Генератор высоковольтных импульсов



Генератор высоковольтных импульсов
Генератор высоковольтных импульсов
Генератор высоковольтных импульсов
H03K3/00 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2581016:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Изобретение относится к высоковольтной импульсной технике и может быть использовано для создания наносекундных компактных генераторов. Достигаемый технический результат - уменьшение искажений выходного импульса генератора путем подавления высокочастотных колебаний переходного процесса. Генератор высоковольтных импульсов собран по схеме Аркадьева - Маркса и содержит каскады с конденсаторами и разрядником в каждом каскаде, расположенные в металлическом корпусе, LC-контур, корректирующий форму импульса, нагрузку, при этом корпус содержит дополнительный металлический патрубок, в котором соосно с ним расположены конденсатор, катушка индуктивности и нагрузка, конденсатор выполнен в виде металлического стакана, катушка индуктивности выполнена в виде жесткой цилиндрической спирали. 6 ил.

 

Изобретение относится к высоковольтной импульсной технике и может быть использовано для создания наносекундных компактных генераторов Аркадьева - Маркса с увеличенной длительностью выходных импульсов напряжения.

Одним из способов увеличения длительности импульсов (которая наиболее часто измеряется на половине их высоты) является их коррекция с целью формирования квазипрямоугольных импульсов. Измеренная на полувысоте длительность импульсов прямоугольной формы будет больше, чем у импульсов, например, колоколообразной или треугольной формы.

Известен каскадный генератор высоковольтных импульсов (патент RU №2102834, опубл. 20.01.1998, бюл. №2), в которых последовательно с конденсатором первого каскада включен дополнительный конденсатор. Его полярность обратна полярности конденсатора первого каскада, поэтому непосредственно после срабатывания генератора напряжение этого конденсатора вычитается из выходного напряжения генератора. Одновременно срабатывает разрядник, который включен параллельно дополнительному конденсатору через катушку индуктивности и вызывает перезарядку дополнительного конденсатора на противоположную полярность. В процессе разрядки конденсаторов генератора на нагрузку суммарное напряжение на остальных конденсаторах снижается, однако дополнительный конденсатор в результате перезарядки дает свой вклад в общее напряжение и затягивает вершину импульса. В результате импульс приобретает форму, близкую к прямоугольной, и имеет длительность большую, чем у исходного импульса.

Данный генератор создан для генерации импульсов микросекундного диапазона и неприменим для генераторов наносекундных импульсов. Наличие крутого фронта выходных импульсов в наносекундных генераторах приводит к появлению переходного колебательного процесса и разделению выходных импульсов на несколько коротких всплесков напряжения. При этом длительность импульса определяется по длительности первого всплеска напряжения, длительность которого значительно меньше длительности основного импульса. Параметры переходного процесса зависят от паразитных емкостей и индуктивностей элементов только последних каскадов генератора Аркадьева - Маркса, поэтому включение дополнительного конденсатора с перезарядкой или другого элемента внутри генератора не могут существенно повлиять на форму и длительность выходного импульса.

Наиболее близким к заявляемому является генератор высоковольтных импульсов (Крастелев Е.Г., Потоцкий А.П., Масленников СП., Школьников Э.Я. Мощные электроимпульсные системы. Часть 2. Учебное пособие. - Москва: МИФИ, 2008), содержащий металлический корпус, в котором размещены каскады с конденсаторами и разрядником в каждом каскаде, а также содержащий корректирующий двухзвенный LC-контур, либо LC-контур, включенный параллельно генератору. Контур подключен к выходному каскаду генератора и позволяет получать выходные импульсы микросекундного диапазона квазипрямоугольной формы.

Недостатком данного генератора является то, что в корректирующем контуре используются промышленно выпускаемые конденсаторы, которые обладают большими паразитными индуктивностями. Применение такого контура в генераторах с наносекундными фронтами не позволит подавить колебания, вызванные высокочастотными переходными процессами. Кроме того:

- применение промышленных конденсаторов создает трудность подбора емкостей конденсаторов контуров из имеющейся номенклатуры высоковольтных энергоемких конденсаторов;

- конденсаторы и катушки индуктивности LC-контура имеют большие габариты и имеют установочную энергоемкость ~20% от энергоемкости генератора, но при этом не используются как накопители энергии.

