Способ вывода дальнобойной ракеты в зону захвата цели головкой самонаведения и система наведения дальнобойной ракеты

Предлагаемая группа изобретений относится к области управляемых самонаводящихся ракет с аэродинамическим автоколебательным рулевым приводом. Повышение точности вывода ракет в зону захвата головкой самонаведения излучения от целей, расположенных на больших дальностях, и, следовательно, повышение вероятности поражения таких целей достигается за счет использования на участке, предшествующем участку самонаведения, такого же закона управления, как и при наведении ракеты на конечном участке самонаведения, на котором используется метод пропорционального сближения. В способе вывода дальнобойной ракеты в зону захвата цели головкой самонаведения, включающем запуск ее на заданную высоту и последующее планирование на цель под действием подаваемой на рулевой привод в вертикальном канале управления команды “вверх” до захвата цели головкой самонаведения, запуск ракеты осуществляют по баллистической траектории с заарретированными рулями, разарретирование рулей производят с задержкой по времени, определенной предварительно из условия достижения ракетой заданной высоты, а вывод ракеты в зону захвата цели головкой самонаведения осуществляют методом пропорциональной навигации при достижении ракетой заданной программной дальности до цели. Предлагаемая система наведения дальнобойной ракеты содержит на командном пункте блок приема данных целеуказания, систему воздушного целеуказания, вычислитель, систему топопривязки, видеомонитор, радиолокационную станцию с фазированной антенной решеткой, каналами пеленгации ракет, каналами передачи команд управления и блоком управления лучом, блок синхронизации и кодирования, блок констант, блок вычисления угловой скорости линии ракета - цель и блок подключения команд управления, блок вычисления угловых координат линии ракета - цель и дальности между ракетой и целью, а на ракете - головку самонаведения, переключатель команд, аппаратуру управления и автоколебательный рулевой привод, радиоответчик, приемный модуль, дешифратор команд управления, блок временной задержки и блок арретирования рулей рулевого привода, фиксирующий рули неподвижно в положении, при котором плоскость рулей параллельна продольной оси ракеты. Технический результат - увеличение дальности стрельбы дальнобойной ракетой. 2 н.п. ф-лы, 4 ил.

 

Предлагаемая группа изобретений относится к военной технике, в частности к системам управляемого оружия и ракетной, артиллерийской технике с головками самонаведения (ГСН), может использоваться в комплексах управляемого вооружения для поражения одиночных и групповых подвижных и неподвижных наземных, надводных и воздушных целей, пунктов управления, огневых средств и других важных малоразмерных целей. В настоящее время стоят задачи обеспечения доставки боеприпаса на большую дальность с обеспечением высокой точности попадания в цель. В связи с этим проводятся работы в области создания ПТРК большой дальности третьего поколения. ПТРК этого типа должны иметь: вероятность поражения цели одной ракетой не менее 0.5-0.7 благодаря оснащению их более эффективными головками самонаведения и боевыми частями, автоматизированную систему управления ракетой, позволяющую реализовать концепцию “выстрелил и забыл”, высокую степень технической готовности, простоту обслуживания за счет модульности узлов и агрегатов, а также встроенной аппаратуры диагностики.

Известен способ наведения снаряда по радиолучу, при котором радиолокационная станция, создающая радиолуч, направленный на цель, располагается на пункте управления снарядом (Ю.П. Доброленский, В.И. Иванова, Г.С. Поспелов, Автоматика управляемых снарядов, М., Оборонгиз, 1963 г., с. 139-148, [1]).

На снаряде находится радиоприемник, воспринимающий сигналы радиолокационного передатчика пункта управления. Этот приемник является измерительным устройством, определяющим величину и направление отклонения снаряда от оси равносигнальной зоны в системе координат, связанной с этой зоной. С выхода приемника сигнал управления поступает в бортовую систему управления снарядом, где формируются команды управления на аэродинамический рулевой привод. При повороте аэродинамических рулей снаряда создается управляющая сила, возвращающая снаряд на ось радиолуча. В результате снаряд будет двигаться по радиолучу. Основными преимуществами систем управления по лучу являются большая дальность действия, сравнительная простота (меньшая сложность бортовой аппаратуры для создания управляющих сигналов). В то же время основными недостатками системы наведения по лучу являются недостаточная точность при больших дальностях между пунктом управления и снарядом, необходимость непрерывного участия пункта управления в процессе наведения снаряда. При увеличении дальности наличие угловой ошибки в направлении оси радиолуча приводит к увеличению линейного отклонения этой оси от центра цели. Второй недостаток становится существенным, например, в случае наведения снарядов воздух-воздух. Необходимость непрерывного сопровождения цели локатором, установленным на самолете, ограничивает его маневр. Поэтому для обеспечения высокой точности попадания при стрельбе на большую дальность целесообразно использовать на конечном участке самонаведение, при этом на начальном и среднем участках наведение ракеты осуществляют по лучу. Тогда при активном самонаведении пункт управления не участвует в наведении, при полуактивном - пункт управления должен лишь облучать цель, что не связывает маневр самолета, на котором установлен передатчик. Таким образом, чтобы использовать положительные свойства обоих методов, применяют комбинированные системы - управление по лучу на начальном участке с переходом на самонаведение при приближении снаряда к цели.

Известен способ наведения ракеты (патент РФ 2183006, МПК7 F41G 7/00, от 27.05.2002 г.), обеспечивающий достижение максимальной дальности полета самонаводящейся ракеты за счет оптимальной организации ее траектории. Способ включает запуск ракеты на баллистическую траекторию до достижения ракетой максимальной высоты, после чего сообщают ракете максимальную располагаемую перегрузку, направленную вверх, до тех пор, пока ее вектор скорости не станет горизонтальным, и осуществляют горизонтальный полет, переходящий в пологое планирование до вывода ракеты в район цели, после чего переводят ее в режим пикирования на цель и далее в режим самонаведения. Данный способ позволяет решить задачу обеспечения максимальной дальности полета управляемой ракеты и вывода ее на цель за счет оптимальной организации ее траектории путем использования располагаемой перегрузки ракеты, однако недостатком способа является невысокая точность вывода ракеты в зону захвата излучения от цели головкой самонаведения вследствие наличия излома кинематической траектории при реализации сопряжения траекторий участка вывода ракеты в зону захвата цели и участка самонаведения.

