Радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно



Радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно
Радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно
Радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно
Радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно
Радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно
Радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно
G10K11/00 - Способы и устройства для передачи, проведения или направления звука вообще; способы или устройства для защиты от воздействия шума или других акустических колебаний вообще или для их подавления (звукоизоляция для транспортных средств B60R 13/08; звукоизоляция для самолетов B64C 1/40; звукоизоляционные материалы см. в соответствующих подклассах, например C04B 26/00- C04B 38/00; уменьшение шума на верхнем строении путей E01B 19/00; поглощение передаваемого по воздуху шума с дорог или железнодорожных путей E01F 8/00; звукоизоляция, поглощение или отражение шума в строительных сооружениях E04B 1/74; акустика помещений E04B 1/99; звукоизоляция полов E04F 15/20; глушители шума и выхлопные устройства

Владельцы патента RU 2593624:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "ТИХООКЕАНСКОЕ ВЫСШЕЕ ВОЕННО-МОРСКОЕ УЧИЛИЩЕ ИМЕНИ С.О. МАКАРОВА" МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ (Г. ВЛАДИВОСТОК) (RU)

Использование: изобретение относится к гидрофизике, геофизике и радиофизике. Сущность: радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно включает в себя размещенные в среде излучающий и приемный акустические преобразователи, соединенные с излучающим и приемным трактами соответственно, сформированную между ними рабочую зону нелинейного взаимодействия волн. Принципиальное отличие заключается в том, что заявляемая радиогидроакустическая система дополнительно включает в себя размещенный в атмосфере информационно-аналитический центр (ИАЦ). ИАЦ содержит блок системного анализа, вход и выход которого через приемный и передающий радиоблоки соединены с выходом и входом приемного и излучающего трактов системы соответственно. Рабочая зона сформирована с использованием двух приемных преобразователей в виде горизонтально разнесенных в точках приема и совмещенных в точке излучения просветных параметрических антенн. Морское судно или подводный аппарат размещены на линии излучения-приема просветных сигналов для приема или передачи необходимой информации с использованием их штатных (лабораторных) или забортных гидроакустических станций. Информационные сигналы с выхода радиоблока ИАЦ дополнительно передаются по каналам радиосвязи другим участникам использования системы контроля морской обстановки. Технический результат изобретения заключается в разработке радиогидроакустической системы формирования, а также измерения и передачи в морской среде информационных волн различной физической природы искусственных и естественных источников в широком диапазоне частот, а также сигналов подводной связи и их передачи из морской среды в атмосферу и обратно в излучающий тракт системы. 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к гидрофизике, геофизике и радиофизике. Оно может быть использовано в радиогидроакустических системах мониторинга и контроля акваторий на основе технологии дальней передачи информационных волн в морской среде, из морской среды в атмосферу и обратно.

Известны гидроакустические параметрические системы (поисковые гидролокаторы) приема рассеянных и отраженных морскими объектами ультразвуковых волн накачки среды. Системы предназначены для поиска морских биологических скоплений, например рыбных или крабовых, а также для исследования структуры морского дна (Б.К. Новиков, О.В. Руденко, В.И. Тимошенко. Нелинейная гидроакустика. Судостроение, 1981). Основными недостатками указанных технических решений относительно заявляемого изобретения являются: малая дальность (сотни метров, единицы километров) параметрического приема информационных волн; в качестве информационных сигналов не используются волны различной физической природы, в том числе формируемые морскими объектами. Аналогичные трудности проявляются при использовании параметрических гидролокаторов в стационарных и буксируемых системах приема и передачи информационных волн.

Известно устройство параметрического приема волн в морской среде инфразвуковых колебаний (патент №422197 СССР, М. Кл3 В06В 1/00 от 28.02.1982). Устройство содержит размещенные в среде излучатель и приемник высокочастотных волн накачки, а также источник информационных волн, модулирующий распространяющуюся в среде высокочастотную волну накачки. Приемный тракт устройства содержит преобразователь волн накачки, усилитель и фазовый детектор как измеритель и индикатор выделяемых информационных волн. Основными недостатками этого устройства являются низкая чувствительность приема измеряемых информационных волн и, как следствие, малая дальность параметрического приема, что особенно проявляется при приеме волн «малых амплитуд». В устройстве не предусмотрена также возможность параметрического приема информационных волн различной физической природы. Прием волн дробного диапазона также не предусмотрен. Следует отметить, что рассматриваемое устройство было разработано в начальный период становления и развития методов и средств нелинейной гидроакустики.

Известна гидроакустическая система передачи упругой волны в морской среде, реализующая «Способ передачи упругой волны в морской воде (варианты)» (патент №2167454 RU, МПК7 G10K 11/00, G10K 15/02 от 15.12.1998). Гидроакустическая система включает в себя: размещенные в среде излучающий и приемный акустические преобразователи, сформированную вблизи излучателя рабочую зону нелинейного взаимодействия волн накачки среды и информационных волн, размещенный на линии излучения - приема сигналов накачки узел модулирования параметров среды, соединенные с излучающим и приемным преобразователями тракт формирования, усиления и излучения волн накачки, а также тракт приема нелинейно преобразованных волн накачки, анализа и выделения из них информационных волн соответственно. Основным недостатком рассмотренного технического решения является низкий эффект нелинейного взаимодействия и параметрического преобразования волн, обусловленный проведением накачки среды и формированием параметрической антенны вблизи излучателя. Малый объем рабочей зоны снижает общий эффект нелинейного взаимодействия и параметрического преобразования волн, а ее ограниченная пространственная протяженность как параметрической антенны, ухудшает возможность приема волн в инфранизкочастотном и дробном диапазонах частот. Передача информационных волн из морской среды в атмосферу и обратно в системе не предусмотрена.

Известна также гидроакустическая параметрическая система передачи информационных волн в морской среде, реализующая «Способ передачи информационных волн в морской среде» (патент №2472236 RU, МПК7 G10K 11/00 от 15.06.2011). Параметрическая система передачи информационных волн в морской среде включает в себя: установленные в среде излучающий и приемный акустические преобразователи, соединенные с выходом излучающего и с входом приемного трактов системы соответственно, сформированную в дальней зоне излучателя нелинейную область как излучающую параметрическую антенну, морское судно как источник излучения информационных волн и узел формирования в среде нелинейной области. Рассматриваемая гидроакустическая система по своей технической сущности является наиболее близким техническим решением к заявляемому изобретению и в этой связи выбрана в качестве прототипа. Система-прототип имеет следующие недостатки, которые будут устранены в заявляемом изобретении. Низкая эффективность нелинейного взаимодействия и параметрического преобразования волн накачки (подсветки) среды и информационных волн. Ограничена возможность приема информационных волн в диапазоне инфразвуковых и дробных частот. Ограничена также информационная емкость передаваемых и принимаемых волн. Перечисленные недостатки обусловлены ограниченным объемом и малой протяженностью нелинейной рабочей зоны из-за отсутствия в излучающем тракте системы блоков формирования, усиления и излучения низкочастотных сигналов. Кроме того, в системе-прототипе не предусмотрено решение задачи передачи информационных волн в атмосферу и обратно.

