Устройство стабилизации напряжения и частоты ветроэнергетической установки

Изобретение относится к электротехнике и предназначено для преобразования энергии ветра в электрическую энергию при стабильных параметрах выходного напряжения и частоты. Устройство стабилизации напряжения и частоты ветроэнергетической установки содержит мультипликатор, соединенный с ветроколесом и через выходной вал - с синхронным генератором с постоянными магнитами. В качестве мультипликатора устройство содержит электромагнитный редуктор, содержащий статор с многофазной обмоткой, а также первый и второй роторы, жестко установленные на входном и выходном валах соответственно, обмотка размещена в пазах внутренней поверхности статора с образованием полюсов и подключена к выходу преобразователя частоты, при этом конструктивный коэффициент редукции редуктора равен:

, где

z - число зубцов ротора на входном, соединенном с ветроколесом валу электромагнитного редуктора;

p - число пар полюсов статора электромагнитного редуктора 2;

(z-p) - число зубцов второго ротора на выходном валу редуктора,

а выходная величина частоты преобразователя соответствует выражению

ω=Ω2(z-p)-zΩ1, где

ω - выходная частота преобразователя;

Ω1 - скорость вращения ветроколеса;

Ω2 - выходная скорость электромагнитного редуктора, она же входная скорость генератора,

причем управляющий вход преобразователя частоты подсоединен к выходу пропорционально-интегрального регулятора, выполненного с возможностью настройки коэффициентов усиления и постоянной времени, один из входов которого подсоединен к выходу датчика скорости генератора, а другой вход подсоединен к устройству задания скорости вращения вала генератора, который соединен с выходным валом редуктора. Изобретение направлено на увеличение передаваемой мощности в установившемся и динамическом режимах при улучшении массогабаритных показателей. 3 ил.

 

Изобретение относится к электротехнике и предназначено для формирования стабильных параметров выходного напряжения и частоты ветроэнергетических установок.

Известно устройство (авт. св. СССР 1443119, 1988), состоящее из асинхронного генератора, реакторов, конденсаторов, блоков фазового управления, инвертора, коммутационных тиристоров и трансформатора. Установка состоит из ветродвигателя, сочлененного с асинхронным генератором, статорная обмотка которого через последовательно соединенные индуктивные и емкостные сопротивления, шунтированные первой и второй группами встречно-параллельных тиристоров, подключена к электрической сети большой мощности, причем блоки управления первой и второй тиристорных групп измерительными входами соединены соответственно с выходами узла выделения переменной составляющей момента датчика момента, установленного на валу ветродвигателя, и инвертора, подключенного на выход узла выделения переменной составляющей момента. Величины заказанных сопротивлений при таком подключении регулируются таким образом, что существенно снижаются колебания выходной мощности (тока) установки. Недостатками устройства являются низкие эксплуатационно-технические характеристики.

Известно устройство (патент РФ 2225531, F03D 7/04, бюл. 7, 2004), представляющую собой ветроэнергетическую установку, состоящую из асинхронного многоскоростного генератора, блока коммутации, устройства стабилизации напряжения, конденсаторов возбуждения и дополнительных конденсаторов, электромагнитной муфты и системы стабилизации частоты. Недостатками устройства являются низкий КПД, большая масса и габариты электротехнической части.

Наиболее близким по техническому решению является устройство ветроэнергетической установки (патент РФ 2443903, МПК F03D 9/00, 2012), которое содержит ветроколесо, соединенное с мультипликатором, выход которого соединен через ведущий вал с электромагнитной муфтой, имеющей обмотку управления, с ротором синхронного генератора с постоянными магнитами, к выводам генератора подключены блок конденсаторов возбуждения, блок стабилизации напряжения, блок стабилизации частоты. Блок стабилизации напряжения содержит первый трансформаторно-выпрямительный блок, задающий генератор, формирователь импульсов, первый усилитель импульсов, первый транзистор, эмиттер-коллекторный переход которого последовательно соединен с обмоткой подмагничивания, размещенной в пазах статора синхронного генератора с постоянными магнитами с основной обмоткой, блок стабилизации частоты содержит генератор ведущих импульсов, второй усилитель импульсов, второй трансформаторно-выпрямительный блок и второй транзистор, эмиттер-коллекторный переход которого последовательно соединен с обмоткой управления электромагнитной муфты.

Недостатками устройства являются большая масса и габариты электротехнической части. А именно: электромагнитная муфта с обмоткой управления и блоком стабилизации частоты, генератор с существенными доработками в виде последовательной обмотки подмагничивания, размещенной в пазах статора.