Наиболее близким к предлагаемому изобретению является способ наведения многоцелевого высокоточного оружия дальней зоны, в котором реализовано комбинированное управление ракетами: радиокомандное телеуправление на начальном и среднем участках траектории полета и автономное самонаведение на участке подлета ракет к целям. В данном способе осуществляют запуск ракеты на программную траекторию, определяют координаты ракеты радиолокационной станцией (РЛС), осуществляют управление ракетой относительно оси луча РЛС, выводя ракету в зону захвата ГСН, автономный поиск, распознавание и сопровождение цели, перевод управления ракетой с радиокомандного режима в режим самонаведения (патент РФ №2284444, МПК F41G 7/00, F42B 15/01, от 27.09.2006 г.). Для управления положением центра масс ракеты используется аэродинамический рулевой привод.

Для известного способа наведения характерно, что при переключении режимов наведения с радиокомандного наведения к самонаведению происходит переход от трехточечного метода наведения к двухточечному (Основы радиоуправления, под ред. Вейцеля В.А. и Типугина В.Н., М., Советское радио, 1973 г., с. 40). При этом нужно учитывать, что в общем случае формы трехточечной и двухточечной траекторий не совпадают, поэтому на расчетной (кинематической) траектории в момент перехода с одного способа управления на другой будет наблюдаться излом. Это потребует соответствующего маневра ракеты. В реальном случае подобный маневр совершается с конечной скоростью, и времени для осуществления маневра может оказаться недостаточно. На большой дальности скорость ракеты, как правило, уменьшается, соответственно падает развиваемая перегрузка ракеты, и ракета может не выбрать возникший вследствие этого недопустимо большой промах. Следовательно, одной из важных проблем в системах комбинированного управления является сопряжение траекторий, соответствующих различным участкам полета ракеты. При этом излом кинематической траектории не должен быть больше допустимого.

Данный способ реализован в системе наведения высокоточного оружия дальней зоны, содержащей на командном пункте блок приема данных целеуказания, вычислитель, радиолокационную станцию с фазированной антенной решеткой, каналами пеленгации ракет, каналами передачи команд управления и блоком управления лучом и блок синхронизации и кодирования, и содержащей на ракете головку самонаведения, аппаратуру управления, соединенную со входом аэродинамического рулевого привода, радиоответчик, радиоприемник, дешифратор команд управления и переключатель команд. На чертеже фиг. 1 представлена блок-схема системы наведения - прототипа предлагаемого устройства (патент РФ №2284444), где 1 - командный пункт, 2 - радиолокационная станция, 3 - каналы пеленгации ракет РЛС, 4 - каналы передачи команд управления РЛС, 5 - блок управления лучом, 6 - блок приема данных целеуказания, 7 - система воздушного целеуказания, 8 - вычислитель, 9 - блок синхронизации и кодирования, 10 - система топопривязки, 11 - видеомонитор, 12 - фазированная антенная решетка (ФАР), 13 - управляемая ракета, 14 - ГСН, 15 - радиоответчик, 16 - радиоприемник (приемный модуль), 17 - дешифратор команд управления, 18 - аппаратура управления, 19 - переключатель команд, 20 - рулевой привод.

Программная команда “вверх” для осуществления планирования ракеты при стрельбе на большую дальность передается радиолокатором на борт ракеты, где выделяется приемным модулем и поступает на аэродинамический рулевой привод. В результате поворота аэродинамических рулей и появления углов атаки и скольжения возникает аэродинамическая сила, обеспечивающая вывод ракеты и поддержание на заданной высоте полета в вертикальной плоскости. При достижении ракетой определенной программной дальности до цели на ее борт передается команда управления в вертикальной плоскости, обеспечивающая ее вывод в зону захвата цели ГСН. ГСН осуществляет автономный поиск, распознавание и сопровождение цели по ее тепловому излучению или отраженному от цели сигналу и выдает сигнал «захват» цели. По этому сигналу в предлагаемой системе происходит переход управления ракетой с радиокомандного режима в режим самонаведения по методу пропорционального сближения, который обеспечивает высокоточное наведение ракеты на цель при минимальных требованиях к располагаемой перегрузке ракеты.

В прототипе в качестве исполнительного устройства фигурирует аэродинамический рулевой привод. Это связано с тем, что для стрельбы на большую дальность предпочтительней применять автоколебательный воздушно-динамический рулевой привод. Такой привод использует для управления энергию обтекающего ракету потока воздуха, что позволяет исключить из состава ракеты бортовой источник сжатого воздуха или пороховой аккумулятор давления и значительно увеличить время работы рулевого привода, что актуально при стрельбе на большие дальности. Кроме того сокращается масса, объем и трудоемкость изготовления привода. Отличительными особенностями воздушно-динамического рулевого привода являются высокое быстродействие, малые фазовые запаздывания, малые разбросы коэффициента передачи при изменении амплитуды входного сигнала. Эти достоинства позволили обеспечить в автоколебательном рулевом приводе с гармоническим входным управляющим сигналом перспективных управляемых снарядов требуемые динамические и точностные характеристики в широком диапазоне изменения шарнирных нагрузок (от пружинной до перекомпенсации) и развиваемых моментов исполнительного пневмодвигателя рулевой машины, использующего энергию набегающего потока воздуха в широком диапазоне скоростей полета управляемого снаряда.

