Способ получения синтез-газа высокотемпературным каталитическим окислительным превращением метана

Изобретение относится к способу получения синтез-газа высокотемпературным каталитическим окислительным превращением метана. Способ заключается в подаче в реактор, в который помещен катализатор, исходной газовой смеси, содержащей смесь метана и углекислого газа и проведении процесса при температуре 778-964°С. При этом в качестве катализатора используют катализатор пеноникелевого типа, выбранный из группы, включающей пеноникель, имеющий значение PPI - количество пор на линейный дюйм, выше 80, пеноникель с нанесенным на его поверхность электрохимическим способом гидроксидом никеля с последующей сушкой поверхности с образованием на ней гидроксида никеля или с последующей сушкой и термообработкой поверхности с образованием на ней оксида никеля или пеноникель с нанесенным на его поверхность электрохимическим способом переходным металлом VI группы периодической системы Менделеева с последующей сушкой и термообработкой поверхности, причем термообработку поверхности проводят на воздухе при температуре 500-600°С. Технический результат заключается в повышении конверсии метана и СO2, повышении выходов оксида углерода и водорода, в упрощении технологии проведения способа и сокращении затрат за счет проведения процесса в отсутствие инертных газов, а также использования катализатора, получаемого более простым способом. 2 з.п. ф-лы, 1 табл., 36 пр.

 

Изобретение относится к области химической технологии, а именно к высокотемпературным каталитическим окислительным способам превращения метана с получением синтез-газа: смеси Н2 и СО, являющегося исходным сырьем для получения моторных топлив, метанола, диметилового эфира, альдегидов, спиртов и других ценных веществ, к катализаторам и способам их получения. Процесс углекислотной конверсии природного газа позволяет получить синтез-газ с соотношением Н2/СО~1, что привлекательно для его последующего широкого использования в ряде промышленных синтезов топлив и ценных химических продуктов. Однако проблема создания высокоактивных и устойчивых к зауглероживанию катализаторов для данного процесса до сих пор не решена и остается одной из самых актуальных в гетерогенном каталитическом окислительном превращении метана.

Известен способ получения синтез-газа углекислотной конверсией метана с использованием катализатора, содержащего матрицу алюминида никеля, внутри которой диспергированы никель и молибден (RU 2349380, 2009). Массовое отношение компонентов используемого катализатора составляет: Ni3Al 80-90%, Ni 5-10%, Mo 2-10%. Катализатор получают методом самораспространяющегося высокотемпературного синтеза (СВС), осуществляемого в режимах послойного горения или теплового взрыва. Для получения катализатора берут рассчитанные количества порошков металлов никеля (марки ПНЭ-1), алюминия (АСД-4), молибдена (осч), предварительно просушивают в течение 5 часов при температуре 150°C в среде аргона. Порошки смешивают и готовят заготовку цилиндрической формы путем двустороннего прессования на настольном прессе с разборной пресс-формой и плавающим поршнем. СВС прессованных образцов проводят в бомбе постоянного давления объемом 3 л. Горение осуществляют в атмосфере аргона, давление которого составляет 0,1 МПа. Спрессованная заготовка воспламеняется электрическим импульсом от вольфрамовой спирали.

При подаче на приготовленный катализатор объемом 1 мл газовой смеси, содержащей метан и углекислый газ в объемном соотношении СН4:CO2, равном 1:1, со скоростью 100 мл/мин, при 950°C максимальная конверсия метана составляет 80%, а выходы Н2 и CO 46% и 41% соответственно.

В другом известном способе углекислотной конверсии легких углеводородов используют катализатор, который является химическим соединением двух металлов, представляющим собой интерметаллид Fe3Al и свободное железо, причем фазы содержатся в следующих количествах, мас. %: Fe3Al 90-95, свободное железо 5-10 (RU 2351392, 2009). Катализатор получают аналогичным описанному выше СВС метом. Реакцию риформинга (углекислотной конверсии) осуществляют в кварцевом реакторе с неподвижным слоем катализатора, содержащим 1 см3 катализатора, путем подачи предварительно нагретого эквимолярного потока метана и углекислого газа при давлении 1 атм. Газохроматографический анализ потока выходящего газа проводят, начиная с 600°C, и продолжают до 950°C. Время контакта 0,6 с. Объемную скорость исходной газовой смеси поддерживают 100 мл/мин. Мольное соотношение CO2:СН4=1:1. На данном катализаторе конверсия достигает 94%, выход Н2 не превышает 48%, СО 49%.

Основным недостатком указанных способов с использованием вышеописанных интерметаллидных катализаторов является низкий выход целевых продуктов.