Таким образом, перечисленные недостатки представляют собой совокупность взаимосвязанных технических решений для создания на их основе новой структуры системы, обеспечивающей формирование, а также измерения и передачу информационных волн различной физической природы в среде распространения просветных волн и их последующую передачу из морской среды в атмосферу и обратно. Применение в излучающем тракте системы блоков формирования, усиления и излучения сигналов низкой звуковой частоты в диапазоне десятки-сотни герц позволяет формировать нелинейную рабочую зону протяженностью десятки-сотни километров на всей трассе распространения просветных волн между излучающим и приемным преобразователями. Повышение помехоустойчивости приема осуществляется путем формирования рабочей области в виде двух горизонтально разнесенных в зоне приема и совмещенных в точке излучения параметрических антенн, последующего фазового приема преобразованных просветных сигналов и их узкополосного спектрального анализа. Использование волн различной физической природы естественных и искусственных источников морской среды позволяет увеличить емкость формируемой и передаваемой информации. Возможность измерения информационных волн в инфразвуковом и дробном диапазонах частот достигается за счет переноса частотно-временного масштаба анализируемых просветных сигналов в высокочастотную область. Передача информационных волн из морской среды в атмосферу и обратно осуществляется за счет включения в систему принципиально новых блоков, а именно блоков информационно-аналитического центра (ИАЦ) и связанных с ним радиоблоков передачи и приема информационных волн с выхода приемного тракта на вход ИАЦ, а также с выхода ИАЦ на вход излучающего тракта системы.

Для решения поставленной задачи радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно включает в себя размещенные в среде излучающий и приемный акустические преобразователи, сформированную между ними рабочую зону нелинейного взаимодействия волн, соединенный с излучающим акустическим преобразователем излучающий тракт, включающий блоки формирования стабилизированных просветных сигналов близкой звуковой частоты и сигналов подводной связи, последовательно соединенные блок усилителя мощности, блок согласования выхода усилителя с кабелем и акустическим преобразователем (излучателем) сигналов, а также приемный акустический преобразователь, соединенный с трактом приема, анализа и регистрации выделяемых информационных сигналов. Принципиальное отличие заключается в том, что заявляемая радиогидроакустическая система дополнительно включает в себя размещенный в атмосфере информационно-аналитический центр (ИАЦ). ИАЦ содержит блок системного анализа, вход которого через приемный радиоблок связан с выходом передающего радиоблока приемного тракта системы, а выход блока системного анализа через передающий радиоблок связан с входом приемного радиоблока излучающего тракта системы, выход которого соединен с входом усилителя мощности излучающего тракта системы. При этом с использованием двух приемных преобразователей рабочая зона нелинейного взаимодействия и параметрического преобразования просветных и информационных волн сформирована в виде двух горизонтально разнесенных в точках приема и совмещенных в точке излучения просветных параметрических антенн. Приемный тракт системы включает в себя последовательно соединенные блоки: двухканального полосового усилителя, измерителя разности фаз (фазометра), преобразователя частотно-временного масштаба сигналов в высокочастотную область, узкополосного анализатора спектров, выход которого соединен с регистратором, а также с радиоблоком передачи информационных волн в ИАЦ. Кроме того, морское судно или подводный аппарат размещены на линии излучения-приема просветных сигналов для приема или передачи необходимой информации с использованием их штатных (лабораторных) или забортных гидроакустических станций. Кроме того, информационные сигналы с выхода радиоблока ИАЦ дополнительно передаются по каналам радиосвязи другим участникам использования системы контроля морской обстановки.

Отличительный признак «радиогидроакустическая система дополнительно включает в себя размещенный в атмосфере информационно-аналитический центр (ИАЦ), содержащий блок системного анализа, вход которого через приемный радиоблок связан с выходом передающего радиоблока приемного тракта системы, а выход блока системного анализа через передающий радиоблок связан с входом приемного радиоблока излучающего тракта системы, выход которого соединен с входом усилителя мощности излучающего тракта системы» обеспечивает получение заключительной части технического решения изобретения, а именно - передачу информационных волн из морской среды в атмосферу и обратно. При этом блок системного анализа информационных волн в ИАЦ осуществляет идентификацию информационных волн, вносит в них необходимую корректуру и передает их в качестве управляющих сигналов в излучающий тракт системы.

Отличительный признак «с использованием двух приемных преобразователей рабочая зона нелинейного взаимодействия и параметрического преобразования просветных и информационных волн сформирована в виде двух горизонтально разнесенных в точках приема и совмещенных в точке излучения просветных параметрических антенн» обеспечивает возможность формирования протяженного объема рабочей зоны нелинейного взаимодействия и параметрического преобразования просветных и измеряемых информационных волн, соизмеримой с протяженностью контролируемой морской среды. Именно этот признак обеспечивает повышение эффективности нелинейного взаимодействия волн, увеличение дальности параметрического приема информационных волн различной физической природы и помехоустойчивости приема в протяженном канале распространения волн.

Отличительный признак «приемный тракт системы включает последовательно соединенные блоки: двухканального полосового усилителя, измерителя разности фаз (фазометра), преобразователя частотно-временного масштаба сигналов в высокочастотную область, узкополосного анализатора спектров, выход которого соединен с регистратором, а также с радиоблоком передачи информационных волн в ИАЦ» обеспечивает завершение технического решения, а именно - дальнего параметрического приема сигналов подводной связи и информационных волн различной физической природы, формируемых естественными и искусственными источниками морской среды, для их последующей передачи из морской среды в информационно-аналитический центр, расположенный в атмосфере.

Дополнительный отличительный признак «морское судно или подводный аппарат размещены на линии излучения-приема просветных сигналов для приема или передачи необходимой информации с использованием их штатных (лабораторных) или забортных гидроакустических станций» расширяет состав участников формирования и работы радиогидроакустической системы контроля морской обстановки с использованием многостороннего обмена многофункциональной информацией.

Дополнительный отличительный признак «информационные сигналы с выхода радиоблока ИАЦ дополнительно передаются по каналам радиосвязи другим участникам использования системы контроля морской обстановки» расширяет технические характеристики создаваемой радиогидроакустической системы, обеспечивает возможность ее использования как широкомасштабной, в том числе региональной.

Исходя из рассмотренных признаков обобщенная формулировка технического решения (эффекта) заявляемого изобретения может быть изложена в следующем виде: разработана радиогидроакустическая система формирования, а также измерения и дальней передачи в морской среде сигналов подводной связи, информационных волн различной физической природы (акустических, электромагнитных и гидродинамических), формируемых искусственными и естественными источниками среды в звуковом, инфразвуковом и дробном диапазонах частот, а также передачи информационных волн по каналам радиосвязи в информационно-аналитический центр, расположенный в атмосфере и обратно в излучающий тракт системы, а также другим участникам использования региональной системы.