Заявляемое изобретение направлено на решение технической задачи создания несложной и недорогой конструкции устройства стабилизации напряжения и частоты ветроэнергетической установки.

Техническим результатом заявляемого устройства является увеличение передаваемой мощности в установившемся и динамическом режимах при улучшении массогабаритных показателей.

Этот технический результат достигается тем, что в устройстве стабилизации напряжения и частоты ветроэнергетической установки, содержащем мультипликатор, соединенный с ветроколесом и через выходной вал - с синхронным генератором с постоянными магнитами, в соответствии с изобретением в качестве мультипликатора устройство содержит электромагнитный редуктор, содержащий статор с многофазной обмоткой, а также первый и второй роторы, жестко установленные на входном и выходном валах соответственно, обмотка размещена в пазах внутренней поверхности статора с образованием полюсов и подключена к выходу преобразователя частоты, при этом конструктивный коэффициент редукции редуктора равен:

, где

z - число зубцов ротора на входном, соединенном с ветроколесом валу электромагнитного редуктора;

p - число пар полюсов статора электромагнитного редуктора 2;

(z-p) - число зубцов второго ротора на выходном валу редуктора,

а выходная величина частоты преобразователя соответствует выражению

ω=Ω2(z-p)-zΩ1; где

ω - выходная частота преобразователя;

Ω1 - скорость вращения ветроколеса;

Ω2 - выходная скорость электромагнитного редуктора, она же входная скорость генератора,

причем управляющий вход преобразователя частоты подсоединен к выходу пропорционально-интегрального регулятора, выполненного с возможностью настройки коэффициентов усиления и постоянной времени, один из входов которого подсоединен к выходу датчика скорости генератора, а другой вход подсоединен к устройству задания скорости вращения вала генератора, который соединен с выходным валом редуктора.

На рис. 1 представлена принципиальная конструктивная схема заявляемого устройства стабилизации напряжения и частоты, на рис. 2 - график изменения скорости генератора и частоты преобразователя от изменения скорости ветра, на рис. 3 - результаты моделирования работы устройства.

Устройство стабилизации напряжения и частоты ветроэнергетической установки (рис. 1) содержит ветроколесо 1, соединенное с мультипликатором - электромагнитным редуктором 2 - с регулируемым коэффициентом редукции, содержащим статор 18 с многофазной обмоткой, а также первым 16 и вторым роторами 17, жестко установленными на входном и выходном валах соответственно, обмотка размещена в пазах внутренней поверхности статора с образованием полюсов (на рис. не показано), при этом первый ротор расположен коаксиально со статором и жестко связан с концом входного вала, а второй ротор расположен внутри первого. Выходной вал 3 редуктора 2 соединен с входным валом 19 синхронного генератора 4, выполненного с возбуждением от постоянных магнитов, второй конец вала генератора соединен с датчиком скорости 5. Обмотка статора 18 электромагнитного редуктора 2 подключена к выходу преобразователя частоты 6, управляющий вход которого соединен с выходом регулятора 7, выполненного с возможностью настройки коэффициентов усиления и постоянной времени. Для этого регулятор 7 имеет два входа, один из которых 9 (отрицательный) через резистор 12 соединен с выходом датчика скорости 5, а другой вход 8 (положительный), соединенный с устройством 20 задания частоты и напряжения, для задание скорости вращения входного вала 19 генератора 4, в результате осуществляют необходимое задание частоты и напряжения на выходе 15 генератора 4. Таким образом, величина стабилизированной частоты и напряжения выхода 15 задаются через вход 8 регулятора 7 с устройства 20. При этом регулятор 7 состоит из операционного усилителя 10, входных резисторов 11 и 12, резистора 13 и конденсатора 14, установленных в цепи обратной связи усилителя 10, причем коэффициенты усиления регулятора 7 - отношение величин сопротивлений резисторов 13 и 11 - осуществляется по схеме, включающей вход 8, а отношение величин сопротивления резисторов 13 и 12 - по входу 9, интегральная постоянная времени регулятора - произведение сопротивления входного резистора 12 и емкости конденсатора 14.