Известен способ получения синтез-газа углекислотной конверсией метана (RU 2325219, 2008). Для решения поставленной задачи предложен пористый керамический каталитический модуль, представляющий собой продукт термического синтеза уплотненной методом вибропрессования высокодисперсной экзотермической смеси никеля и алюминия, содержащий (в мас. %) никель 55,93-96,31, алюминий 3,69-44,07. Пористый керамический каталитический модуль может содержать карбид титана в количестве 20 мас. % по отношению к массе модуля. Для увеличения активности каталитической системы в процессе получения синтез-газа пористый керамический каталитический модуль может содержать каталитическое покрытие, включающее La и MgO, или Се и MgO, или La, Се и MgO, или ZrO2, Y2O3 и MgO, или Pt и MgO, или W2O5 и MgO в количестве 0,002-6 мас. % по отношению к массе модуля. Конверсию смеси метана и углекислого газа ведут при температуре 450-700°C и давлении 1-10 атм в фильтрационном режиме на пористом керамическом каталитическом модуле при скорости подачи смеси метана и углекислого газа через модуль, равной 500-5000 л/дм3·ч, причем отношение метана к углекислому газу в исходной смеси составляет от 0,5 до 1,5. Наилучшие результаты достигают при проведении конверсии смеси метана и углекислотного газа при температуре 600°C на пористом керамическом каталитическом модуле состава Ni7Al12, содержащего каталитическое покрытие La, Се и MgO, при скорости подачи смеси метана и углекислого газа, взятых в соотношении 0,75 через модуль 3000 л/дм3·ч. При этом производительность по синтез-газу составляет 2997,77 л/дм3 модуля·ч, конверсии СН4 и СО2 60 и 42,44% соответственно, состав синтез-газа Н2/СО - 1,06, коксообразование не более 6%.

Основным недостатком приведенного способа также является низкий выход целевых продуктов.

Описан катализатор и способ получения синтез-газа углекислотной конверсией метана (RU 2453366, 2012). Катализатор углекислотной конверсии метана для получения синтез-газа представляет собой сложный носитель на основе церия-циркония, содержащего один или два металла, выбранные из группы редкоземельных элементов, таких как Pr, Sm, La, или их любую комбинацию, в качестве активного компонента содержит металл платиновой группы, выбранный из Pt или Ru; Pt или Ru с добавками Ni; La с добавками Ni; La с добавками Ni, Pt или Ru, при этом катализатор имеет общую формулу M1M2M3[AxBy Се0.35Zr0.35]O2, где: x равен 0-0,3, y=0-0,3, А и/или В выбирают из металлов редкоземельных элементов Pr, La, Sm, M1 - выбирают из металлов платиновой группы - Pt или Ru; М2 - это Ni; М3 - La, при условии, если содержание металла Μ1=0, то содержание М2≠0, и если содержание М2=0, то содержание Μ1≠0.

Для приготовления сложного оксидного носителя АхВуСе0.35Zr0.35O2 используют 8-водный оксихлорид циркония (чда), 6-водный нитрат церия (чда), 6-водный нитрат празеодима (осч) и/или 6-водный нитрат самария (осч) и/или 6-водный нитрат лантана (чда), лимонную кислоту (ЛК, чда), этиленгликоль (ЭГ, ч), этилендиамин (ЭД). Реагенты берут в мольных соотношениях ЛК:ЭГ:ЭД:Ме ((Pr и/или Sm и/или La)+Ce+Zr) = 3,75:11,25:3,75:1. Лимонную кислоту растворяют в этиленгликоле в соотношении ЛК:ЭГ=1:3 при перемешивании на водяной бане (60-80°C). Параллельно в 30 мл дистиллированной воды растворяют кристаллогидрат нитрата церия при перемешивании на водяной бане, при этом раствор был прозрачным. Затем в него добавляют кристаллогидрат нитрата празеодима, и/или самария, и/или лантана и перемешивают до полного растворения, образовавшийся раствор был бесцветный (салатовый - для празеодима). В смешанный раствор добавляют раствор лимонной кислоты в этиленгликоле, полученный ранее. При постоянном перемешивании без водяной бани добавляют этилендиамин, происходит разогрев раствора, и он становился темно-желтым (иногда темно-коричневым) и густым, при этом рН раствора повышается до ~5. Полученный раствор выдерживают при 80°C в течение 3 суток для удаления избытка растворителя, затем полученное вещество прокаливают в интервале температур до 900°C. На полученные допированные оксиды церия-циркония наносят платину или рутений в количестве 1-1,5 мас. % методом пропитки раствором Н2 PtCl6 или RuCl3 по влагоемкости. Полученные вещества сушат на воздухе и прокаливают при 900°C (для платины) или при 800°C (для рутения) в течение 1 ч. Катализатор, содержащий смешанный оксид церия-циркония в соотношении 1:1 и содержащий празеодим и/или самарий, празеодим и/или лантан с нанесенным активным компонентом - платиной или рутением, прессуют в таблетки диаметром 15 мм под давлением 2 МПа. Затем из таблетки, предварительно измельченной в агатовой ступке, используя сита с фиксируемым размером отверстий, готовят фракцию с размером частиц 0,25-0,5 мм. Способ получения синтез-газа в процессе углекислотной конверсии метана осуществляют с использованием катализатора при температуре 650-850°C. Реакционная смесь поступает в проточный реактор идеального вытеснения в соотношении 7% метана, 7% диоксида углерода и 86% азота. Наилучший результат получают на катализаторах RuNi/Pr0,3Ce0,35Zr0,35O2 и RuNi/Sm0,15Pr0,15Ce0,35Zr0,35O2. При 850°C конверсия СН4 составляет 97,1-99,6%, конверсия CO2 - 95,6-97,7%. Несмотря на достигнутые высокие выходы синтез-газа, способ имеет недостатки: высокая степень разбавления продукта инертным газом - азотом, использование катализатора, характеризующегося многостадийной процедурой приготовления и наличием дорогостоящих металлов платиновой группы.