Физическая сущность дальнего параметрического приема гидрофизических волн в морской среде может быть представлена на основе следующих закономерностей. Известно, что параметры гидрофизических полей нелинейной морской среды, в которой распространяется гидроакустическая волна, изменяют (модулируют) ее характеристики (Воронин В.Α., Кириченко И.А. Исследование параметрической антенны в стратифицированной среде с изменяющимся полем скорости звука. Журнал «Известия ВУЗов». Электромеханика. - 1995. - N4). Исходя из этого, считается, что влияние гидрофизических полей на просветные сигналы осуществляется через изменение плотности и коэффициента упругости морской среды.

По своей физической сущности техническое решение изобретения основано на управляемом изменении (увеличение или уменьшение) плотности и(или) температуры морской воды на пути распространения сигналов. Изменение этих параметров в сторону увеличения можно производить различными способами, но основным из них является формирование протяженной нелинейной области в направлении излучения-приема волн. Для биологических скоплений - это пузырьковая область организмов, например рыб, для морских судов - это пузырьковый кильватерный след. Такие изменения могут быть внесены также другими специальными способами и средствами.

Основной вклад в эффективность преобразования высокочастотного сигнала в низкочастотные гармоники вносят так называемые нелинейные параметры среды, которые невелики. Для морской воды при средней солености и изменений температур в пределах 20-30°С величина коэффициента нелинейности Ε составляет порядка 3,6. Последние экспериментальные работы, проведенные в открытом море, показали, что коэффициент нелинейности Ε в широком диапазоне частот и на глубинах до 300 м меняется незначительно и не превышает 4. Таким образом, дальнейшее повышение эффективности работы гидроакустических приборов за счет совершенствования работы излучателей (в том числе и наращивания мощности излучаемого сигнала) проблематично. В этом случае необходимо применять иные способы и средства повышения нелинейного взаимодействия волн.

Проведем анализ закономерностей взаимодействия в морской среде упругих и электромагнитных волн, используемых в заявляемой системе. Математическое объяснение процесса распространения электромагнитной волны описывается уравнением диффузии, которое выводится на базе теории взаимодействия электромагнитной волны и проводящей жидкости, приблизительно описывающей электропроводящую морскую среду. Закономерности параметрического формирования электромагнитных колебаний в проводящей морской среде и их измерение, как модуляционных признаков просветных акустических волн, заключаются в следующем. При излучении электромагнитной волны в морскую электропроводящую среду происходят ее поглощение и затухание. Одновременно значительно уменьшается ее длина. В зависимости от проводимости морской среды расстояние, на котором затухает электромагнитная волна низких и инфранизких частот (от единиц герц до сотен герц), может составлять от 10 до 200 м. При этом длина затухающей электромагнитной волны может составлять от 0,1 до 20 м. Теоретическая основа и практические пути реализации рассматриваемой закономерности заключаются в том, что электрические токи, генерируемые электромагнитной волной, переходят в джоулевое тепло. Диссипативные потери на ток проводимости в морской среде преобразовываются в тепловые потери, которые, в свою очередь, изменяют механистические характеристики проводящей жидкости (плотность, температуру, теплоемкость и т.д.). При пропускании по такой модулированной в пространстве нелинейной упругой среде акустической волны накачки ее параметры будут модулированы за счет изменения фазовой скорости волны по трассе распространения. За счет нелинейного взаимодействия волн в спектре упругой (акустической) волны накачки появляются высокочастотные и низкочастотные параметрические составляющие.

Параметрический прием информационных волн в рассматриваемой системе основан на амплитудно-фазовой модуляции просветной акустической волны информационными волнами в нелинейной рабочей зоне.

Процесс параметрического приема волн пространственной антенной на просветной гидроакустической линии можно пояснить обычной системой уравнений гидродинамики для вязкой жидкости при наложении на уравнение состояния соответствующих изменений фазовой скорости звука во времени и пространстве.

Для вычисления скорости распространения упругой (акустической) волны можно применить известную формулу

,

где - коэффициент адиабатической сжимаемости жидкости;

Р - давление; ρ - плотность; υ - удельный объем.

Воспользовавшись соотношением между адиабатической и изотермической сжимаемостью βs=Gυ/Gpβt, можно получить выражение для фазовой скорости

.

Изменения плотности и давления при постоянной температуре приводят к изменению фазовой скорости звука в зоне взаимодействия электромагнитной волны с упругой волной. То есть в отличие от классических уравнений гидродинамики для идеальной жидкости, которые используются в теории нелинейных параметрических излучателей, в рассматриваемом случае фазовая скорость упругой волны изменяется во времени и пространстве по закону изменения электромагнитной волны. Таким образом, если в рабочей зоне просветной параметрической системы распространяется электромагнитная волна гармонической частоты Ωэм, то фазовая скорость упругой (просветной акустической) волны C(t) также будет меняться с той же частотой Ωзвэм. Количественные характеристики глубины модуляции можно получить, используя конкретные инженерные модели реализации способа. Проверка работоспособности идей, являющихся основой предлагаемого изобретения, проводилась при использовании электромагнитных волн для преобразования (модуляции) нелинейных характеристик рабочей зоны взаимодействия. Очевидно, что закономерности нелинейного взаимодействия для других волн, как и в случае положительного эффекта с электромагнитными волнами, также должны реально существовать, т.е. в зоне приема упругих волн будет формироваться спектр дополнительных волн (составляющих суммарной и разностной частоты и их гармоник).

Заявленное изобретение иллюстрируется чертежами.

На фиг. 1 показана структурная схема реализации заявленной радиогидроакустической системы передачи информационных волн из морской среды в атмосферу и обратно.

На фиг. 2 приведен уровень информационных волн разностной частоты, направленно сформированных нелинейной областью кильватерного следа катера. Частота гармонических сигналов накачки (подсветки среды) составляла 1040 Гц и 960 Гц. Частота сформированного информационного сигнала разностной частоты составляла 80 Гц. Протяженность морской трассы передачи информации составляла 25 км.

На фиг. 3 приведены схема эксперимента и спектрограмма первой и второй параметрических составляющих разностной частоты (2 Гц и 1 Гц). Бигармонические сигналы накачки среды излучались на частотах 405 Гц и 407 Гц. Протяженность линии звукоподводной связи составляла 45 км. Протяженная нелинейная область среды (параметрическая антенна) формировалась маневрирующим морским судном.

На фиг. 4 показаны спектрограмма и спектр сигналов информационных волн, сформированных электромагнитными излучениями забортного излучателя, на которых наблюдаются сигналы суммарной и разностной частоты, как телеграфные посылки сигнала «SOS». Протяженность линии звукоподводной связи составляла 25 км.

На фиг. 5 приведен спектр электромагнитного поля судна. В спектре наблюдаются параметрические составляющие суммарной и разностной частоты от исходных частот акустической подсветки среды и электромагнитных излучений судна. Протяженность просветной трассы составляла 40 км.