Однако при стрельбе на большие дальности ракета, запущенная по баллистической траектории, летит значительную часть времени практически при нулевых командах на рулевой привод. При этом диапазон изменения амплитуды колебаний рулей автоколебательного рулевого привода (при нулевом входном сигнале) в полете составляет 10…18 градусов. Эти колебания рулей вызывают дополнительное индуктивное сопротивление. Проведенное моделирование показало, что введение дополнительных мер, направленных на уменьшение амплитуды автоколебаний рулевых органов при нулевом входном сигнале с 10…18 градусов до 3…9 градусов, уменьшает время полета ракеты на ту же дальность на 27 с за счет уменьшения воздействия индуктивного сопротивления.

Представляется целесообразным полностью устранить эти колебания на начальном участке полета, так как на этом этапе ракета летит в плотных слоях атмосферы, и воздействие индуктивной составляющей сопротивления воздуха будет максимальным, что приводит к потере скорости ракеты, и как следствие, к уменьшению дальности полета. Для устранения автоколебаний аэродинамических рулей на баллистическом участке траектории необходимо обеспечить удержание рулей в неподвижном положении, т.е. добиться того, чтобы при пуске ракета выходила из пускового контейнера с заарретированными рулевыми органами, а разарретирование их происходило в разреженных слоях атмосферы на высоте ~10…12 км. Положительным эффектом введения арретирования рулей на начальном этапе разгона ракеты с аэродинамическим автоколебательным рулевым приводом будет увеличение надежности функционирования рулевого привода, так как при испытаниях отмечались случаи отрыва незаарретированных рулей на этапе динамичного разгона ракеты.

Начальный участок характеризуется рассеиванием ракет за счет наличия эксцентриситета стартового двигателя, начальных возмущений схода, воздействия бокового ветра. Вследствие этого величина временной задержки при разарретировании рулей должна быть ограниченной и определяться также возможностью отработки начальных отклонений ракеты, полученных за счет рассеивания ракет.

Известный способ наведения не обеспечивает необходимую точность вывода ракеты в зону захвата цели вследствие различия законов управления на разных участках наведения и, следовательно, велика вероятность потери ракет из-за больших начальных промахов, что особенно проявляется при наведении на цели, расположенные на больших дальностях.

Задачей предлагаемой группы изобретений является повышение дальности стрельбы, а также увеличение вероятности поражения целей, расположенных на больших дальностях за счет высокоточного вывода ракет в зону захвата излучения от целей головкой самонаведения.

Поставленная задача решается за счет того, что в способе вывода дальнобойной ракеты в зону захвата цели головкой самонаведения, включающем запуск ее по баллистической траектории на заданную высоту и последующее планирование на цель под действием подаваемой на рулевой привод в вертикальном канале управления команды “вверх” до захвата цели головкой самонаведения, новым является то, что осуществляют запуск ракеты с заарретированными рулями, разарретирование рулей производят с задержкой по времени, определенной предварительно из условия достижения ракетой заданной высоты, а вывод ракеты в зону захвата цели головкой самонаведения осуществляют методом пропорциональной навигации при достижении ракетой заданной программной дальности до цели.

Техническая реализация заявляемого способа вывода ракеты в зону захвата излучения цели осуществляется в предлагаемой системе, содержащей на командном пункте блок приема данных целеуказания, вход которого соединен радиолинией с системой воздушного целеуказания, а выход соединен с первым входом вычислителя, второй вход которого соединен с выходом системы топопривязки, а первый выход вычислителя соединен со входом видеомонитора, радиолокационную станцию с фазированной антенной решеткой, каналами пеленгации ракет, каналами передачи команд управления и блоком управления лучом, блок синхронизации и кодирования, при этом выходы каналов пеленгации ракет соединены с третьим входом вычислителя, второй выход которого соединен со входом блока управления лучом, а третий выход - с первым входом блока синхронизации и кодирования, первый выход которого соединен с первыми входами каналов пеленгации ракет, второй выход - со входами каналов передачи команд управления, выход блока управления лучом соединен с первым входом фазированной антенной решетки, второй вход которой соединен с выходами каналов передачи команд управления, а выход - со вторыми входами каналов пеленгации ракет, а на ракете, содержащей последовательно соединенные головку самонаведения, переключатель команд, аппаратуру управления и рулевой привод, а также радиоответчик, приемный модуль, дешифратор команд управления, при этом второй выход аппаратуры управления соединен со входом радиоответчика, второй вход переключателя команд - с выходом дешифратора команд управления, первый вход которого соединен до старта с третьим выходом блока синхронизации и кодирования, а второй вход - с выходом приемного модуля, дополнительно на командном пункте введены блок констант, последовательно соединенные блок вычисления угловой скорости линии ракета - цель и блок подключения команд управления, выход которого соединен со вторым входом блока синхронизации и кодирования, а также подключенный своим входом к четвертому выходу вычислителя блок вычисления угловых координат линии ракета - цель и дальности между ракетой и целью, первый и второй выходы которого соединены соответственно с входом блока вычисления угловой скорости линии ракета - цель и вторым входом блока подключения команд управления, третий вход которого соединен с выходом блока констант, а на ракете дополнительно введены последовательно соединенные блок временной задержки и блок арретирования рулей рулевого привода, фиксирующий рули неподвижно в положении, при котором плоскость рулей параллельна продольной оси ракеты.

Технический результат - увеличение дальности стрельбы дальнобойной ракетой достигается за счет исключения влияния индуктивного сопротивления от автоколебаний аэродинамических рулей ракеты на начальном участке траектории при полете ракеты в приземных плотных слоях атмосферы, что обеспечивается арретированием рулей, т.е. закреплением рулей в положении, в котором плоскость каждого руля параллельна продольной оси ракеты, до момента, когда ракета окажется в разреженных слоях атмосферы, где индуктивное сопротивление будет минимальным. Повышение точности вывода ракет в зону захвата головкой самонаведения излучения от целей, расположенных на больших дальностях, и следовательно, повышение вероятности поражения таких целей, достигается за счет использования на участке, предшествующем участку самонаведения, такого же закона управления, как и при наведении ракеты на конечном участке автономного самонаведения, на котором используется метод пропорционального сближения.