Устройство стабилизации напряжения и частоты работает следующим образом. В квазиустановившемся режиме угловая скорость вращения Ω1 ветроколеса 1 меняется в определенных пределах, заданных конструкцией ветроустановки, и зависит от скорости ветра V. Требуемая скорость вращения Ω2 вала 19 синхронного генератора 4 задается сигналом задания от устройства 20 через вход 8 регулятора 7, при этом выходные параметры на выходе 15 генератора 4 поддерживаются на определенном, заданном сигналом задания через вход 8 уровне. Поддержание параметров осуществляется заявляемым устройством стабилизации согласно зависимости:

Где ω - выходная (регулируемая) частота преобразователя 6,

постоянный (конструктивный) коэффициент редукции электромагнитного редуктора при выходной частоте ω преобразователя 6, равной нулю,

Ω1 - скорость вращения ветроколеса 1,

Ω2 - выходная скорость электромагнитного редуктора 2, она же входная скорость генератора 4,

z - число зубцов ротора 16 на входном, соединенном с ветроколесом 1 валу электромагнитного редуктора 2,

p - число пар полюсов статора электромагнитного редуктора 2,

(z-p) - число зубцов второго ротора 17 на выходном валу 3 редуктора 2,

причем выходная (регулируемая) частота преобразователя 6

ω=Ω2(z-p)-zΩ1.

Если скорость ветра достигает предельного уровня (скорость вращения ветроколеса 1 максимальна Ω1мах, (рис. 2) согласно конструкции установки), выходная частота преобразователя ω=0 при постоянном напряжении возбуждения обмотки статора 18 электромагнитного редуктора 2. Выходная скорость редуктора, она же входная скорость генератора 4 - Ω2 равна произведению скорости вращения ветроколеса 2 - Ω1 на постоянный коэффициент редукции i. При этом сумма входных сигналов 8 и 9 регулятора 7 равна нулю, а выходной сигнал регулятора 7 также равен нулю. При уменьшении скорости ветра V и ветроколеса 1 скорость вращения вала генератора 4 уменьшается, следовательно, уменьшается сигнал с выхода датчика скорости 5 на вход 9 регулятора 7. Сумма входных сигналов 8 и 9 регулятора 7 становится положительной. Регулятор 7 начинает интегрировать, увеличивая выходной сигнал, который в свою очередь увеличивает выходную частоту ω преобразователя 6. Появляется составляющая , при этом уменьшается составляющая iΩ1, а их сумма остается после переходного периода первоначальной - Ω2. Рис. 2 Восстановлению скорости способствует регулятор 7 с его пропорционально-интегральной функцией. Время регулирования будет зависеть от коэффициента усиления по схеме с входом 9 и постоянных времени регулятора 7. На рис. 2 показан график неизменной скорости Ω2, а также изменение выходной частоты ω преобразователя 6 при изменении скорости вращения ветроколеса Ω1 (скорости ветра V). Таким образом, получена стабилизация выходной скорости вращения электромагнитного редуктора 2 и стабилизация выходной скорости вращения состыкованного с ним входного вала 19 генератора 4. Отсюда величины частоты и напряжения на выходе генератора 4 и, следовательно, на выходе 15 заявляемого устройств являются стабилизированными.

На рис. 3 приведены результаты измерения угловой скорости Ω2 входного вала 19 генератора 4 на изготовленной модели устройства. Установившаяся скорость вращения генератора 4 имеет незначительные колебания, которые зависят от настройки регулятора 7. А колебания выходных параметров 15 будут еще меньше благодаря постоянным времени самого генератора.

Устройство по конструкции существенно отличается от известных малым количеством конструктивных элементов, весом и габаритами, простотой стандартных комплектующих, что предопределяет повышение кпд, надежности, удешевление всей ветроэнергетической установки, не требует дополнительных доработок уже известных устройств. Ветроколеса в рабочем режиме имеют относительно небольшую скорость вращения. Устройство позволяет снизить массу электрогенератора, приводимого во вращение ветроколесом через редуктор, то есть используются сравнительно легкий быстроходный электрогенератор. Преобразователь частоты можно применить любой конструкции с регулированием частоты от нуля. Для автономных ветроустановок напряжение питания преобразователя возможно от аккумулятора.