Задачей данного изобретения является создание компактного наносекундного генератора высоковольтных импульсов с увеличенной длительностью.

Техническим результатом является подавление высокочастотных колебаний переходного процесса, возникающего на переднем фронте выходных наносекундных импульсов напряжения генератора, а также снижение габаритов устройства.

Указанный технический результат достигается тем, что по сравнению с известным генератором высоковольтных импульсов, содержащим металлический корпус, в котором размещены каскады с конденсаторами и разрядником в каждом каскаде, а также содержащим LC-контур, корректирующий форму импульса, при этом контур содержит конденсатор и катушку индуктивности, генератор через LC-контур подключен к нагрузке, новым является то, что корпус содержит дополнительный металлический патрубок, в котором соосно с ним расположены конденсатор и катушка индуктивности LC-контура, причем конденсатор выполнен в виде металлического стакана с конструктивной емкостью относительно внутренней поверхности патрубка, катушка индуктивности выполнена в виде жесткой цилиндрической спирали, диаметр которой, по меньшей мере, в три раза меньше внутреннего диаметра стакана, катушка включена между выходным каскадом генератора и нагрузкой, дно стакана соединено с местом подключения катушки к нагрузке, катушка по своей длине не более чем наполовину размещена внутри стакана.

Размещение элементов LC-контура (конденсатора и катушки индуктивности) в дополнительном металлическом патрубке позволяет:

- снизить габариты генератора благодаря возможности подбора оптимального соотношения диаметров патрубка и элементов LC-контура с целью обеспечения их плотной компоновки;

- экранировать элементы LC-контура от каскадов генератора и тем самым уменьшить влияние переходных процессов в генераторе на форму выходного импульса.

При указанном соединении конденсатора и катушки формируется Г-образный сглаживающий фильтр, который включен последовательно с ускорительной трубкой и препятствует прохождению в нее высокочастотных колебаний.

Выполнение конденсатора LC-контура с конструктивной емкостью относительно внутренней поверхности патрубка позволяет:

- повысить ресурс конденсатора благодаря применению жидкой или газовой изоляции, которая обладает свойством самовосстановления электропрочности;

- обеспечить оптимальные габариты конденсатора с целью обеспечения плотной компоновки LC-контура;

- снизить паразитную индуктивность конденсатора и вносимые ей искажения выходного импульса.

Выполнение катушки индуктивности LC-контура в виде жесткой цилиндрической спирали без несущего каркаса позволяет значительно повысить электропрочность, ресурс катушки и снизить ее габариты.

Ограничение диаметра катушки связано с тем, что при малом диаметре она обладает преимущественно индуктивным сопротивлением, которое растет с увеличением частоты приложенного к ней напряжения. Это обеспечивает эффективное подавление высокочастотных колебаний LC-контуром. При увеличении диаметра катушка приобретает заметные свойства спиральной линии и начинает передавать на ускорительную трубку импульсы с крутым фронтом, которые LC-контур пропускать не должен.

Частичное расположение катушки внутри стакана-конденсатора позволяет сократить длину LC-контура и, следовательно, габариты генератора. Однако расположение катушки более чем наполовину внутри стакана приводит к активному взаимодействию паразитных емкостей между катушкой и стаканом, что приводит к искажению выходного импульса генератора.

Таким образом, в данном изобретении использование перечисленных отличительных признаков приводит к реализации указанного технического результата.

На фиг. 1 показана конструкция генератора, где

1 - каскадный генератор импульсных напряжений (ГИН) Аркадьева - Маркса;

2 - корпус генератора;

3 - патрубок;

4 - ускорительная трубка;

5 - катушка индуктивности;

6 - стакан, образующий конденсатор LC-контура с конструктивной емкостью относительно внутренней поверхности патрубка 3;

7 - высоковольтный шток.

На фиг. 2 показана эквивалентная схема заявляемого генератора, где

L - зарядные катушки индуктивности ГИН;

С - конденсаторы каскадов ГИН;

Ρ - разрядники каскадов ГИН;

Lк - катушка LC-контура;

Ск - конденсатор LC-контура;

Rн - нагрузка (ускорительная трубка).