Предлагаемая группа изобретений иллюстрируется графическим материалом. На фиг. 1 представлена блок-схема системы наведения -прототипа предлагаемого устройства. На фиг. 2 приведена траектория полета ракеты при стрельбе по цели, расположенной на большой дальности, с заарретированными на начальном участке рулями, полученная по результатам цифрового моделирования, где показаны основные фазы траектории: 21-22 - баллистический участок, 22-23 - участок программного управления, 23-24 - участок вывода ракеты в зону захвата цели ГСН, 24-25 - участок самонаведения. Здесь же приведена аналогичная траектория полета ракеты со свободными, незаарретированными рулями. Во втором случае ракета не долетает до цели вследствие воздействия индуктивной составляющей сопротивления воздуха от колеблющихся рулей в приземных плотных слоях атмосферы на начальном участке полета. На фиг. 3 приведены графики отклонений рулевых органов, соответствующих этим двум случаям. Верхний график иллюстрирует вариант без арретирования рулей. Рули на начальном участке колеблются с амплитудой 9…14 градусов. Нижний график показывает, что рули на начальном этапе не отклоняются, т.к. они заарретированы. Рули начинают отклоняться, отрабатывая команды управления, после двадцатой секунды. На фиг. 4 представлена блок-схема системы наведения для осуществления предлагаемого способа. К известным блокам на командном пункте добавлены новые блоки: 26 - блок вычисления угловых координат линии ракета - цель и дальности между ракетой и целью, 27 - блок вычисления угловой скорости линии ракета - цель, 28 - блок подключения команд управления, 29 - блок констант, а на ракете - 30 - блок арретирования рулей, 31 - блок временной задержки.

При стрельбе на большие дальности кроме решения задачи по уменьшению индуктивного сопротивления от колеблющихся рулей на начальном этапе полета ракеты важно обеспечить высокую точность вывода ракеты в зону захвата цели ГСН.

Известно, что при реализации метода пропорционального сближения в процессе наведения ракеты для вертикальной плоскости управления должно выполняться условие , т.е. угловая скорость вращения вектора скорости ракеты должна быть пропорциональна угловой скорости вращения линии ракета - цель (k - коэффициент пропорциональности). Для получения параметра рассогласования необходимо измерять . Для измерения угловой скорости вращения линии ракета - цель используют следящие головки самонаведения. Такие головки самонаведения состоят, как правило, из координатора цели, непосредственно связанного с осью ротора гироскопа, ориентируемого в направлении цели с помощью двигателей коррекции (с. 135-137, [1]). При отклонении оси координатора от направления на цель двигатели коррекции создают управляющие моменты, под действием которых гироскоп прецессирует в направлении совмещения оси координатора с целью, при этом в процессе слежения за целью угол пеленга цели, измеренный координатором, пропорционален угловой скорости линии ракета - цель.

Таким образом, в процессе самонаведения на борту ракеты с помощью ГСН производят измерение угловой скорости вращения линии “ракета - цель”, формируют сигнал управления , и пропорционально этому сигналу изменяют угловую скорость вращения вектора скорости ракеты для уменьшения величины промаха относительно цели.

В статье “Математическая модель гироскопического координатора цели малогабаритной ракеты” авторов В.И. Морозова, И.А. Недосекина, Е.Л. Леоновой (Оборонная техника, №№5-6, М., 2006 г., с. 60-67) приведена структурная схема ГСН, на которой K1 - коэффициент передачи координатора ГСН, K2 - коэффициент передачи двигателей коррекции ГСН. Значения коэффициентов K1 и K2 выбираются в процессе динамического проектирования системы управления с головкой самонаведения в контуре, исходя из условий обеспечения необходимой точности и устойчивости контура управления. Представляется целесообразным наводить ракету до захвата цели ГСН по такому же методу, что и при наведении ракеты по сигналам, формируемым при слежении за целью ГСН, т.е. формировать команды управления на основе известных сигналов координат цели (внешнее целеуказание) и сигналов координат ракеты, полученных посредством радиолокационной станции или же по сигналам ГЛОНАСС, вычисляя по ним дальность ракета - цель, угловые координаты линии ракета - цель и проекции угловой скорости на оси измерительной системы координат.

Вывод ракеты в зону захвата излучения цели ГСН в соответствии с предлагаемым способом осуществляют следующим образом.

При поступлении целеуказания от разведывательной машины, вычислитель командного пункта осуществляет привязку каждой цели к связанной с боевой машиной системе координат (вычисляет углы азимута, места и дальность до цели) и распределение ракет залпа по целям.

В соответствии с угловыми координатами целей осуществляется разворот пусковой установки в направлении расположения целей в горизонтальной плоскости и на некоторый фиксированный угол пуска в вертикальной плоскости. Производится запуск ракеты с неподвижными, заарретированными рулями, закрепленными параллельно продольной оси ракеты. Ракета летит по баллистике в течение 20 с. За это время ракета оказывается в разреженных слоях атмосферы, где и происходит разарретирование рулей по сигналу с выхода блока временной задержки. Для каждой ракеты радиолокатор по сигналам с радиоответчика ракеты определяет ее координаты относительно своей оси (углы азимута, места и дальности до ракеты), а вычислительное устройство командного пункта по известным координатам ракеты и цели в соответствии с принятым методом наведения формирует команды управления ракетой, которые затем передаются на ее борт тем же локатором. Команды управления ракетой, принимаемые приемным модулем, преобразуются на борту ракеты в углы отклонения рулей. Возникающая при этом перегрузка уменьшает отклонение ракеты от траектории принятого метода наведения.

Под оптимальными траекториями наведения понимаются траектории, обеспечивающие максимально возможную дальность полета ракеты. При формировании оптимальных траекторий решаются следующие задачи:

- вывод и удержание ракеты на заданной высоте полета, обеспечивающей минимальные потери скорости и максимально возможное увеличение дальности полета - за счет введения арретирования рулей на начальном этапе полета;

- вывод ракеты в зону захвата излучения цели ГСН - при использовании формирования команд методом пропорциональной навигации до захвата цели ГСН.