Устройство стабилизации напряжения и частоты ветроэнергетической установки, содержащее мультипликатор, соединенный с ветроколесом и через выходной вал - с синхронным генератором с постоянными магнитами, отличающееся тем, что в качестве мультипликатора устройство содержит электромагнитный редуктор, содержащий статор с многофазной обмоткой, а также первый и второй роторы, жестко установленные на входном и выходном валах соответственно, обмотка размещена в пазах внутренней поверхности статора с образованием полюсов и подключена к выходу преобразователя частоты, при этом конструктивный коэффициент редукции редуктора равен:

z - число зубцов ротора на входном, соединенном с ветроколесом валу электромагнитного редуктора;
р - число пар полюсов статора электромагнитного редуктора 2;
(z-р) - число зубцов второго ротора на выходном валу редуктора,
а выходная величина частоты преобразователя соответствует выражению

ω - выходная частота преобразователя;
Ω1 - скорость вращения ветроколеса;
Ω2 - выходная скорость электромагнитного редуктора, она же входная скорость генератора,
причем управляющий вход преобразователя частоты подсоединен к выходу пропорционально-интегрального регулятора, выполненного с возможностью настройки коэффициентов усиления и постоянной времени, один из входов которого подсоединен к выходу датчика скорости генератора, а другой вход подсоединен к устройству задания скорости вращения вала генератора, который соединен с выходным валом редуктора.



 

Похожие патенты:

Изобретение относится к электротехнике, а именно к бесконтактным электромагнитным редукторам, которые содержат корпус с установленными в нем статором, первым и вторым роторами, жестко установленными на входном и выходном валах, при этом первый ротор выполнен в виде ферромагнитной беличьей клетки, стержни которой, вставленные в кольца из немагнитного и неэлектропроводящего материала, образуют зубцы этого ротора, а второй ротор, расположенный внутри первого, выполнен в виде зубчатого магнитопровода, причем статор, стержни зубцов первого ротора и второй ротор выполнены шихтованными из ферромагнитной тонколистовой стали.

Изобретение относится к электротехнике, в частности к электрическим машинам. Трехвходовая аксиальная генераторная установка содержит корпус, в котором установлены фотоэлектрический и тепловой преобразователи, блок управления, датчики положения ротора с сигнальными обмотками и обмотками возбуждения, боковой аксиальный магнитопровод с многофазной обмоткой якоря основного генератора, боковой аксиальный магнитопровод с дополнительной многофазной обмоткой, внутренний аксиальный магнитопровод с многофазной обмоткой якоря подвозбудителя, основной и дополнительной однофазными обмотками возбуждения возбудителя, ротор, на валу которого посредством дисков жестко закреплены аксиальный многополюсный индуктор подвозбудителя с постоянными магнитами и аксиальный вращающийся магнитопровод с многофазной обмоткой якоря возбудителя и однофазной обмоткой возбуждения основного генератора и три выпрямителя, при этом по внешнему радиусу аксиального многополюсного индуктора подвозбудителя с постоянными магнитами закреплены постоянные магниты датчика положения ротора.

Изобретение относится к электротехнике, а именно к электромагнитным редукторам. Электромагнитный редуктор содержит корпус с установленными в нем статором, первым и вторым роторами, жестко установленными на входном и выходном валах соответственно, при этом первый ротор, расположенный коаксиально со статором и жестко связанный с концом входного вала, выполнен в виде беличьей клетки, стержни которой, вставленные в кольца из немагнитного материала, образуют зубцы этого ротора, а второй ротор, расположенный внутри первого, выполнен в виде зубчатого магнитопровода, причем статор, стержни зубцов первого ротора и второй ротор выполнены шихтованными из ферромагнитной тонколистовой стали, обмотки возбуждения установлены на щитах редуктора и подключены к источнику постоянного напряжения с возможностью создания однонаправленных магнитных потоков в статоре и роторах, а второй ротор выполнен с числом зубцов, равным разности между числом зубцов первого ротора и числом зубцов статора z2=(z1-z).

Изобретение относится к электротехнике, а именно к устройствам преобразования энергии. Устройство преобразования энергии включает постоянные магниты (1), держатель (2) магнитов, крышку (3), шестерню (4), корпус (5), колесо (6), роликовый элемент (7) и катушку (8).

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к электротехнике и может использоваться в качестве привода электрогенераторов, а также любых технических средств, применяемых в народном хозяйстве.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам. Технический результат - возможность выработки трехфазного электрического тока.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к области электротехники, в частности к низкооборотным высокомоментным синхронным двигателям и генераторам с неподвижным якорем и вращающимися магнитами, и может быть использовано в качестве ветрогенераторов, высокочастотных электрических генераторов и в автономных энергоустановках. Тихоходный электрический генератор на постоянных магнитах содержит ротор в виде двух плоских дисков, статор размещен между дисками ротора и выполнен в виде кольца, соединенного с неподвижным валом спицами, якорную обмотку, намотанную на кольцо - тороид, магниты с чередующимися полюсами, установленными на боковых частях ротора в пазах в количестве от 80 до 250 на каждом диске.