На фиг. 6 приведена спектрограмма шумового поля морского судна, на которой наблюдаются гидродинамическое поле кильватерного следа и дискретная составляющая резонансных колебаний корпуса судна. Частота просветных сигналов составляла 400 Гц, протяженность просветной трассы составляла 40 км.

Приведенные на фиг. 5, 6 результаты дальнего параметрического измерения информационных полей морских судов наглядно подтверждают возможность их использования в решении задач связи и, одновременно, в задачах мониторинга полей объектов различной физической природы.

Список элементов фиг. 1:

1 излучающий тракт;

2 приемный тракт;

3 излучатель;

4, 5 приемные преобразователи;

6 морское судно;

6а нелинейная область кильватерного следа судна;

6б забортный излучатель;

7 область нелинейного взаимодействия волн накачки и информационных сигналов (рабочая зона);

8 генератор сложных сигналов подводной связи;

9 генератор просветных сигналов близкой стабилизированной частоты;

10 усилитель мощности;

11 блок согласования;

12 двухканальный широкополосный усилитель;

13 фазометр;

14 преобразователь частотно-временного масштаба сигналов в высокочастотную область;

15 анализатор спектров;

16 регистратор;

17, 21 передающие радиоблоки;

18 информационно-аналитический центр;

19, 22 приемные радиоблоки;

20 блок системного анализа;

23 контролируемая морская среда;

24 морская поверхность;

25 морское дно;

26 геофизические волны морского дна;

27 гидрофизические поля морской среды.

Как показано на фиг. 1, в качестве источника информационных волн использовалось морское судно 6, излучающее акустические, электромагнитные и гидродинамические волны; забортный излучатель 6б акустических и(или) электромагнитных сигналов связи, нелинейная область кильватерного следа судна 6а.

Конструктивно тракт формирования и усиления акустических сигналов накачки 1 представляет электронную схему, содержащую генератор просветных сигналов близкой стабилизированной частоты 9, а также сложных сигналов подводной связи 8, усилитель мощности 10, блок согласования 11, выход которого связан кабелем с излучателем 3.

Конструктивно приемный тракт системы 2 представляет собой электронную схему, содержащую: двухканальный широкополосный усилитель 12, вход которого связан с приемными преобразователями 4 и 5, выход усилителя соединен с входом фазометра 13, выход которого через блок преобразователя частотно-временного масштаба сигналов в высокочастотную область 14 соединен с входом узкополосного анализатора спектров 15, далее с функционально связанным с ним рекордером (регистратором) 16, а выход анализатора спектров через передающий радиоблок 17 по радиоканалу связан с ИАЦ 18.

ИАЦ включает блок системного анализа 20, вход которого связан с приемным радиоблоком 19 и далее с выходом радиоблока 17 приемного тракта системы 2, а выход блока системного анализа 20, через выходной передающий радиоблок 21 и далее через приемный радиоблок 22 связан с излучающим трактом системы 1.

Кроме того, на чертежах показаны контролируемая морская среда 23 и область нелинейного взаимодействия волн накачки и информационных сигналов (рабочая зона) 7, морская поверхность 24, морское дно 25, геофизические волны морского дна 26, гидрофизические поля морской среды 27.

Радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно реализуется следующим образом.

Излучатель 3 с приемными преобразователями 4 и 5 размещают по глубине с учетом закономерностей распространения волн в протяженном гидроакустическом канале. Это обеспечивает эффективное формирование и использование области взаимодействия просветных волн и информационных сигналов. Излучения источника информационных сигналов 6 приводят к изменению характеристик проводящей жидкости (плотности и(или) температуры и(или) теплоемкости и т.д.), которые в зависимости от их физической сущности модулируют просветные сигналы. Вследствие этого спектр упругой волны изменяется, в нем появляются низкочастотные и высокочастотные гармоники, возникающие в результате нелинейного взаимодействия волн. Гармоники проявляются как модуляционные составляющие амплитуды и фазы низкочастотных волн накачки. Являясь неразрывно связанной компонентой просветной волны, они переносятся на большие расстояния и затем выделяются в блоках приемного тракта системы контроля среды.

Техническим результатом заявленного изобретения являются разработки практических путей построения и эксплуатации широкомасштабной радиогидроакустической системы измерения, формирования, а также измерения и передачи информационных волн различной физической природы источников среды и технических объектов в звуковом, инфразвуковом и дробном диапазонах частот, а также специальных сигналов подводной связи на морских акваториях протяженностью десятки-сотни километров, а также последующей передачей информации из морской среды в атмосферу и обратно в излучающий тракт системы и дополнительно другим участникам использования Региональной системы контроля морских акваторий.

Заявленное изобретение представляет значительный интерес для решения практических задач морской науки, оборонного и народнохозяйственного комплексов, так как оно может быть использовано в радиогидроакустических системах мониторинга и контроля акваторий на основе технологии дальней передачи информационных волн в морской среде, из морской среды в атмосферу и обратно. Система промышленно применима, так как для ее создания используются распространенные компоненты и изделия радиотехнической промышленности и вычислительной техники.

Заявляемая радиогидроакустическая система не оказывает отрицательного воздействия на экологическое состояние морской среды и атмосферы.

1. Радиогидроакустическая система передачи информационных волн из морской среды в атмосферу и обратно, включающая в себя размещенные в среде излучающий и приемный акустические преобразователи, сформированную между ними рабочую зону нелинейного взаимодействия волн, соединенный с излучающим акустическим преобразователем излучающий тракт, включающий блоки формирования стабилизированных просветных сигналов близкой звуковой частоты и сигналов подводной связи, последовательно соединенные блок усилителя мощности, блок согласования выхода усилителя с кабелем и акустическим преобразователем (излучателем) сигналов, а также приемный акустический преобразователь, соединенный с трактом приема, анализа и регистрации выделяемых информационных сигналов, отличающаяся тем, что радиогидроакустическая система дополнительно включает в себя размещенный в атмосфере информационно-аналитический центр (ИАЦ), содержащий блок системного анализа, вход которого через приемный радиоблок связан с выходом передающего радиоблока приемного тракта системы, а выход блока системного анализа через передающий радиоблок связан с входом приемного радиоблока излучающего тракта системы, выход которого соединен с входом усилителя мощности излучающего тракта системы; при этом с использованием двух приемных преобразователей рабочая зона нелинейного взаимодействия и параметрического преобразования просветных и информационных волн сформирована в виде двух горизонтально разнесенных в точках приема и совмещенных в точке излучения просветных параметрических антенн; при этом приемный тракт системы включает в себя последовательно соединенные блоки: двухканального полосового усилителя, измерителя разности фаз (фазометра), преобразователя частотно-временного масштаба сигналов в высокочастотную область узкополосного анализатора спектров, выход которого соединен с регистратором, а также с радиоблоком передачи информационных волн в ИАЦ.

2. Система по п. 1, отличающаяся тем, что морское судно или подводный аппарат размещены на линии излучения-приема просветных сигналов для приема или передачи необходимой информации с использованием их штатных (лабораторных) или забортных гидроакустических станций.

