Частотный детектор

Изобретение относится к области радиотехники и может быть использовано для построения частотных детекторов. Достигаемый технический результат - увеличение крутизны линейного участка детекторной характеристики. Частотный детектор содержит первый и второй амплитудные детекторы, первый и второй конденсаторы, первую и вторую катушки индуктивности, первый резистор, второй резистор. 4 ил.

 

Изобретение относится к области радиотехники и может быть использовано для построения частотных детекторов с расширенным участком линейности и увеличенной крутизной детекторной характеристики.

Известны устройства детектирования частотно-модулированных колебаний, описанные в источниках (смотреть, например:

И.Н. Амиантов, Ю.Н. Антонов-Антипов, В.П. Васильев и др. - «Радиоприемные устройства, под общ. редакцией В.И. Сифорова, «Советское радио», Москва, 1974, с. 321-330;

B.C. Андреев. - «Теория нелинейных электрических цепей», Москва, «Связь», 1972, с. 105-110;

Н.И. Чистяков, В.М. Сидоров. - «Радиоприемные устройства», под общ. редакцией Н.И. Чистякова, «Связь», Москва, 1974, с. 240-246).

Наиболее близким по технической сущности, то есть прототипом, является устройство, описанное в учебнике для вузов «Радиоприемные устройства», Н.Н. Фомин, Н.Н. Буга, О.В. Головин и др. под редакцией Н.Н. Фомина, Москва, Горячая линия - Телеком, 2007. В данном источнике на странице 209 (рис.5.49) приведена схема прототипа (фиг.1), состоящая из двух встречно включенных схем, каждая из которых содержит параллельный колебательный контур и последовательный амплитудный детектор.

Недостатками частотного детектора-прототипа являются малая крутизна S d = Δ U Δ Ω , где ΔU - перепад напряжения в интервале частот (ΔΩ), и низкая линейность - δH=ΔН детекторной характеристики, здесь ΔH = отклонение характеристики от линейного закона.

Задача, на решение которой направлено заявляемое устройство, состоит в увеличении крутизны линейного участка детекторной характеристики, за счет замены параллельных контуров в одном плече звеном фильтра ВЧ, в другом - звеном фильтра НЧ вторых порядков.

Технический результат достигается тем, что устройство - частотный детектор, содержащее первый конденсатор, подключенный первым выводом к первому зажиму входа устройства, параллельно включенные первую катушку индуктивности и первый резистор, которые подключены первым своим соединением к общей шине, а вторым - к первому амплитудному детектору; второй конденсатор и второй резистор, которые первым соединение подключены к обшей шине, а вторым их соединением - ко второму амплитудному детектору; выходы детекторов (зажимы 3, 4) являются выходами устройства; вторую катушку индуктивности, подключенную первым выводом ко второму зажиму входа устройства, отличающееся тем, что второй вывод первого конденсатора подключен в точку соединения первого резистора, первой катушки индуктивности и входа первого амплитудного детектора, а второй вывод второй катушки индуктивности подключен в точку соединения второго резистора, второго конденсатора и входа второго амплитудного детектора.

Целью изобретения является повышение крутизны и увеличение линейности рабочего участка детекторной характеристики, что позволит повысить помехозащищенность сигналов с частотной модуляцией. Цель достигается изменением цепей, включенных перед амплитудными детекторами.

Сущность изобретения состоит в том, что за счет включения звеньев второго порядка ФВЧ и ФНЧ вместо встречно включенных параллельных колебательных контуров (полосовых фильтров) происходит увеличение напряжения на входе амплитудных детекторов в Q-добротность раз. Принципиальная схема заявляемого частотного детектора приведена на фиг. 2.

Операторная передаточная функция верхней (фиг. 2) цепи (ФВЧ) до первого амплитудного детектора имеет вид

где:

Операторная передаточная функция нижней (фиг. 2) цепи (ФНЧ) до второго амплитудного детектора имеет вид

где: ω н 2 = 1 L 2 C 2 ; ω н Q 2 = G 2 C 2 .

Комплексные передаточные функции верхней и нижней цепей будут равны, соответственно:

Если числитель и знаменатель выражения (3) разделить на число J ω ω B Q 1 , то равенство не изменится

Если числитель и знаменатель выражения (4) разделить на число J ω ω H Q 1 , то получим

Частоты экстремумов частотных характеристик в верхней и нижней цепи смещены относительно средней частоты ω 0 2 = ω B ω H на величину ±Δω0. Положим, что верхняя цепь имеет максимум на частоте ωв0+Δω0, нижняя цепь имеет максимум на частоте ωн0-Δω0. Тогда КПФ верхней цепи примет вид

Будем считать, что на частотах, близких частоте ω0, выполняются условия Δ ω 0 2 / ω 0 2 0 , ΔωC=ω-ω0 ω+ω0≈2ω0, тогда

Соблюдая последовательность записи и их логику, аналогично определим КПФ нижней (фиг. 2) цепи.

