX лежит в плоскости земного экватора и связана с Гринвичским меридианом, ось OY дополняет систему координат до правой (фиг. 1). В ГНСС ГЛОНАСС геоцентрическая подвижная система координат определена как ПЗ-90, а в ГНСС GPS - как WGS-84. На фиг. 1 показано взаимное расположение НКА и КА на геостационарных орбитах (заштрихованная область - диаграмма направленности БАМИ НКА). Учитывая, что высота орбиты НКА ГЛОНАСС в геоцентрической системе координат составляет 25478000 м, НКА GPS - 26578000 м, КА геостационарных орбит - 42164000 м, радиус Земли - 6378000 м и используя элементарные геометрические построения и теорему синусов, найдем продолжительность и количество одновременно наблюдаемых НКА по каналу БАМИ. Положение НКА ГЛОНАСС и GPS на орбите рассчитываются на основе альманахов, публикуемых в открытом доступе. Алгоритмы расчета приведены в соответствующих Интерфейсных контрольных документах.

Результаты расчетов продолжительности и количества, одновременно наблюдаемых НКА по каналу БАМИ на восьмисуточном интервале, приведены в табл. 1 и на графиках (фиг. 3) с учетом прерывистого характера излучения. Расчет проводился на восьмисуточном интервале (17 витков НКА ГЛОНАСС), так как именно он является интервалом повторяемости орбиты НКА ГЛОНАСС.

Как видно из результатов расчетов, представленных в табл. 1 и на фиг. 3, навигационные определения КА по сигналам БАМИ НКА возможны даже по одной системе ГЛОНАСС (продолжительность радиовидимости не менее 4-х НКА составляет 75.3% от восьми суток). При этом точность определения пространственной ориентации КА будет составлять не более 20-ти угловых минут при базе интерферометра 0.7 м, а погрешность измерения абсолютных координат менее 10 м.

По результатам исследований можно сделать вывод о целесообразности использования сигналов БАМИ для высокоточной навигации КА, что существенно повышает точность определения местоположения и пространственной ориентации КА интерферометрическими методами, особенно в условиях его автономного функционирования без поддержки наземного комплекса управления.

Источники информации

1. Авторское свидетельство СССР №1098383, опубл. 23.05.85 г.

2. В. Риглей, Р. Вудбери, Дж. Говорка. Инерциальная навигация, пер. с анг., под ред. Г.О. Фридлендера. - М.: Издательство иностранной литературы, 1958 г.

3. Навигация, наведение и стабилизация в космосе, кол. авторов (Ч.С. Дрейпер, У. Ригли и др.), под ред. Дж.Э. Миллера, пер. с англ., М.: Машиностроение, 1970 г.

4. Б.З. Михлин, В.П. Селезнев, А.В. Селезнев. Геомагнитная навигация. - М.: Машиностроение, 1976 г.

5. Патент RU 2171969, МПК6 G01C 21/24. опубл. 10.08.2001.

6. Патент RU 2122217, МПК6 G01S 5/02. опубл. 20.11.1998.

7. Белов В.И. Теория фазовых измерительных систем. / Под ред. Г.Н. Глазова. - Томск: Томская государственная академия систем управления и радиоэлектроники, 1994. - 144 с.

8. Денисов В.П., Дубинин Д.В. Фазовые радиопеленгаторы: Монография. - Томск: Томский государственный университет систем управления и радиоэлектроники, 2002. - 251 с.

9. ГЛОНАСС. Принципы построения и функционирования / Под ред. А.И. Перова, В.Н. Харисова. - Изд. 4-е, перераб. - М.: Радиотехника, 2010.

10. GNSS Satellite Autonomous Integrity Monitoring (SAIM) using inter-satellite measurements / Xu, H., Wang, J., Zhan, X. // AdvancesinSpaceResearch. - Vol. 47, Issue 7. - April 2011. - P. 1116-1126.

Способ угловой ориентации объекта, по которому принимают сигналы от n навигационных космических аппаратов двумя или более антенно-приемными устройствами, расположенными параллельно одной или двум осям объекта, выделяют сигналы с частотой Доплера, измеряют фазовые сдвиги между парами антенно-приемных устройств и определяют угловое положение объекта за интервал времени измерения, отличающийся тем, что в качестве сигналов с частотой Доплера используют сигналы межспутниковых измерений бортовой аппаратуры навигационных космических аппаратов, а угловое положение объекта определяют за интервал времени, в течение которого объект находится в области радионавигационного поля сигналов межспутниковых измерений бортовой аппаратуры не менее чем от четырех навигационных космических аппаратов.