3. Система по п. 1, отличающаяся тем, что информационные сигналы с выхода радиоблока ИАЦ дополнительно передаются по каналам радиосвязи другим участникам использования системы контроля морской обстановки.



 

Похожие патенты:

Изобретение относится к области шумопонижающих конструкций, предназначенных для снижения уровней шума разнообразного типа шумовиброактивных технических объектов, производящих акустическое (шумовое) загрязнение окружающей среды.

Изобретение относится к области машиностроения. Устройство содержит прижимной лист, имеющий не менее двух групп условных прямоугольных участков между соседними креплениями.

Изобретение относится к области электроакустики. Способ предполагает эксплуатацию излучателя в рабочем и тестовом режимах, подачу на излучатель сигнала напряжения U(t), который включает традиционный сигнал Utr(t) и два дополнительных сигнала напряжения Ud(t) и Und(t): , Здесь Utr(t) - традиционный сигнал напряжения, пропорциональный значению желаемого акустического давления Utr(t)=k·p(t), Ud(t) - дополнительный сигнал напряжения, получаемый согласно формуле Ud(t)=k·(a0·p(t)′+a1·p(t)′′).

Изобретение относится к области акустики. Сигнал управления электроакустическим излучателем формируется в результате подачи на излучатель сигнала напряжения U(t), который включает традиционный сигнал Utr(t) и два дополнительных сигнала напряжения Ud(t) и Und(t): U(t)=Utr(t)+Ud(t)+Und(t)=k·(p(t)+a0·p(t)′+a1·p(t)′′+a2·х′+a3·x).

Изобретение относится к акустике и может быть использовано в индивидуальных слуховых аппаратах. Устройство содержит передающий звуковод, выполненный в виде постоянного магнита, имеющего входное и выходное отверстия, оси которых либо соосны, либо пересекаются под углом, и закрепленного на или внутри слухового аппарата и принимающий звуковод, выполненный в виде постоянного магнита.

Изобретение относится к медицинской технике, а именно к диагностическим ультразвуковым системам. Искривленный преобразователь сфокусированного ультразвука высокой интенсивности (HIFU) содержит искривленную пьезоэлектрическую матрицу, имеющую противоположные выпуклую и вогнутую поверхности, причем вогнутая поверхность является передающей поверхностью, и множество зон акустической передачи.

Способ формирования параметрической антенны в морской среде, включающий размещение на акватории излучающего и приемных преобразователей, ее прозвучивание низкочастотными акустическими сигналами стабилизированной частоты, с формированиием зоны нелинейного взаимодействия и параметрического преобразования просветных и измеряемых информационных волн различной физической природы, с обеспечением возможности приема параметрически преобразованных просветных волн и восстановления по ним исходных характеристик измеряемых информационных волн с учетом их параметрического и частотно-временного преобразования, отличается тем, что просветную параметрическую антенну формируют как многолучевую пространственно-развитую, для чего используют ненаправленные излучающие преобразователи, которые располагают в центре контролируемой акватории, и размещают их на трех уровнях по глубине как на оси подводного звукового канала, так выше и ниже его, при этом приемные блоки выполняют аналогично друг другу, размещают по глубине аналогично излучающим преобразователям и располагают относительно излучающего центра по кругу или периметру контролируемой акватории через 45°, причем каждый из приемных блоков формируют из трех ненаправленных преобразователей, которые располагают в вертикальной плоскости по треугольникам, предпочтительно равнобедренным, основания которых лежат на одной вертикали, а вершины обращены к излучателям, причем параметрически преобразованные просветные сигналы, поступающие от каждого излучающего преобразователя, принимают каждым одиночным приемным преобразователем каждого из приемных блоков.
Изобретение относится к средствам защиты органа слуха от воздействия шума. Противошумные наушники с индикатором акустической опасности содержат оголовье, на концах которого расположены чашки наушников, каждая из которых выполнена в виде корпуса с упругим вкладышем, наполнителем в виде шумопоглощающего пакета и амортизатором, блок питания, микрофон, вычислитель и мультирежимный световой индикатор, выполненный с возможностью цветового кодирования акустической опасности условий жизнедеятельности.

Устройство на интегральных схемах (IC) включает в себя подложку, имеющую расположенные напротив первую и вторую главные стороны и один или более краев, задающих внешнюю периферию подложки.

Изобретение относится к области радиотехники. Способ предполагает подачу на излучатель сигнала напряжения, представляющего собой сумму традиционного сигнала напряжения, пропорционального значению желаемого акустического давления, и дополнительного сигнала напряжения, получаемого согласно формуле Ud(t)=k·(a0·p(t)'+a1·p(t)''), где p(t) - акустическое давление, которое хочется воспроизвести, p(t)', p(t)'' первая и вторая производная давления по времени, k - коэффициент, определяющий уровень громкости, a0, a1 - константы в формуле, имеют значения, при которых скорость нарастания и спада сигналов акустического давления при воспроизведении электроакустическим излучателем тестовых сигналов максимально приближена к скорости нарастания и спада тестовых сигналов, а форма сигналов акустического давления имеет наименьшие искажения.

Использование: изобретение относится к гидрофизике, геофизике и радиофизике. Оно может быть использовано в системах освещения обстановки, комплексного мониторинга полей различной физической природы, формируемых искусственными и естественными источниками, с использованием технологии дальней передачи информационных волн в морской среде, а также из морской среды в атмосферу и обратно. Сущность: способ передачи информационных волн из морской среды в атмосферу и обратно заключается в формировании в среде рабочей зоны, которую создают за счет излучения сигналов близкой звуковой частоты и введения в нее сигналов передаваемой информации. Принципиальное отличие заявляемого способа от прототипа заключается в том, что один излучающий и два приемных акустических преобразователя размещают на противоположных границах среды и формируют между ними сплошную нелинейную рабочую зону, состоящую из двух горизонтально разнесенных в зоне приема параметрических антенн. С помощью этих антенн нелинейно преобразованные просветные волны принимают, далее измеряют сигналы разности их фаз, переносят шкалу в высокочастотную область, проводят узкополосный спектральный анализ и передают по каналу радиосвязи в информационно-аналитический центр (ИАЦ), расположенный в атмосфере. В ИАЦ формируют сигналы управления и передают их по радиоканалу обратно в излучающий тракт системы. В качестве информационных волн различной физической природы используются поля естественных и искусственных источников морской среды. Частоту сигналов подсветки среды близкой звуковой частоты устанавливают в интервале десятки-сотни герц. Использование волн, излучаемых судами и подводными аппаратами, обеспечивает в заявляемом способе увеличение емкости передаваемой и принимаемой информации. Технический результат: формирование и дальняя передача в морской среде информационных волн (подводной связи, информационных полей среды и объектов), а также из морской среды в атмосферу и обратно в излучающий тракт системы для управления ее работой. 4 з.п. ф-лы, 6 ил.