Будем считать, что на частотах, близких частоте ω0, выполняются условия Δ ω 0 2 / ω 0 2 0 , ΔωC=ω-ω0 ω+ω0≈2ω0, ω0≈ωH тогда

Напряжение на выходе частотного детектора пропорционально разности модулей от выражений (11) и (13) и равно

где ξ0=2·Q·Δω00 - обобщенная расстройка максимальных значений АЧХ относительно частоты ω0;

ξ=2·Q·ΔωC0 - обобщенная расстройка входного колебания;

K - коэффициент детектирования амплитудного детектора.

Тогда детекторная характеристика заявляемого частотного детектора будет определена выражением:

В [Л.1] на станицах 326-328 изложен анализ частотного детектора с расстроенными контурами, где его детекторная характеристика - γ′(ξ,ξ0) определена как

где: ξ0=2·Q·Δω00 - обобщенная расстройка максимальных значений АЧХ относительно частоты ω0;

ξ=2·Q·ΔωC0 - обобщенная расстройка входного колебания.

Зависимость функции (16) от расстройки ξ является уравнением характеристики в безразмерных координатах. Она представлена в виде семейства кривых на фиг. 3, симметрична относительно начала координат (ξ0=0) и ее экстремумы расположены в точках ξмакс=±ξ0.

Отношение выражений (15) и (16) при прочих равных обобщенных расстройках равно

Следовательно, в схеме заявляемого частотного детектора напряжение сигнала на входе амплитудного детектора в добротность раз больше, по сравнению с частотным детектором с двумя расстроенными контурами.

Расчет детекторных характеристик заявляемого частотного детектора (γ(ξ)) и частотных детекторов с двумя расстроенными контурами (γ1(ξ)) для трех случаев расстройки (ξ0=1, ξ 0 = 2 и ξ0=2) приведены на фиг. 4 (приводится верхняя часть характеристики).

Нетрудно видеть увеличение амплитуды в предлагаемом устройстве при одной и той же неравномерности в 2 раза (Q=2).

Таким образом, при включении за входными клеммами 1 и 2, соответственно, звеньев второго порядка ФВЧ и ФНЧ, а за ними относительно общей шины, - амплитудных детекторов, выходы которых являются выходами частотного детектора, происходит увеличение напряжения пропорционально добротности полюса в цепях второго порядка на выходе детектора, то есть имеем повышение крутизны детекторной характеристики.

Расчет величин параметров элементов ведется решением задачи аппроксимации для заданных условий.

Возможность достижения положительного эффекта от использования данного изобретения состоит в повышении крутизны детекторной характеристики, что повышает коэффициент детектирования, а следовательно, помехозащищенность сигналов с частотной модуляцией

На чертеже (фиг. 1) представлена принципиальная схема устройства, где обозначено: 1 - первый вход, 2 - второй вход, 3 - первый выход, 4 - второй выход и 5 - общая шина частотного детектора; R1 - первый и R2 - второй резистор, С1 - первый и С2 - второй конденсаторы, L1 - первая и L2 - вторая катушки индуктивности и АД1 - первый и АД2 - второй амплитудные детекторы.

Входом устройства являются левые зажимы 1 и 2 последовательно включенные им, соответственно, С1 - первый конденсатор, AД1 - первый амплитудный детектор и выходной зажим 3 устройства; L2 - вторая катушка индуктивности, АД2 - второй амплитудный детектор и выходной зажим 4 устройства, общая шина 5 устройства соединена через параллельно включенные R1 - первый резистор и L1 - первую катушку индуктивности с точкой включения С1 - первого конденсатора и входом АД1 - первого амплитудного детектора, а через параллельно включенные R2 - второго резистора С2 - второго конденсатора с точкой соединения L2 - второй катушки индуктивности и входом АД2 - второго амплитудного детектора.

Частотный детектор, содержащий первый конденсатор, подключенный первым выводом к первому зажиму входа устройства, параллельно включенные первую катушку индуктивности и первый резистор, которые подключены первым своим соединением к общей шине, а вторым - к первому амплитудному детектору, второй конденсатор и второй резистор, которые первым соединением подключены к обшей шине, а вторым их соединением - ко второму амплитудному детектору, выходы детекторов являются выходами устройства, вторую катушку индуктивности, подключенную первым выводом ко второму зажиму входа устройства, отличающийся тем, что второй вывод первого конденсатора подключен в точку соединения первого резистора, первой катушки индуктивности и входа первого амплитудного детектора, а второй вывод второй катушки индуктивности подключен в точку соединения второго резистора, второго конденсатора и входа второго амплитудного детектора.