На фиг. 3 показан расчетный идеализированный импульс выходного напряжения ГИН при отсутствии переходного процесса.

На фиг. 4, 5, 6 приведены экспериментально полученные осциллограммы импульсов выходного напряжения ГИН на 1 MB.

На фиг. 4 показан импульс выходного напряжения ГИН при наличии переходного процесса без LC-контура.

На фиг. 5 показан импульс выходного напряжения ГИН с LC-контуром при отношении диаметра катушки индуктивности 7 к диаметру стакана, равном 1.

На фиг. 6 показан импульс выходного напряжения ГИН с LC-контуром при отношении диаметра катушки индуктивности 7 к диаметру стакана, равном 0.3.

Заявляемый генератор, изображенный на фиг. 1, содержит ГИН Аркадьева - Маркса 1, расположенный в металлическом корпусе 2. На боковой поверхности корпуса выполнен металлический патрубок 3, в котором располагаются ускорительная трубка 4 и элементы LC-контура (катушка индуктивности 5 и конденсатор, образованный стаканом 6 и патрубком 3). Катушка индуктивности 5 одним концом подключена к последнему каскаду ГИН, другим подключена к трубке 4 через шток 7.

Эквивалентная схема заявляемого генератора показана на фиг. 2. Генератор работает следующим образом. После срабатывания каскадных разрядников Ρ конденсаторы С включаются в последовательную цепочку, которая разряжается на нагрузку Rн. В случае если паразитные индуктивности и емкости отсутствуют, нагрузка чисто активная и LC-контур не подключен, импульс напряжения на нагрузке будет представлять собой классический экспоненциальный RC-разряд (фиг. 3). В реальности наличие паразитных параметров приводит к появлению переходного процесса с высокочастотными колебаниями, разделяющих выходной импульс на несколько коротких всплесков напряжения (фиг. 4). Катушка 5 и стакан 6 на фиг. 1 и соответствующие им индуктивность Lк и емкость Ск образуют Г-образный сглаживающий фильтр (фиг. 2), который служит для подавления высокочастотных колебаний переходного процесса.

Заявляемая конструкция корректирующего LC-контура была испытана в компактном наносекундном ускорителе электронов на напряжение 1 MB с емкостью разрядного контура 85 пФ. При этом выяснилось, что форма импульса тока электронов за окном трубки в большой степени зависит от соотношения диаметров катушки 5 и стакана 6. При равных диаметрах катушка 5 работает как спиральная линия, по которой на нагрузку передаются импульсы с крутым фронтом, что соответствует наличию высокочастотных колебаний; в этом случае сглаживания выходного импульса практически не происходит (фиг. 5). Хорошие результаты были получены с катушкой, диаметр которой был в три раза меньше внутреннего диаметра стакана (фиг. 1). Удаление поверхности катушки 5 от внутренней поверхности патрубка 3 позволило практически устранить влияние распределенной емкости катушки, в результате чего катушка стала работать практически как чистая индуктивность, обеспечивающая эффективное подавление высоких частот. Расположение катушки 5 наполовину внутри стакана 6 позволило заметно сократить длину патрубка 3. Однако еще большее заглубление снова приводило к проявлению волновых свойств катушки и искажению импульса.

На заявляемом генераторе с помощью описанного LC-контура были получены импульсы электронов, типичная форма которых показана на фиг. 6. Если длительность импульсов на полувысоте без LC-контура (фиг. 4) составляла 3.5 нс, то с применением контура (фиг. 6) длительность удалось увеличить до 8 нс, т.е. в 2.3 раза. Корректирующий контур составляет всего около 5% от общего объема генератора и пригоден для использования в компактных наносекундных ГИН Аркадьева - Маркса.