Вывод ракеты на заданную высоту полета осуществляется выбором соответствующего угла пуска в вертикальной плоскости. Далее полет ракеты происходит по баллистической траектории. При достижении вершины траектории, на борт ракеты подается единичная команда «вверх», которая обеспечивает удержание ракеты на необходимой высоте полета.

В зависимости от дальности до цели за 5…40 км до подлета к цели осуществляется вывод ракеты в зону захвата цели ГСН по траектории, реализующей метод пропорционального сближения, который обеспечивает высокоточное наведение ракеты на цель при минимальных требованиях к располагаемой перегрузке ракеты и позволяет исключить задачу сопряжения законов управления при переходе на конечный участок наведения - самонаведение, где наведение ракеты на цель осуществляется тем же методом пропорционального сближения. Таким образом, при выводе ракеты в зону захвата цели ГСН по предлагаемому способу отпадает необходимость решать задачу сопряжения участков траектории с наведением ракет по различным законам управления.

С момента старта ракеты вычислительное устройство боевой машины по информации о текущих координатах ракеты βР, εР, ДНР, поступающей с радиолокатора, и координатах цели, пересчитанных в связанную с пусковой установкой систему координат βЦ, εЦ, ДНЦ вычисляет угловые координаты линии ракета - цель λY,Z и дальность между ракетой и целью ДРЦ, а также программную команду удержания ракеты на заданной высоте Программную команду удержания ракеты на заданной высоте полета формируют в вычислителе в соответствии с зависимостью:

,

где U1Е.К. - единичная команда «вверх»;

коэффициент должен определяться в соответствии с зависимостями:

, при tПР1≤t<tПР1+1.0 c;

, при t≥tПР1+1.0 c,

где tПР1 - момент времени, при котором координата YИ достигает своего максимального значения.

В вычислителе командного пункта должны быть реализованы следующие уравнения для расчета линейных отклонений ракеты от линии визирования цели в измерительной системе координат:

ХИ=X*cos(εЦ)*cos(βЦ)+Y*sin(εЦ)-Z*cos(εЦ)*sin(βЦ);

YИ=-X*sin(εЦ)*cos(βЦ)+Y*cos(εЦ)+Z*sin(εЦ)*sin(βЦ);

ZИ=X*sin(βЦ)+Z*cos(βЦ);

где: X=ДНР*cos(εЛ)-εРНР*sin(εЛ);

Y=ДНР*sin(εЛ)+εРНР*cos(εЛ)+hЛ;

Z=βРНР;

εЛ - угловой разворот радиолокатора в вертикальной плоскости;

hЛ - высота расположения радиолокатора над подстилающей поверхностью.

Решаются уравнения для расчета дальности между ракетой и целью и угловых координат линии ракета - цель:

ДРЦНЦИ;

;

.

Программные дальности должны изменяться в зависимости от дальности до цели ДНЦ и угла пуска. Массивы значений программных дальностей хранятся в запоминающем устройстве. Например, при стрельбе на дальность 80 км ракетой с ЛПГСН угол пуска должен составлять 50°, при этом , .

При достижении ракетой точек траектории, где проекции дальности ракета - цель ДРЦ становятся равными программным дальностям , , на борт ракеты в вертикальном и горизонтальном каналах управления передают команды UY, UZ, сформированные по вычисленному угловому положению линии ракета - цель λY, λZ:

,

,

где K1 - коэффициент передачи координатора цели ГСН, е.к./…°; е.к. - единица измерения угла пеленга цели координатором ГСН,

λY, XZ - угловые координаты линии ракета - цель, …°;

UKB - команда компенсации веса ракеты, е.к.;

K2 - коэффициент передачи двигателей коррекции головки самонаведения, …°/с·е.к.;

t - время, отсчитываемое с момента старта ракеты, c.

Блок-схема вычислений проекций угловой скорости линии ракета - цель на оси измерительной системы координат аналогична структурной схеме ГСН, т.е. структура блока вычисления угловых координат совместно с блоком вычисления проекций угловой скорости линии ракета - цель функционально повторяет схему ГСН.

Блок вычисления угловых координат линии ракета - цель может быть выполнен на основе сумматоров, вычитающих блоков (на основе схемы на рис. 11.1, с. 137, У. Титце, К. Шенк “Полупроводниковая схемотехника”, Москва, Мир, 1982 г., [1]) и функциональных преобразователей, реализующих функции арктангенса, арксинуса (на основе схем функционального преобразователя на ПЗУ рис. 19.39, с. 341 [1]) и вычисления квадратного корня (рис. 11.47, с. 166-167, [1]). Блок вычисления проекций угловой скорости может быть выполнен на основе сумматоров, вычитающих блоков, блоков произведения (по схеме рис. 19.38, с. 340, [1]), интеграторов (по схеме на рис 11.6, с. 141, [1]).

Запоминающее устройство может быть выполнено на основе программируемых логических матриц (с. 127-129, [1]). Сюда заносятся величины программных дальностей для каждого канала, соответствующие дальности стрельбы в зависимости от угла пуска, при достижении которых происходит переход на управление по вычисленным угловым скоростям линии ракета - цель.

Блок арретирования рулей может быть выполнен аналогично устройствам, фиксирующим подвижные элементы устройства в неподвижном положении до определенного момента, как это представлено, например, в книге В.В. Ягодкина, Г.А. Хлебникова, Гироприборы баллистических ракет, М., Воениздат, 1967 г., с. 47-49, рис. 23.

Блок временной задержки выполнен, например, на основе схемы электронного реле времени, приведенной в книге Ф.Ф. Андреева, Электронные устройства автоматики, М., Машиностроение, 1978 г., с. 283, рис. 206, б, [3].