 

Похожие патенты:

Изобретение относится к технике радиосвязи, в частности к фазоразностным манипуляторам с двукратной фазовой манипуляцией, и может быть использовано в мощных передатчиках в аппаратуре передачи данных.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации и частотной модуляции высокочастотных сигналов. Техническим результатом изобретения является генерация и частотная модуляция высокочастотного сигнала с увеличенным линейным участком частотной модуляционной характеристики при использовании одного нелинейного элемента.

Изобретение относится к радиотехнике и может быть использовано в системах подвижной радиосвязи. Достигаемый технический результат - сокращение полосы занимаемых частот при увеличении отношения сигнал-шум и увеличении устойчивости к помехам.

Изобретение относится к области автоматики и может использоваться при автоматизации технологических процессов. Достигаемый технический результат - повышение надежности преобразования напряжения в частоту импульсов путем диагностирования полярности подключения его выходных клемм к приемнику информации.

Устройство относится к области электронной обработки сигналов и предназначено для использования в радиоприемных системах. Техническим результатом изобретения является обеспечение возможности однозначного обнаружения модуляции несущей частоты импульсов импульсной последовательности.

Устройство относится к области электронной обработки сигналов и предназначено для использования в радиоприемных системах. Достигаемый технический результат - обеспечение возможности обнаружения модуляции начальной фазы импульсов импульсной последовательности путем определения фаз взаимокорреляционной и автокорреляционной функций импульсов упомянутой входной последовательности.

Изобретение относится к области радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и может быть использовано для обеспечения амплитудной, фазовой и частотной модуляции.

Изобретение относится к областям радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и может быть использовано для обеспечения амплитудной, фазовой и частотной модуляции.

Изобретение относится к областям радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и может быть использовано для обеспечения амплитудной, фазовой и частотной модуляции.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации и частотной модуляции с увеличенным линейным участком частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента. Технический результат изобретения заключается в увеличении квазилинейного участка частотной модуляционной характеристики. Способ генерации и частотной модуляции высокочастотных сигналов отличается тем, что четырехполюсник выполняют резистивным, нагрузку выполняют в виде первого двухполюсника с комплексным сопротивлением, в качестве цепи внешней обратной связи используют произвольный четырехполюсник, последовательно подключенный к трехполюсному нелинейному элементу, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включают между введенным вторым двухполюсником с комплексным сопротивлением и входом резистивного четырехполюсника, к выходу которого подключают нагрузку, условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования выполняют при квазилинейной зависимости частоты генерации от амплитуды управляющего сигнала. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы. Технический результат изобретения заключается в увеличении линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника. Способ генерации и частотной модуляции высокочастотных сигналов отличается тем, что четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный четырехполюсник, подключенный к трехполюсному нелинейному элементу по параллельно-последовательной схеме, трехполюсный нелинейный элемент и цепь обратной связи как единый узел каскадно включают между выходом резистивного четырехполюсника и нагрузкой, нагрузку выполняют в виде первого двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключают второй двухполюсник с комплексным сопротивлением, имитирующим сопротивление источника сигнала генератора в режиме усиления, условия возбуждения в виде баланса амплитуд и баланса фаз и условия согласования выполняют при квазилинейной зависимости частоты генерации от амплитуды управляющего сигнала. 2 н.п. ф-лы, 3 ил.

Изобретения относятся к области радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и могут быть использованы для создания устройств генерации и частотной модуляции. Технический результат изобретений заключается в увеличении линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника. Способ генерации и частотной модуляции высокочастотных сигналов отличается тем, что четырехполюсник выполняют резистивным, в качестве цепи внешней обратной связи используют произвольный четырехполюсник, параллельно подключенный к трехполюсному нелинейному элементу, который с цепью обратной связи включают как единый узел каскадно между выходом резистивного четырехполюсника и нагрузкой. Нагрузку выполняют в виде двухполюсника с комплексным сопротивлением, к входу резистивного четырехполюсника в поперечную цепь подключают второй двухполюсник с комплексным сопротивлением, условия возбуждения и условия согласования выполняют при квазилинейной зависимости частоты генерации от амплитуды управляющего сигнала за счет выбора частотных зависимостей мнимых составляющих сопротивлений источника сигнала. 2 н.п. ф-лы, 3 ил.
Наверх