 

Похожие патенты:

Изобретение относится к радиотехнике, а именно к устройствам обнаружения бытовых предметов при помощи ВЧ-радиоволн. Техническим результатом является обеспечение возможности поиска необходимой метки из множества меток, прикрепленной к объекту поиска.

Изобретение относится к области спутниковой навигации и может быть использовано для определения углового положения объектов в пространстве или на плоскости в условиях воздействия преднамеренных широкополосных помех.

Группа изобретений относится к мобильному комплексному радиотехническому оборудованию приводных радиомаркерных пунктов аэродромных посадочных площадок, включающему в себя приводную радиостанцию на основе средневолновой приемопередающей аппаратуры и высокочастотный маркерный радиомаяк.

Изобретение относится к системам отслеживания перемещения объектов в помещениях. Технический результат заключается в повышении точности и уменьшении затрат энергии.

Изобретение относится к области спутниковой навигации и предназначено для определения углового положения объекта в пространстве и измерения вектора угловой скорости его вращающейся части (например, вращающегося антенно-мачтового устройства на движущемся объекте).

Предлагаемое устройство относится к контрольно-поисковым средствам, а именно к устройствам обнаружения местоположения людей, оказавшихся под завалами, образовавшимися в результате стихийного (землетрясения, торнадо, цунами и др.) или иного бедствия, и поиска взрывчатых и наркотических веществ, и может быть использовано при техногенных авариях, природных катастрофах, террористических актах и при предотвращении опасных для населения акций.

Изобретение относится к области электромагнитного обнаружения, автоматической проверки безопасности и детектирования контрабанды. Адаптивная система обнаружения в соответствии с настоящим изобретением содержит оптическую или инфракрасную камеру, предназначенную для формирования данных изображения, относящихся к области наблюдения, пассивный датчик, предназначенный для приема электромагнитного излучения, активный датчик, предназначенный для испускания и приема электромагнитного излучения, модуль обработки изображения, выполненный с возможностью детектирования присутствия людей и объектов, отличных от людей, в области наблюдения, на основе полученных данных изображения, и модуль управления.

Изобретение относится к области беспроводной передачи данных. .

Изобретение относится к передаче информации, а именно к способу управления устройствами приема и передачи данных в навигационном приемнике. .

Изобретение относится к спутниковой системе определения местоположения (SPS), предназначено для обнаружения и/или оценки многолучевых сигналов и позволяет повысить точность измерения псевдодальности и координат местоположения приемного устройства.

Изобретение относится к системе и способу определения местоположения в подземных горных разработках. Система содержит блок управления, соединенный с машиной, по меньшей мере, два удаленных друг от друга, связанных с блоком управления приемных модуля и идентификационный модуль, предназначенный для ношения шахтером. Причем блок управления выполнен с возможностью определения положения идентификационного модуля. Блок управления выполнен с возможностью запрашивания полномочий шахтера, носящего идентификационный модуль, и в зависимости от положения идентификационного модуля и полномочий шахтера - блокирования или разрешения осуществления функций машины. Способ определения местоположения шахтера под землей, при котором используют связанный с машиной блок управления, связанный, по меньшей мере, с двумя удаленными друг от друга приемными модулями, и идентификационный модуль, носимый шахтером. Причем с помощью блока управления определяют положение идентификационного модуля, запрашивают полномочие шахтера, носящего идентификационный модуль, и в зависимости от положения идентификационного модуля и полномочий шахтера блокируют или разрешают осуществление функций машины. 2 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к области дистанционного управления устройствами, а именно к оцениванию признаков управления устройств (10) дистанционного управления, содержащих камеры (11) для обнаружения световых точек (51, 52) от маяков (31, 32), расположенных в устройствах (20) или рядом с ними, которые должны управляться посредством устройств (10) дистанционного управления с помощью предоставления возможности камерам (11) дополнительно обнаруживать световые точки (61, 62) от не маяков (41, 42). Техническим результатом является повышение точности оценки признаков управления. Для этого процессоры (2) оценивают признаки управления в ответ на информацию, полученную в результате обнаружений световых точек (51, 52, 61, 62). Не маяки (41, 42) содержат источники шума или любые другие источники, отличающиеся от маяков (31, 32). Запоминающие устройства (3) хранят за временной интервал информацию, полученную за обнаружение. Свет, приходящий от маяков (31, 32), может быть модулированным светом и свет, приходящий от не маяков (41, 42), может быть другим светом. Информация может содержать координаты, размеры и яркости световых точек (51, 52, 61, 62) за обнаружение и за временной интервал. Признак управления может содержать положение наведения, расстояние, угол поворота, угол наклона, местоположение, скорость, ускорение, перемещение и/или масштабирование устройства (10) дистанционного управления. 4 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к области спутниковой навигации и может быть использовано для определения углового положения объектов в пространстве или на плоскости в условиях воздействия преднамеренных широкополосных помех. Технический результат заключается в повышении помехоустойчивости угломерной навигационной аппаратуры потребителей. Указанный результат достигается путем компенсации межканальной задержки сигналов, выравнивания группового времени запаздывания и дальнейшего компенсационного цифрового суммирования преднамеренных помех в соответствии с рекуррентным алгоритмом формирования весовых коэффициентов для каждой линии задержки. 5 ил.