Генератор высоковольтных импульсов собран по схеме Аркадьева - Маркса и содержит каскады с конденсаторами и разрядником в каждом каскаде, расположенные в металлическом корпусе, LC-контур, корректирующий форму импульса, и нагрузку, при этом LC-контур содержит конденсатор и катушку индуктивности, выходной каскад генератора высоковольтных импульсов через LC-контур подключен к нагрузке, отличающийся тем, что корпус содержит дополнительный металлический патрубок, в котором соосно с ним расположены конденсатор, катушка индуктивности LC-контура и нагрузка, причем конденсатор выполнен в виде металлического стакана с конструктивной емкостью относительно внутренней поверхности патрубка, катушка индуктивности выполнена в виде жесткой цилиндрической спирали, диаметр которой по меньшей мере в три раза меньше внутреннего диаметра стакана, катушка индуктивности включена между выходным каскадом генератора высоковольтных импульсов и нагрузкой, дно стакана соединено с местом подключения катушки к нагрузке, катушка по своей длине не более чем на половину размещена внутри стакана.



 

Похожие патенты:

Группа изобретений относится к импульсной технике и может быть использована для систем питания мощных лазеров. Техническим результатом является формирование импульсов напряжения с высокой частотой повторения импульсов.

Изобретение относится к импульсной высоковольтной технике и может быть использовано в составе высоковольтного оборудования. Сущность изобретения: корпус генератора импульсных напряжений, содержащий аппаратуру генератора импульсных напряжений, заполненный диэлектрической жидкостью, выполнен в виде герметичной емкости, на наружной поверхности которой герметично установлены два снабженных обратными клапанами компенсационных бачка, сопряженных с внутренним объемом корпуса и содержащих герметичные газовые полости и гибкие выпуклые мембраны, отделяющие эти полости от полостей, заполненных диэлектрической жидкостью.

Генератор Аркадьева-Маркса относится к высоковольтной импульсной технике и может быть использован в ускорителях заряженных частиц или других импульсных сильноточных устройствах. Сущность изобретения заключается в том, что по сравнению с известным генератором Аркадьева-Маркса, содержащим несколько каскадов с конденсаторами и разрядником в каждом каскаде, а также импульсный зарядный трансформатор, все элементы генератора расположены в металлическом герметичном корпусе, новым является то, что разрядник первого каскада выполнен управляемым и снабжен системой запуска, корпус генератора разделен на две секции с фланцами, в одной секции расположен импульсный зарядный трансформатор и система запуска, каскады генератора установлены в другой секции и закреплены на металлической пластине, причем пластина зажата между смежными фланцами секций корпуса до смыкания торцевых прилегающих поверхностей пластины и фланцев и имеет отверстия, в которых с радиальным зазором относительно краев отверстий установлены диэлектрические держатели высоковольтных выводов импульсного трансформатора и системы запуска. Техническим результатом является повышение качества сборки и надежности работы генератора Аркадьева-Маркса при сохранении масс-габаритных характеристик.

Изобретение относится к импульсной и вычислительной технике и может использоваться при построении самосинхронных комбинационных и вычислительных устройств, систем цифровой обработки информации.

Изобретение относится к технике электроракетных плазменных двигательных установок (ЭРПДУ) и может быть использовано для квалификационных испытаний составных частей ЭРПДУ - плазменных двигателей (ПД) и систем электропитания и управления (СПУ) на устойчивость к воздействию электростатических разрядов, обусловленных объемной электризацией космических аппаратов.

Изобретение относится к электронике и может быть использовано в системах управления (СУ) для контроля прохождения команд в коммутационных схемах. Технический результат заключается в повышении надежности и помехозащищенности схемы.

Изобретение относится к области автоматики и вычислительной техники, криптографического кодирования и передачи информации и может быть использовано для построения генераторов случайных последовательностей импульсов большой неповторяющейся длительности.

Изобретение относится к средствам создания источников вторичного электропитания (ИВЭП) аппаратуры систем управления объектами ракетно-космической и авиационной техники, а также робототехническими комплексами.

Изобретение относится к импульсной технике и может быть использовано в импульсных схемах различного назначения. Достигаемый технический результат - повышение надежности работы при возможности многократного повышения частоты импульсов.

Изобретение относится к способам управления зарядными устройствами накопительных конденсаторов и может быть использовано в электрофизических установках с емкостными накопителями энергии. Предложено в способе управления зарядными устройствами емкостного накопителя энергии на начальной стадии зарядки рабочую частоту изменять в функции текущего значения напряжения емкостного накопителя энергии, а на основной стадии выбирать ее величину исходя из требуемого максимального значения мощности на цикле зарядки.