Использование: изобретение относится к гидроакустическим методам и реализующим их системам поиска углеводородных залежей, а также поиска донных объектов различного назначения и физической природы, предпочтительно на акваториях морского шельфа. Сущность: система мобильного поиска месторождений углеводородов и донных объектов, обнаружения признаков зарождения опасных морских явлений на морском шельфе включает в себя размещенные в среде излучающие и приемные акустические преобразователи, сформированную между ними рабочую зону нелинейного взаимодействия и параметрического преобразования измеряемых информационных волн и волн накачки среды, как параметрическую антенну, соединенные с преобразователями соответственно, тракт формирования и усиления низкочастотных просветных сигналов накачки среды, а также тракт приема, усиления, обработки, выделения и регистрации информационных сигналов, при этом протяженность рабочей зоны измерительной параметрической системы соответствует протяженности обследуемой акватории, для чего излучающий и приемный преобразователи акустических сигналов разнесены на ее противоположные границы, при этом излучающий преобразователь размещен на подвижном носителе и содержит низкочастотный и высокочастотный излучатели, первый из которых выполнен с возможностью горизонтального ориентирования его диаграммы направленности в сторону приемного преобразователя, при этом высокочастотный излучатель выполнен с возможностью ориентирования его диаграммы направленности на морское дно, кроме того, тракт формирования и усиления излучаемых сигналов накачки среды сформирован как двухканальный, содержащий низкочастотный и высокочастотный каналы, каждый из которых включает последовательно соединенные генератор стабилизированной частоты, усилитель мощности, блоки согласования выходов усилителей с подводными кабелями, которые подключены к соответствующим излучающим преобразователям, кроме того, приемный преобразователь включает два горизонтально разнесенных приемных блока, каждый из которых соединен с расположенным на поверхности моря радиомодулем, который по радиоканалу связан с приемным трактом системы, содержащим последовательно связанные с соответствующим каналом двухканального приемного радиоблока информационных сигналов, двухканальный широкополосный усилитель информационных сигналов, блок измерения разности фаз информационных сигналов, преобразователь временного масштаба информационных сигналов в высокочастотную область, блок узкополосного спектрального анализа и функционально связанный с ним регистратор спектров выделяемых информационных сигналов, при этом система содержит средства определения местоположения подвижных излучающих преобразователей в режиме реального времени. При этом система включает в себя блок спутниковой связи с центральным постом, выполненный с возможностью дистанционного управления ее работой, в процессе мобильного поиска углеводородов и донных объектов. Технический результат: обеспечение эффективного мобильного поиска залежей углеводородов и донных объектов различного назначения и физической природы, дальнее (упреждающее) обнаружение признаков зарождения опасных морских явлений на протяженных акваториях морского шельфа, определение места объектов и границ залежи углеводородов на морском дне с повышенной точностью, а также идентификацию измеряемых информационных волн, формируемых искусственными и естественными источниками, а также опасными явлениями морской среды и земной коры в широком диапазоне частот, охватывающим единицы килогерц - сотни - десятки - единицы - доли Герца. 13 ил.

Использование: изобретение относится к геофизическим методам исследований морской среды и предназначено для мобильного поиска месторождений нефти и газа, донных объектов различного назначения, дальнего упреждающего обнаружения признаков зарождения опасных морских явлений (разрушительных землетрясений и волн цунами) на морском шельфе. Сущность: способ мобильного поиска месторождений углеводородов, донных объектов, дальнего обнаружения признаков зарождения опасных морских явлений на морском шельфе включает облучение контролируемой морской среды в горизонтальной плоскости низкочастотными просветными, а в вертикальной плоскости зондирующими высокочастотными акустическими сигналами и формирование в области их пересечения рабочей зоны «тройного» нелинейного взаимодействия и параметрического преобразования волн низкочастотной и высокочастотной накачки среды и измеряемых информационных волн, излучаемых поисковыми углеводородными залежами при этом, подводный приемный акустический блок формируют из двух горизонтально разнесенных приемников и размещают в центре обследуемого участка акватории, причем в составе излучающего блока используют низкочастотный и высокочастотный акустические излучатели, при этом излучающий блок размещают на подвижном носителе, который при поиске источников информационных волн перемещают по границе обследуемой акватории, с использованием его формируют вертикальную и горизонтальную параметрические антенны, первая из которых расположена в направлении морского дна, а вторая в направлении приемного блока, при этом волны зондирующего высокочастотного сигнала, взаимодействовавшие с измеряемыми информационными сигналами, принимают горизонтально разнесенными приемниками просветных параметрических антенн, усиливают по каждому каналу в полосе частот параметрического преобразования, измеряют сигналы их разности фаз и переносят их временной масштаб в высокочастотную область, выделяют их узкополосные спектры, определяют в них и регистрируют параметрические составляющие нижней и верхней боковых полос, по которым с учетом параметрического и частотно-временного преобразования волн накачки, а также направлений параметрических антенн восстанавливают и фиксируют характеристики измеряемых информационных полей, соответствующие поисковым признакам месторождений углеводородов, например частотного диапазона, интенсивности, пространственно-временной и спектральной структуры, а также определяют и фиксируют направления их максимального проявления. Далее по этим направлениям излучающий блок перемещают в точку расположения приемного блока, затем проходят за него, при этом уточняют местоположения источников информационных сигналов по этой курсовой линии и фиксируют протяженность месторождения вдоль нее, подобным же образом, перемещая подвижный носитель переменными галсами, многократно пересекающим каждую курсовую линию, определяют контур площади месторождения углеводородов, выполняют наблюдение и измерение признаков пространственно-временной динамики их характеристик, по которым осуществляют идентификацию измеряемых информационных волн по их принадлежности к водным гидрофизическим или донным геофизическим. При обнаружении геофизических волн и измерении их спектральных характеристик результаты сравнивают с обобщенными эталонными спектрами и выявляют принадлежность информационных волн к конкретным типам скоплений углеводородов, например газовым, газоконденсатным или залежам с притоком газа, при этом накачку морской среды в вертикальной плоскости дополнительно к акустическим сигналам проводят высокочастотными электромагнитными сигналами, при этом идентификацию и выделение информационных волн на фоне инженерных помех обследуемой акватории осуществляют с учетом известной информации о вероятных характеристиках этих полей на основе информационно-аналитических технологий. Технический результат: обеспечение мобильного поиска залежей углеводородов на морском шельфе с высокой точностью определения площади ее залегания на морском дне, с повышенной надежностью идентификации измеряемых информационных полей. 2 з.п. ф-лы, 13 ил.