Изобретение относится к измерительной технике и может быть использовано в системах радиолокации, навигации, связи для определения местоположения излучателей и синхронизации. Достигаемый технический результат - расширение области применения способа на класс непрерывных радиосигналов. Указанный результат достигается за счет того, что способ включает прием анализируемого радиосигнала на заданном интервале времени и прием опорного радиосигнала, формирование их корреляционного отклика и определение положения его максимума, при этом прием опорного радиосигнала начинают с запаздыванием на абсолютное значение минимально измеряемой задержки, а завершают с опережением на величину максимально измеряемой задержки соответственно относительно начала и окончания приема анализируемого радиосигнала. 2 ил.

Изобретение может быть использовано для определения абсолютных перемещений объектов. Техническим результатом является повышение точности измерения перемещений объекта при наличии препятствий на траектории его движения за счет исключения накопления погрешности при расстановке источников сигнала. При использовании адаптивного способа измерения перемещений, заключающегося в том, что преобразователь устанавливают на объект, используют отдельные источники сигналов с уникальным кодированием и/или формируют группы источников сигнала с уникальным кодированием, расставляют отдельные источники сигналов с уникальным кодированием и/или сформированные группы источников сигнала с уникальным кодированием случайным образом вдоль траектории перемещения объекта на любом расстоянии между любыми двумя последовательно установленными отдельными источниками сигнала с уникальным кодированием и/или между любыми двумя сформированными группами источников сигнала с уникальным кодированием, не превышающем диапазон измерения преобразователя, направляют сигнал на движущийся объект с преобразователем, принимают выходной сигнал с преобразователя о положении отдельных источников сигналов с уникальным кодированием и/или групп источников сигнала с уникальным кодированием, определяют положение объекта. 8 з.п. ф-лы, 2 ил.

Изобретение относится к области телеметрических систем и может использоваться для радиочастотной идентификации объектов военного назначения. Технический результат изобретения заключается в повышении помехоустойчивости и достоверности радиочастотной идентификации объектов военного назначения путем устранения дополнительных каналов приема и явления «обратной работы». Система радиочастотной идентификации объектов военного назначения содержит считыватель 3, датчик 6 и центральное устройство 30 обработки информации. Отличием заявленного изобретения является то, что центральное устройство 30 обработки информации содержит асинхронный детектор 27, фильтр 28 нижних частот, блок 29 регистрации, однополярный вентиль 31, накопитель 32, пороговый блок 33 и линию 34 задержки. 5 ил.

Изобретение относится к космической навигации и может быть использовано в системах получения информации о навигационных параметрах космических аппаратов на геостационарных орбитах относительно геоцентрической системы координат. Технический результат заключается в высокоточном измерении координат и угловой ориентации осей космических аппаратов геостационарных орбит по сигналам бортовой аппаратуры межспутниковых измерений навигационных космических аппаратов ГЛОНАСС. Указанный результат достигается тем, что в качестве сигналов с частотой Доплера используют сигналы межспутниковых измерений бортовой аппаратуры НКА, а угловое положение объекта определяют за интервал времени, в течение которого объект находится в области радионавигационного поля сигналов БАМИ не менее чем от четырех НКА. 3 ил., 1 табл.

Наверх