Заявляемые способ вывода дальнобойной ракеты с аэродинамическим автоколебательным рулевым приводом в зону захвата цели головкой самонаведения и система наведения по сравнению с известными обеспечивают точное наведение высокоскоростных ракет на неподвижные и движущиеся малоразмерные цели, расположенные на больших дальностях в глубине боевых порядков противника. При этом обеспечиваются повышение дальности стрельбы ракеты, повышение точности вывода ракеты в зону захвата цели ГСН, а так же повышается надежность работы рулевого привода.

1. Способ вывода дальнобойной ракеты в зону захвата цели головкой самонаведения, включающий запуск ее на заданную высоту и последующее планирование на цель под действием подаваемой на рулевой привод в вертикальном канале управления команды "вверх" до захвата цели головкой самонаведения, отличающийся тем, что запуск ракеты осуществляют по баллистической траектории с заарретированными рулями, разарретирование рулей производят с задержкой по времени, определенной предварительно из условия достижения ракетой заданной высоты, а вывод ракеты в зону захвата цели головкой самонаведения осуществляют методом пропорциональной навигации при достижении ракетой заданной программной дальности до цели.

2. Система наведения дальнобойной ракеты, содержащая на командном пункте блок приема данных целеуказания, вход которого соединен радиолинией с системой воздушного целеуказания, а выход соединен с первым входом вычислителя, второй вход которого соединен с выходом системы топопривязки, а первый выход вычислителя соединен со входом видеомонитора, радиолокационную станцию с фазированной антенной решеткой, каналами пеленгации ракет, каналами передачи команд управления и блоком управления лучом, блок синхронизации и кодирования, при этом выходы каналов пеленгации ракет соединены с третьим входом вычислителя, второй выход которого соединен со входом блока управления лучом, а третий выход - с первым входом блока синхронизации и кодирования, первый выход которого соединен с первыми входами каналов пеленгации ракет, второй выход - со входами каналов передачи команд управления, выход блока управления лучом соединен с первым входом фазированной антенной решетки, второй вход которой соединен с выходами каналов передачи команд управления, а выход - со вторыми входами каналов пеленгации ракет, а на ракете - последовательно соединенные головку самонаведения, переключатель команд, аппаратуру управления и автоколебательный рулевой привод, а также радиоответчик, приемный модуль, дешифратор команд управления, при этом второй выход аппаратуры управления соединен со входом радиоответчика, второй вход переключателя команд - с выходом дешифратора команд управления, первый вход которого соединен до старта с третьим выходом блока синхронизации и кодирования, а второй вход - с выходом приемного модуля, отличающаяся тем, что на командном пункте введены блок констант, последовательно соединенные блок вычисления угловой скорости линии ракета - цель и блок подключения команд управления, выход которого соединен со вторым входом блока синхронизации и кодирования, а также подключенный своим входом к четвертому выходу вычислителя блок вычисления угловых координат линии ракета - цель и дальности между ракетой и целью, первый и второй выходы которого соединены соответственно с входом блока вычисления угловой скорости линии ракета - цель и вторым входом блока подключения команд управления, третий вход которого соединен с выходом блока констант, а на ракете введены последовательно соединенные блок временной задержки и блок арретирования рулей рулевого привода, фиксирующий рули неподвижно в положении, при котором плоскость рулей параллельна продольной оси ракеты.



 

Похожие патенты:

Изобретение относится к области вооружения и касается способа и устройства наведения ракеты. Способ включает формирование информационного поля управления, запуск ракеты под углом к линии визирования цели.
Изобретение относится к области управления и регулирования и касается способа оптической разведки. Разведка осуществляется с помощью телетепловизионного прицела пусковой установки ракетного комплекса.
Изобретение относится к области управления и регулирования и касается способа стрельбы по движущейся цели управляемой противотанковой ракетой. Способ стрельбы включает в себя поиск цели, замер полярных координат цели радиолокатором или лазерным дальномером пусковой установки, передачу координат цели в пульт управления, расчет дальности до точки встречи управляемой ракеты с целью, формирование и выдачу команды целеуказания на пусковую установку, нацеливание вооружения на цель, взятие цели на автоматизированное сопровождение, выработку в пульте управления разрешения на пуск управляемой ракеты по цели, пуск ракеты и сопровождение ракеты на цель.

Изобретение относится к системам вооружения и может быть использовано при реализации комплексов защиты объектов от средств нападения противника. Достигаемый технический результат - возможность защиты объектов с использованием преимуществ, обеспечиваемых применением четырехчастотного частотного радиолокатора, а именно, точность наведения ракеты на цель.

Изобретение относится к оборонной технике, а именно к устройству управления захватом цели и пуском ракеты переносного зенитного комплекса с оптической головкой самонаведения (ОГС).
Группа изобретений относится к системам вооружения. При способе самонаведения ракеты с оружием на цель облучают цель непрерывным сигналом с частотной модуляцией по одностороннему пилообразно линейно возрастающему закону (НЛЧМ сигнал).

Предложенная группа технических решений относится к классу лучевых способов и систем управления ракетами, обеспечивающих прямое попадание в цель. Задача состоит в обеспечении управления ракетой при вращении электромагнитного информационного луча по крену без компенсации «скручивания» и повышении надежности работы.

(54) Способ наведения вращающейся ракеты и система наведения для его осуществления (57) Реферат Изобретение относится к области приборостроения и может найти применение в системах наведения ракет.

Изобретение относится к средствам подготовки расчетов пунктов управления (ПУ) зенитных ракетно-пушечных комплексов (ЗРПК) и может быть применено в составе учебно-тренировочных средств для подготовки расчетов ПУ ЗРПК.