Изобретение относится к управлению энергопотреблением в электронной схеме, в частности к управлению рабочими точками тактовой частоты и источника напряжения в электронной схеме. Достигаемый технический результат - снижение энергопотребления. Тактовый сигнал для электронной схемы генерируют путем генерации на основании того, какой из множества случаев прикладного использования в настоящее время активен, первый сигнал, который указывает первую выбранную из множества рабочих точек тактового сигнала, на основании текущего требования к быстродействию электронной схемы генерируют второй сигнал, который указывает вторую выбранную из рабочих точек тактового сигнала, на основании того, какой из первого и второго сигналов связан с рабочей точкой более высокой тактовой частоты, генерируют третий сигнал, который указывает, какая рабочая точка тактового сигнала и, возможно, уровня напряжения должна быть активной, третий сигнал используют для управления генерацией тактового сигнала. 2 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к импульсной технике и может использоваться для подачи высоковольтных импульсов на различные приборы и устройства. Техническим результатом является увеличение надежности блока электронных ключей за счет равномерного распределения напряжения, прикладываемого между отдельными ключевыми элементами. Блок электронных ключей для коммутации высокого напряжения на нагрузке содержит N ключей на базе полевых или биполярных транзисторов с изолированным затвором (БТИЗ), соединенных последовательно друг с другом и помещенных в корпус, при этом вход блока электронных ключей подключен к высоковольтному источнику питания или к нагрузке, а выход подключен к нагрузке или ее низкопотенциальному выводу, при этом параллельно каждому электронному ключу между стоком и истоком полевых транзисторов или коллектором и эмиттером для БТИЗ каждого i-го транзистора включен компенсирующий конденсатор Скомп, а величина его емкости определяется в соответствии с заданным соотношением. 3 ил.

Использование: для формирования высоковольтных импульсов. Сущность изобретения заключается в том, что в генератор импульсов введено, по крайней мере, одно LC-звено, состоящее из индуктивного накопителя и конденсатора, при этом индуктивный накопитель LC-звена одним выводом соединен с нагрузкой и к точке их соединения подключен диод, а другим выводом индуктивный накопитель LC-звена соединен со второй индуктивностью и к точке их соединения одним выводом подключен конденсатор LC-звена, соединенный другим выводом с землей. Технический результат: уменьшение потерь мощности в резонансном контуре и увеличение амплитуды выходного импульса. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и может быть использовано в электронных устройствах для формирования импульсов напряжения. Достигаемый технический результат - возможность получения импульсов напряжения с заданными параметрами в широком диапазоне по амплитуде от нуля до максимума амплитуды питающего напряжения и заданной длительности импульса. Генератор импульсов переменной амплитуды содержит источник переменного напряжения, диод, конденсатор, нагрузочное сопротивление, при этом между последовательно соединенными с источником переменного напряжения диодом и нагрузочным сопротивлением подключен транзистор, выполняющий функцию ключа, а параллельно источнику переменного напряжения и диоду подключены конденсатор и блок управления транзистором, состоящий из компаратора, источника опорного напряжения, триггера и таймера, при этом первый вход компаратора соединен с положительным выводом конденсатора, второй его вход соединен с выходом источника опорного напряжения, выход компаратора соединен со входом триггера, выход которого соединен с базой транзистора и таймером, а вход сброса триггера соединен с выходом таймера. 2 ил.

Изобретение относится к импульсной технике и может быть использовано в импульсных схемах различного назначения, питаемых от низковольтных источников. Достигаемый технический результат - обеспечение самозапуска генератора и возможность использования низковольтных источников питания. Генератор импульсов на лавинном транзисторе с использованием S-образной вольтамперной характеристики со стороны коллектора содержит накопительный конденсатор, первый резистор, первый диод, включенный встречно-параллельно переходу эмиттер-база лавинного транзистора, второй диод, компенсирующий конденсатор, второй резистор и трансформаторный дроссель. 2 ил.