Изобретение относится к области электроэнергетики. Технический результат - уменьшение потерь от высокочастотных составляющих спектра полезной мощности, увеличение кпд преобразования механической энергии в электрическую, повышение удельных характеристик системы преобразования, улучшение технологичности устройства и повышение его надежности.

Изобретение относится к области ветроэнергетики, а именно к ветроэнергетическим установкам с горизонтально-осевыми пропеллерными турбинами. Способ ориентации ветроэнергетических установок с горизонтально-осевыми пропеллерными турбинами относительно направления воздушного потока, включающий в себя установку их на платформе с возможностью ее вращения в горизонтальной плоскости вокруг вертикальной оси, при этом, для устойчивой ориентации оси каждой турбины параллельно ветровому потоку, платформу выполняют так, чтобы для обеспечения статически устойчивого положения каждой турбины в ветровом потоке центр бокового давления всей конструкции платформы с турбинами находился за вертикальной осью вращения платформы.

Изобретение относится к машиностроению, а более конкретно к устройствам, преобразующим механическую энергию низкооборотного привода в электрическую энергию. Мультипликатор высокомощной энергетической установки содержит сепаратор (1) с телами качения (2), неподвижное жесткое колесо (3) и волнообразователь 4.

Изобретение относится к способу эксплуатации ветроэнергетической установки, к ветроэнергетической установке и ветряному парку из ветроэнергетических установок.

Изобретение относится к ветроэнергетике и может быть использовано для комплексного энергоснабжения индивидуальных потребителей. Ветроэнергетическая установка содержит ветроколесо, связанное с генератором, и блок управления.

Изобретение относится к электроэнергетике. Предложенная аэродинамическая электростанция (АДЭС) содержит по меньшей мере одну аэродинамическую трубу 1 (АДТ), верхняя часть которой сообщена с вентилятором 3, а нижняя - с атмосферой, и размещенные по длине АДТ 1 высокоскоростные аэродинамические агрегаты (ВАДА), каждый из которых включает высокоскоростной аэродинамический двигатель (ВАДД) и соединенный с его валом генератор.

Изобретение относится к области ветроэнергетики и может быть использовано для преобразования энергии ветра в электрическую энергию. Сегментный ветроэлектрогенератор содержит роторные ферромагнитные элементы, установленные на лопастях ветроколеса, статор, башню, корпус с поворотным основанием, ступицей, направляющим хвостовым устройством и подкосами статора.

Изобретение относится к системам управления полетом силового профиля крыла или буксировочного воздушного змея для преобразования энергии ветра в электрическую или механическую энергию.

Изобретение относится к ветряным двигателям. Ветряный двигатель состоит из электрогенератора, установленного на вращающейся опоре.

Изобретение относится к устройствам для вырабатывания электрической энергии из энергии ветра. Установка для вырабатывания электрической энергии из энергии ветра включает кожухи, каждый из которых имеет горловину; ветряные турбины, каждая из которых расположена в горловине одного из кожухов; энергосистему для преобразования механической энергии, полученной от ветряных турбин, в электрическую энергию; блоки, каждый из которых содержит по меньшей мере два кожуха и связанные с ними ветряные турбины, и энергосистему; поворотную монтажную систему для поворотной поддержки каждого из блоков; опорную конструкцию, поддерживающую блоки над поверхностью.

Изобретение относится к ветроэнергетическим установкам. Аэроплавательный виндротор содержит ортогональную турбину из лопастей крыловидного профиля и совмещенный с ней генератор, поднятые над землей плоско-выпуклой аэростатной оболочкой положительной плавучести, имеющей жесткое горизонтальное днище и гибкие тросовые связи с наземной лебедкой.

Изобретение относится к области ветроэнергетики. Способ и система для преобразования энергии ветра в электрическую или механическую энергию за счет полета по меньшей мере одного профиля (10) силового крыла, привязанного посредством по меньшей мере одного или более кабелей (11) к наземному блоку (9), передвигаемому указанным профилем силового крыла вдоль траектории знакопеременного смещения (12) для возбуждения генератора (12), причем указанная траектория знакопеременного смещения выполнена с возможностью такого ориентирования, которое обеспечивает ее самоустановку в направлении (17), по существу ортогональном направлению ветра (W). Причем на протяжении фаз полета профиля (10) силового крыла в режиме генерации энергии длина кабеля (11) остается постоянной. Изобретение направлено на достижение максимальной выработки энергии. 2 н. и 29 з.п. ф-лы, 6 ил.
Наверх