Изобретение относится к военной технике и может быть использовано в управляемых ракетах (УР). Комплекс управления и связи выносного пункта управления для стрельбы УР из пусковой установки содержит средство связи с наблюдательной позицией, пульт командира с дополнительным интерфейсом и аппаратурой спутниковой навигации, цифровой канал связи, лазерный гирокомпас на пусковой установке, блок автоматики, средство связи с наблюдательной позицией в виде терминала спутниковой связи, аппаратуру спутниковой навигации в виде датчика данных об эфемеридах, блок дистанционной передачи на УР по радиоканалу полетного задания.

Изобретение относится к области военной техники и может быть использовано на летательных аппаратах (ЛА) для их защиты от атакующих управляемых ракет класса «воздух-воздух» и «земля-воздух». Предлагаемый способ осуществляется системой активной защиты (САЗ), содержащей датчики обнаружения ультрафиолетового и инфракрасного излучений, датчики обнаружения лазерного облучения, радиолокатор обнаружения атакующих ракет и станцию радиотехнической разведки, устройство управления комплекса радиоэлектронного подавления и устройство управления САЗ, лазерную станцию оптико-электронного подавления, станцию активных радиопомех, устройства выброса ложных целей, пусковую установку защитных боеприпасов, бортовую радиолокационную станцию, подсистему автоматического управления ЛА, комплекс навигационного оборудования, бортовые сети переменного и постоянного тока. Технический результат - повышение защиты ЛА от попадания в него управляемых ракет. 4 н. и 4 з.п. ф-лы, 7 ил.
Изобретение относится к способам уничтожения воздушной цели зенитными управляемыми ракетами (ЗУР). Для уничтожения воздушной цели излучают ложный сигнал с параметрами, аналогичными параметрам сигнала РЛС наведения ЗУР на определенной частоте, осуществляют поиск, обнаружение и измерение параметров радиоэлектронных помех противника. При обнаружении помехи создают помехи на определенных частотах с позиции РЛС и с позиции, удаленной от РЛС ЗРК на расстоянии не менее радиуса поражения РЛС самонаводящимся на радиоизлучение оружием, откуда излучают ложный сигнал. Обеспечивается повышение вероятности уничтожения воздушной цели противника. 1 з.п. ф-лы.

Изобретение относится к способам обнаружения и высокоточного определения параметров скоростных летящих целей, а также к головкам самонаведения, используемым для формирования сигналов управления в зенитных ракетных комплексах. В предлагаемом способе обнаружения и высокоточного определения параметров скоростных летящих целей сначала осуществляют действия по выделению целеподобных объектов от помех фона и иных низкоскоростных крупногабаритных помех. Далее производят выделение цели по комплексу признаков: яркость, геометрические размеры, взаимное расположение частей, форма и т.д. Также определяют характер траектории движения выделенных объектов: цель движется практически прямолинейно, а помехи разлетаются по различным направлениям. Затем производится анализ траекторий движения объектов, наиболее похожих на цель по движению. Суммарные данные группируют в совокупности или образы, сопоставляют их с «эталонными» образами, хранящимися в памяти, и определяют координаты цели. Технический результат - улучшение точности поражения цели ракетой. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области авиационного приборостроения систем наведения управляемых снарядов и может быть использовано в системах наведения (СН) с телеориентацией снаряда в луче лазера. Технический результат – расширение функциональных возможностей на основе обеспечения рационального размера поля управления на всем участке полета снаряда: увеличение размера луча до потребных значений на начальном участке наведения снаряда, когда его отклонения достигают максимальных значений, и дальнейшее плавное уменьшение размера до значения, приемлемого для основного участка полета, с возможностью коррекции коэффициента передачи в поле управления, различного в вертикальном и горизонтальном каналах. Для этого по сравнению с известным способом наведения управляемого снаряда, телеориентируемого в луче лазера, включающим формирование модулированного оптического поля управления с помощью двух инжекционных лазеров, излучающие области которых расположены перпендикулярно осям двух измеряемых координат снаряда, и обеспечение постоянного линейного размера поля RЛ на полетной дальности снаряда путем изменения фокусного расстояния панкратического объектива, новым является то, что в первом варианте предлагаемого способа в течение времени от момента запуска снаряда до момента , где ωср - частота среза системы управления снарядом, рад/с, увеличивают размер поля до величины (1,8÷2,3)RЛ, а с момента времени t1 уменьшают его к моменту времени до величины RЛ посредством дополнительного варьирования программы изменения фокусного расстояния панкратического объектива. Во втором варианте - по сравнению с известным способом наведения управляемого снаряда, телеориентируемого в луче лазера, включающим формирование модулированного оптического поля управления с помощью двух инжекционных лазеров, излучающие области которых расположены перпендикулярно осям двух измеряемых координат снаряда, обеспечение постоянного линейного размера поля RЛ на полетной дальности снаряда путем изменения фокусного расстояния панкратического объектива и коррекцию по времени коэффициента передачи в поле управления, новым является то, что в течение времени от момента запуска снаряда до момента , где ωср - частота среза системы управления снарядом, рад/с, увеличивают размер поля до величины (3,0÷4,0)RЛ, а с момента времени t1 уменьшают его к моменту времени до величины RЛ посредством дополнительного варьирования программы изменения фокусного расстояния панкратического объектива, при этом коррекцию по времени коэффициента передачи в поле управления на участке полета снаряда до момента времени t2 производят различной по каждой из двух измеряемых координат. Применение предлагаемых вариантов способа позволяет повысить точность наведения снаряда на начальном участке полета при обеспечении требуемого энергетического потенциала лазерного луча на дальнейшем участке наведения. 2 н.п. ф-лы, 2 ил.