Использование: гидрофизика, геофизика и радиофизика. Сущность изобретения: способ параметрического приема волн различной физической природы источников атмосферы, океана и земной коры в морской среде включает в себя пространственно-разнесенные по контролируемой акватории на десятки-сотни километров излучающие и приемные акустические преобразователи, сформированную между ними рабочую зону нелинейного взаимодействия и параметрического преобразования акустических просветных и измеряемых информационных волн, соединенные с преобразователями, соответственно, излучающий тракт формирования, усиления и излучения сигналов подсветки среды, а также тракт приема усиления, спектрального анализа нелинейно преобразованных просветных сигналов, выделения в спектрах верхней и (или) нижней боковых полос, определение и регистрации информационных сигналов, отличается тем, что рабочую зону нелинейного взаимодействия и параметрического преобразования просветных и измеряемых информационных волн формируют как многолучевую пространственно-развитую просветную параметрическую антенну, соизмеримую с протяженностью контролируемой акватории, для чего излучающий преобразователь располагают в центре акватории и включают в него три всенаправленных блока и устанавливают их на оси ниже и выше оси подводного звукового канала (ПЗК), а приемный преобразователь формируют аналогично излучающему преобразователю из трех одинаковых блоков, которые располагают по кругу или периметру на противоположной границе акватории и размещают их относительно ПЗК аналогично излучающим блокам, при этом каждый приемный блок формируют из трех одиночных гидрофонов, которые размещают в вертикальной плоскости по равнобедренным треугольникам, а их вершины направляют в сторону излучающих преобразователей, за счет этого совместно с излучающими преобразователями формируют просветную многолучевую параметрическую антенну, при этом в излучающий тракт измерительной системы включают последовательно соединенные блоки: звукового генератора стабилизированной частоты, усилителя мощности, трехканального блока согласования выхода усилителя с подводными кабелями и далее с излучающими акустическими преобразователями, а приемный тракт измерительной системы формируют как многоканальный и многофункциональный, который включает один канал анализа для выделения информационных сигналов, содержащий последовательно соединенные блоки: полосового усилителя, преобразователя временного масштаба сигналов в высокочастотную область, узкополосного анализатора спектров и функционально связанного с ним регистратора (рекордера), а также три канала измерения функций корреляции между средним и крайними гидрофонами приемных блоков, далее функций их взаимной корреляции для последующего измерения углов прихода многолучевых сигналов «сверху и снизу» по направлениям сформированных в вертикальной плоскости просветных параметрических антенн для каждого приемного блока, при этом в каждый из трех каналов корреляционного анализа включают последовательно соединенные: полосовые усилители, два параллельных блока измерения корреляционных функций сигналов между центральным и крайними гидрофонами приемных блоков, далее блоки измерения функций взаимной корреляции, выходы которых соединяют с общим блоком регистратора (рекордером), а также с блоком вычисления траектории лучей, как просветных параметрических антенн, и точек их пересечения на акватории (ЭВМ), при этом одиночные гидрофоны каждого приемного блока посредством кабелей через блок переключения каналов соединяют с многоканальным приемным трактом измерительной системы. Кроме того, нелинейно преобразованные просветные сигналы от каждого излучающего преобразователя принимают одиночными приемниками всех приемных блоков, что обеспечивает прием приходов просветных сигналов по отдельным лучам как параметрическим антеннам и их последующее разделение по углам приходов блоками корреляционного и взаимно корреляционного анализа. Кроме того, просветную параметрическую систему формируют как комплекс вертикальных многолучевых параметрических антенн и располагают их по кругу или периметру среды через 45 градусов, ориентируют их радиально от излучающего центра к периферии, что обеспечивает формирование общей пространственно-развитой параметрической системы мониторинга. Кроме того, расположенными в вертикальной плоскости приемными блоками совместно с излучающими блоками формируют многолучевые вертикальные параметрические антенны, при этом расстояние между преобразователями приемных блоков и их гидрофонов в вертикальной плоскости устанавливают в соответствии с корреляционными свойствами просветного акустического поля. Кроме того, в приемный и излучающий тракты системы включают блоки радиосвязи и обеспечивают согласование работы излучающего и приемного трактов измерительной системы и ее вхождения по каналам связи, предпочтительно спутниковой, в информационно-аналитический центр анализа многозвенной информации и управления системой. Кроме того, просветную радиогидроакустическую систему мониторинга наращивают (масштабируют) по пространству за счет объединения аналогичных подсистем мониторинга, разворачиваемых на других акваториях, и объединяют их по каналам радиосвязи (предпочтительно космической) в едином информационно-аналитическом центре, содержащем блок системного анализа информации, излучающий и приемный радиоблоки, и обеспечивают их двухстороннюю связь излучающим и приемным трактами системы освещения и мониторинга. Технический результат: разработка широкомасштабной радиогидроакустической просветной системы мониторинга как пространственно-развитой многолучевой параметрической антенны, соизмеримой с протяженностью контролируемой среды, обеспечивающей дальний и сверхдальний параметрический прием в морской среде волн различной физической природы атмосферы, океана и земной коры, формируемых естественными и искусственными источниками, явлениями и процессами в диапазоне частот, охватывающих десятки-единицы килогерц, сотни-десятки-единицы-доли Герца, включая сверхнизкочастотные, а также определение мест (дистанции и глубины) морских источников, возможности оперативной подстройки режимов работы системы к изменениям среды распространения просветных волн, а также к многообразию проявления информационных волн. 4 з.п. ф-лы, 17 ил.

Изобретение относится к гидрофизике, геофизике и радиофизике. Сущность: способ гидроакустической томографии полей атмосферы, океана и земной коры различной физической природы в морской среде, включающий в себя формирование низкочастотного излучающего, а также приемного трактов измерительной системы с их акустическими преобразователями, размещение акустических преобразователей на противоположных границах контролируемой среды, озвучивание среды низкочастотными просветными сигналами стабилизированной частоты и формирование в ней рабочей зоны нелинейного взаимодействия и параметрического преобразования акустических просветных и измеряемых информационных волн, прием преобразованных просветных волн, усиление их в полосе нелинейного преобразования, узкополосный спектральный анализ и выделение из боковых полос спектров дискретных составляющих измеряемых информационных волн. Излучающий блок формируют из трех акустических преобразователей, которые размещают на оси подводного звукового канала (ПЗК), выше и ниже оси ПЗК соответственно, а приемный блок формируют из трех линейных дискретных приемных антенн, включающих по n элементов (гидрофонов) каждая, которые горизонтально размещают в направлении излучающих акустических преобразователей соответственно. Рабочую зону нелинейного взаимодействия и параметрического преобразования акустических просветных и измеряемых информационных волн формируют между излучающим и приемным блоками из трех излучающих преобразователей и трех линейных дискретных приемных антенн. Просветные акустические сигналы многоканально принимают, предварительно усиливают и посредством многожильных кабелей передают в приемный тракт измерительной системы, в котором сигналы последовательно суммируют на каждом цикле выборочного подключения дискретных приемных антенн и цикличного переключения их элементов (гидрофонов), формируют непрерывные сигналы, которые затем усиливают в полосе параметрического и частотно-временного преобразования, переносят в высокочастотную область и измеряют узкополосные спектры, далее выделяют в спектрах верхние и (или) нижние боковые полосы, формируют и представляют спектры принимаемых сигналов в формате 2D и (или) 3D. Операцию узкополосного спектрального анализа, формирования и представления спектров измеряемых информационных полей в формате 2D и (или) 3D синхронизируют с режимом выборочного подключения дискретных приемных антенн и цикличного переключения их элементов (гидрофонов), а также операцией частотно-временного преобразования (переноса) многоканально принимаемых сигналов в высокочастотную область и операцией формирования непрерывных сигналов. Спектры измеряемых информационных полей регистрируют и по радиоканалу связи передают в информационно-аналитический тракт, где определяют признаки измеряемых информационных полей атмосферы, и (или) океана, и (или) земной коры, а также характеристики их пространственно-временной динамики, с учетом частотно-временного и параметрического преобразования принимаемых сигналов в приемном тракте и информации, поступающей от Регионального информационного центра и (или) системы «ГЛОНАСС». Техническим результатом изобретения является обеспечение дальнего параметрического приема информационных полей различной физической природы в морской среде, формирование и представление их пространственных спектров в формате 2D и (или) 3D, а также контроль их пространственно-временной динамики на акваториях, протяженностью десятки-сотни километров. 5 з.п. ф-лы, 13 ил.