Изобретение относится к области цифровой техники и может быть использовано для формирования широтно-импульсной последовательности с заданной скважностью с высокой точностью и не зависящей от изменения частоты информационного сигнала. В основу изобретения поставлена задача получения широтно-импульсной последовательности с заданной скважностью с высокой точностью при изменении частоты информационного сигнала. Сравнение предлагаемого изобретения с уже известными способами и прототипом показывает, что заявляемый способ проявляет новые технические свойства, заключающиеся в получении широтно-импульсной последовательности с заданной скважностью, причем значение скважности остается неизменной при изменении частоты информационного сигнала. Такой способ позволяет задавать скважность широтно-импульсной последовательности с более высокой точностью. Использование индикатора позволяет однозначно контролировать частоту и заданное значение скважности широтно-импульсной последовательности. Устройство для формирования широтно-импульсной последовательности с изменяемой частотой повторения и заданной скважностью состоит из высокостабильного опорного генератора, микроконтроллера, генератора, управляемого напряжением, фазового детектора, индикатора, делителя с переменным коэффициентом деления. Микроконтроллер по заданному алгоритму программного кода управляет подключенными к нему устройствами. Преимущество данного способа формирования широтно-импульсной последовательности заключается в возможности получения широтно-импульсной последовательности с заданной скважностью при изменении частоты входного информационного сигнала.

Изобретение относится к электронной технике. Технический результат - уменьшение и подавление на выходе паразитного сигнала, значительное увеличение уровня изоляции переключателя в выключенном состоянии при сохранении малых потерь во включенном состоянии за счет вариантов подключения коммутирующих и компенсирующих МОП транзисторов. Переключатель с высокой изоляцией по первому варианту содержит генератор дифференциального сигнала, выходные порты, две пары МОП транзисторов, коммутирующих сигнал (2-5), и одну пару МОП транзисторов, компенсирующих сигнал 7, 6, причем все МОП транзисторы выполнены с одинаковой шириной канала. Переключатель с высокой изоляцией по второму варианту содержит генератор дифференциального сигнала, выходные порты, две пары МОП транзисторов, коммутирующих сигнал (2-5), при этом они выполнены с одинаковой шириной канала, два МОП транзистора, компенсирующих сигнал (6, 7), причем МОП транзисторы, коммутирующие и компенсирующие сигналы, выполнены с различной между собой шириной канала. 2 н.п. ф-лы, 4 ил.

Изобретение относится к зарядным устройствам емкостных накопителей энергии и может быть использовано в высоковольтных электрофизических установках большой мощности с высоким уровнем накапливаемой энергии. В зарядное устройство емкостного накопителя энергии, содержащее входной трехфазный мостовой выпрямитель, LC-фильтр, зарядный преобразователь с дозирующими конденсаторами, датчик выходного напряжения, введен дополнительный конденсатор фильтра, транзистор, зашунтированный обратным диодом и резистором, драйвер управления транзистором, RS-триггер, логический элемент 2И-НЕ, два компаратора, а также источник задающего напряжения и датчик напряжения обратного диода. Введение этих элементов позволяет повысить надежность работы зарядного устройства и расширить его функциональные возможности. 4 ил.

Использование: для питания импульсных источников света, искровых камер, лазеров и ускорителей. Сущность изобретения заключается в том, что первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора, соединенных последовательно, при этом один вывод внешнего накопительного конденсатора соединен с общей шиной, а другой подсоединен к выводу дополнительного источника зарядного напряжения с полярностью, противоположной полярности основного источника зарядного напряжения. Технический результат: увеличение максимума выходного напряжения генератора и энергии без увеличения числа ступеней умножения. 2 ил.

Предлагаемое изобретение относится к области измерительной техники и предназначено для преобразования напряжения в частоту импульсов. Достигаемый технический результат - уменьшение неравномерности расстановки выходных импульсов во времени и расширение диапазона входных напряжений, в котором отсутствует эффект слипания выходных импульсов. Преобразователь напряжения в частоту импульсов содержит интегратор, переключатель, источник образцового напряжения, компаратор, источник напряжения смещения, генератор тактовых импульсов, формирователь импульсов, первый вход которого соединен с выходом генератора тактовых импульсов, а второй вход связан с выходом компаратора, а выход соединен с входом управления переключателя. 4 ил.
Наверх