Изобретение относится к способу определения условия возможного пуска беспилотного летательного аппарата (БПЛА). Для определения возможности пуска с помощью первого пользовательского интерфейса вводят координаты цели, количество и координаты пунктов перемены маршрута, курс стрельбы, угол подхода к цели, угол целеуказания, признак и размер цели, тип топлива, скорость ветра, отображают текущие параметры носителя, через равные промежутки времени в вычислительном модуле носителя рассчитывают точку предполагаемого начала поиска цели, время выхода БПЛА на рубеж атаки, вероятность захвата цели активной радиолокационной головкой самонаведения, минимальную и максимальную дальность использования БПЛА, способ обнаружения цели, суммарную траекторию полета БПЛА до цели, необходимое количество топлива, которые отражают на экране второго пользовательского интерфейса носителя, выводят на экран с помощью третьего пользовательского интерфейса диаграмму отображения траектории полетного задания БПЛА, цель, пункты перемены маршрута, траекторию полета БПЛА, зону неопределенности положения цели, точку начала поиска цели, радиус рубежа атаки, угол прокачки антенны, передают в БПЛА полетное задание и дают разрешение на пуск при условии вхождения параметров в пределы заданных диапазонов. Обеспечивается точность определения момента выдачи команды на пуск БПЛА с разных типов носителей. 3ил.

Изобретение относится к гирокоординаторам головок самонаведения, используемых в системах управления ракет и артиллерийских управляемых снарядов. В гирокоординаторе головки самонаведения управляемого ракетного и артиллерийского вооружения, содержащем корпус, ротор на внутреннем кардановом подвесе, во внутренней рамке которого размещены оптическая система и приемник излучения, основание карданова подвеса, установленное в корпусе с возможностью поворота и продольного перемещения упругим элементом сжатия-кручения, на заднем торце основания установлена втулка с выступом и пазом, контактирующая выступом с ограничительной поверхностью, выполненной во фланце, закрепленном на задней стенке корпуса, фиксатор, в нем на выступе втулки со стороны, направленной к ограничительной поверхности, в направлении поворота выполнен уступ, а на ограничительной поверхности, контактирующей с выступом в направлении поворота, выполнен паз, расстояние до которого от опорной плоскости ограничительной поверхности в продольном направлении равно перемещению основания карданова подвеса при разарретировании за вычетом высоты уступа в продольном направлении. Технический результат – повышение устойчивости гирокоординатора головки самонаведения к продольному ускорению при сохранении жесткости упругого элемента в продольном направлении. 2 ил.

Изобретение относится к области стрельбы и управления огнем артиллерии, а именно к стрельбе и управлению огнем артиллерии при стрельбе высокоточными боеприпасами с закрытой огневой (стартовой) позиции. Технический результат – расширение функциональных возможностей за счет учета отклонений разрыва (центра группы разрывов (ЦГР)), центра группы разрывов боевых элементов (ЦГР БЭ) высокоточных боеприпасов по результатам засечки разрыва (ЦГР, ЦГР БЭ) для определения координат новой точки прицеливания с целью сокращения времени и расхода высокоточных боеприпасов на уничтожение целей при стрельбе высокоточными боеприпасами. Для этого при непопадании высокоточного боеприпаса в цель происходит учет отклонений разрыва (ЦГР, ЦГР БЭ) высокоточных боеприпасов от центра цели для определения установок по новой точке прицеливания с использованием результатов предыдущего пуска. Новая точка прицеливания определяется с учетом отклонения разрыва (ЦГР, ЦГР БЭ) высокоточного боеприпаса от цели по дальности и направлению. Установки для пусков (выстрелов) определяются способом полной (сокращенной) подготовки с огневой (стартовой) позиции артиллерии по центру цели. 2 ил.

Изобретение относится к военной технике, в частности к способам наведения снарядов. Способ наведения на подводную цель группы корректируемых подводных снарядов соответствующих противолодочных боеприпасов включает сбрасывание противолодочных боеприпасов в заданные точки приводнения, обеспечение заданной скорости полета каждого противолодочного боеприпаса, зависание на заданной глубине после приводнения в заданной точке и отделение одного из корректируемых подводных снарядов от корпуса противолодочного боеприпаса. В случае вхождения подводной цели в зону наведения снаряда, он движется в сторону цели. Одновременно с отделением одного из подводных снарядов, в зону наведения которого вошла подводная цель, выдается сигнал на отделение оставшихся снарядов от соответствующих противолодочных боеприпасов. В случае вхождения подводной цели в зону наведения любого из оставшихся подводных снарядов, система коррекции траектории движения подводного снаряда осуществляет его наведение на цель. Подрыв каждого подводного противолодочного снаряда производят при прохождении им кратчайшего расстояния относительно подводной цели или при контакте с ней. Достигается повышение эффективности наведения на подводную цель группы подводных снарядов. 1 ил.

Изобретение относится к ракетной технике и может быть использовано в системах наведения телеуправляемых ракет. Технический результат - снижение потребной перегрузки ракеты, динамической ошибки наведения с обеспечением требуемых углов встречи ракеты с целью и расширение условий применения телеуправляемой ракеты. Для этого осуществляют измерение координат цели и ракеты, формирование текущих параметров движения ракеты относительно цели, формирование сигналов управления ракетой в соответствии с параметрами движения ракеты относительно цели, передачу сигналов управления на ракету и наведение ракеты по сформированным сигналам управления. При этом преобразуют измеренные координаты цели и ракеты в прямоугольные координаты, определяют оценки текущих параметров движения цели и ракеты, формируют по оценкам параметров движения цели и ракеты текущие параметры относительного движения ракеты, определяют текущее время, оставшееся до встречи ракеты с целью, формируют по параметрам относительного движения ракеты сигналы текущей угловой скорости линии визирования ракета-цель, определяют пропорционально сигналам угловой скорости линии визирования сигналы текущего промаха, определяют оценки текущего промаха, прогнозируют по оценкам текущего промаха с учетом времени, оставшегося до встречи ракеты с целью, сигналы промаха в точке встречи, формируют сигналы текущей угловой скорости линии визирования ракета-цель в точке встречи, формируют сигналы программного текущего смещения угловой скорости линии визирования и затем формируют сигналы управления ракетой пропорционально сигналам угловой скорости линии визирования в точке встречи с учетом сигналов программного смещения угловой скорости линии визирования ракета-цель. 2 з.п. ф-лы, 1 ил.
Наверх