Изобретение относится к звукоизоляции оборудования со средствами широкополосного шумоглушения. Звукоизолирующее ограждение технологического оборудования изготовляют в форме прямоугольного параллелепипеда, охватывающего технологическое оборудование. Оборудование устанавливают на виброизолирующие опоры, которые базируют на перекрытии здания. Между основанием оборудования и вырезом в нижней грани прямоугольного параллелепипеда выполняют зазор для исключения передачи вибраций от оборудования к звукоизолирующему ограждению. В звукоизолирующем ограждении выполняют вентиляционные каналы для устранения перегрева оборудования. Внутренние стенки вентиляционных каналов обрабатывают звукопоглощающим материалом и акустически прозрачным материалом типа «повиден». На внутренней поверхности звукоизолирующего ограждения закрепляют звукопоглощающий элемент в виде гладкой (14) и перфорированной (15) поверхностей, между которыми размещают многослойную звукопоглощающую конструкцию сложной формы, представляющую собой чередование сплошных (16) и пустотелых (17) участков. Сплошные участки (16) образованы гладкими призматическими поверхностями (18), расположенными перпендикулярно гладкой (14) и перфорированной (15) поверхностям и закрепленными к гладкой (14) поверхности, а также двумя, связанными с ними и наклонными, относительно гладких призматических поверхностей (18), поверхностями (19) сложной формы, имеющими с одной стороны гладкую поверхность, а с другой стороны - зубчатую или волнистую. К гладкой поверхности (14) прикреплены рельефные звукопоглощающие элементы, например в виде тетраэдров. В качестве звукопоглощающего материала применяют материал на основе алюминесодержащих сплавов, наполненный гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 с прочностью на сжатие в пределах 5…10 МПа, и прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененный полимер, например полиэтилен или полипропилен. Материал перфорированной поверхности выполняют из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим». Внутреннюю поверхность перфорированной поверхности, обращенную в сторону звукопоглощающей конструкции, облицовывают акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден». Пустотелые участки заполняют звукопоглощающим материалом, например строительно-монтажной пеной. Конструкцию звукопоглощающего элемента выполняют с резонансными вставками (21) и (22), расположенными в гладких призматических поверхностях (18) сплошных участков (16), соединенных со слоем (17), выполненным из вспененного звукопоглощающего материала, посредством резонансных отверстий (23) и (24), выполняющих функции горловин резонаторов «Гельмгольца». Частотная полоса гашения звуковой энергии многослойной звукопоглощающей конструкции определяется диаметром и количеством резонансных отверстий (21) и (22). Обеспечивается повышение эффективности глушения шума. 2 ил.

Изобретение относится к способу звукоизоляции оборудования со средствами широкополосного шумоглушения. Способ заключается в том, что звукоизолирующее ограждение устанавливают на перекрытии здания на виброизолирующих опорах, выполненных из упругого материала. Облицовывают его с внутренней стороны звукопоглощающим элементом. Ограждение выполняют в форме прямоугольного параллелепипеда с вырезом в его нижней грани под основание технологического оборудования. Основание технологического оборудования устанавливают на виброизолирующих опорах. Опоры базируют на перекрытии здания. Между основанием технологического оборудования и вырезом в нижней грани прямоугольного параллелепипеда выполняют зазор для исключения передачи вибраций от технологического оборудования к звукоизолирующему ограждению. В ограждении выполняют вентиляционные каналы для устранения перегрева оборудования. Внутренние стенки вентиляционных каналов обрабатывают звукопоглощающим материалом и акустически прозрачным материалом типа «повиден». Звукопоглощающий элемент закрепляют на внутренней поверхности звукоизолирующего ограждения и выполняют его в виде гладкой (14) и перфорированной (15) поверхностей, между которыми размещают многослойную звукопоглощающую конструкцию. Расчет требуемой звукоизоляции кожуха, как негерметичного ограждения, проводят по следующей зависимости: где Rкож.тр - требуемая звукоизоляция кожуха, дБ;Rsi - средняя звукоизоляция сплошной части ограждений i-го кожуха, дБ; - реверберационный коэффициент звукопоглощения внутри i-го кожуха,где αo - реверберационный коэффициент звукопоглощения для ограждений без звукопоглощающего материала;αм - реверберационный коэффициент звукопоглощения звукопоглощающего материала;∑Sм - площадь нанесения звукопоглощающего материала, м2;τi - энергетический коэффициент прохождения звука через глушитель технологического отверстия (для простого отверстия без глушителя шума τi=1);∑Soi - суммарная площадь технологических отверстий для i-го кожуха машины, м2;∑Si - суммарная площадь сплошной части ограждения, м2. Многослойную звукопоглощающую конструкцию звукопоглощающего элемента выполняют с резонансными вставками и располагают в гладких призматических поверхностях (18) сплошных участков (16) и посредством резонансных отверстий (23) и (24), выполняющих функции горловин резонаторов «Гельмгольца», их соединяют со слоем, выполненным из вспененного звукопоглощающего материала. Частотную полосу гашения звуковой энергии многослойной звукопоглощающей конструкции определяют диаметром и количеством резонансных отверстий (23) и (24). Обеспечивается повышение эффективности глушения шума. 2 ил.

Изобретение относится к средствам снижения шума выхлопа пневматических систем. Глушитель содержит корпус цилиндрической формы с полостью, выполненный из пористого материала, и связанную с ним присоединительную арматуру. Корпус выполнен со сквозным отверстием. На свободный конец корпуса подвижно надета герметичная крышка в виде стакана. Крышка установлена с возможностью постепенного перемещения вдоль корпуса в пределах своей высоты наружу, по мере накопления в корпусе грязи из рабочей среды пневматической системы, или возврата к своему начальному положению на цилиндрическом корпусе, соответственно после очистки пористого материала корпуса от накопившейся в нем грязи. Причем к днищу крышки присоединен добавочный груз, подвешенный на гибкой связи, или соединен гибкой связью, переброшенной через блок, закрепленный на цилиндрическом корпусе. Технический результат - увеличение срока службы. 2 ил.
Наверх