Известен способ получения синтез-газа углекислотным риформингом метана (RU 2418632, 2011) в присутствии катализатора. Катализатор получают из смеси карбоната бария (ВаСО3) и оксида титана (TiO2), имеющей молярное соотношение 1,0:1,0, в которую при перемешивании добавляют оксид никеля (NiO) в количестве 2 массовых процентов. После добавления к полученной смеси связующего проводят гранулирование так, чтобы получить сферические гранулы, имеющие диаметр в диапазоне от 2 до 5 мм. Полученные гранулы в течение 1 часа подвергают обжигу при 1000°C на воздухе с получением катализатора углекислотного риформинга, представляющего собой смесь, содержащую BaTiO3 и NiO. Аналогичным образом получают катализатор, не содержавший титана - смесь BaCO3 и NiO.

Варьируя мольное отношение ВаСО3 и TiO2, а также подвергая полученную смесь обжигу при 1000°C на воздухе, а затем в течение 1 часа при 700°C в потоке, содержащем 20% CO2 и 80% N2, получают катализаторы углекислотного риформинга в виде смесей, содержащих ВаСО3, BaTiO3 и NiO или Ba2TiO4, BaTiO3 и NiO.

В изготовленный из нержавеющей стали трубчатый реактор внутренним диаметром 22 мм и длиной 300 мм, с внешним нагревателем загружают 50 куб. см катализатора и при расходе 25 нл/ч подают газовую смесь, содержащую азот и диоксид углерода (доля диоксида углерода: 20 объемных процентов), а температуру газовой смеси на входе при помощи нагревателя контролируемо выдерживают равной 900°C. После стабилизации температуры вместо вышеупомянутой газовой смеси при расходе 25 нл/ч подают газовую смесь, содержащую метан и диоксид углерода (объемное соотношение СН4:CO2 составляет 1:1) при 900°C. В зависимости от типа катализатора достигают конверсию метана 80,8-89,6%, конверсию CO2 92,4-94,8%, селективность по водороду 89,8-96,2%, селективность по СО 95,2-97,6%.

Недостатками способа являются недостаточно высокие выходы водорода и СО, а также недостаточно высокая конверсия метана, содержание которого в получаемом синтез-газе затрудняет его последующее использование. При этом используемому катализатору свойственна сложная процедура его приготовления.

Более близким к изобретению является способ получения синтез-газа высокотемпературным каталитическим окислительным превращением метана путем контактирования смеси, содержащей метан и окислители - кислород или углекислый газ (модельная смесь, используемая при анализе превращения биогаза) в присутствии катализатора, в качестве которого используют катализатор пеноникелевого типа, в частности пеноникель, характеризующийся значением 40-80 PPI (количество пор на линейный дюйм) или пеноникельхром (Окислительная конверсия природного газа и биогаза в синтез-газ в объемных проницаемых матрицах. Шаповалова О.В. Автореферат диссертации на соискание ученой степени кандидата химических наук, Москва, 2014, с. 1-21).

Недостатки способа заключаются в невысокой степени конверсии метана и диоксида углерода, а также в невысокой селективности по водороду и оксиду углерода.

Таким образом, известный способ недостаточно эффективен.

Задачей изобретения является повышение эффективности способа получения синтез-газа.

Поставленная задача достигается созданием способа получения синтез-газа высокотемпературным каталитическим окислительным превращением метана, заключающимся в подаче в реактор, в который помещен катализатор, исходной газовой смеси, содержащей смесь метана и углекислого газа и проведении процесса при температуре 778-964°C, при этом в качестве катализатора используют катализатор пеноникелевого типа, выбранный из группы, включающей пеноникель, имеющий значение PPI - количество пор на линейный дюйм, выше 80, пеноникель с нанесенным на его поверхность электрохимическим способом гидроксидом никеля с последующей сушкой поверхности, с образованием на ней гидроксида никеля, или с последующей сушкой и термообработкой поверхности с образованием на ней оксида никеля, или пеноникель с нанесенным на его поверхность электрохимическим способом переходным металлом VI группы периодической системы Менделеева с последующей сушкой и термообработкой поверхности, причем термообработку поверхности проводят на воздухе при температуре 500-600°C.

Предпочтительно процесс проводят при температуре 900-964°C, а в качестве исходной газовой смеси преимущественно используют смесь метана и углекислого газа с объемным отношением метан:углекислый газ, равным 1-1,2:1.

Получаемый технический результат заключается в повышении конверсии метана и углекислого газа, повышении селективности по оксиду углерода и водороду, в упрощении технологии проведения способа и сокращении затрат за счет использования катализатора, получаемого более простым способом. При этом используемый катализатор обладает высокой теплопроводностью, что позволяет избежать локальных перегревов и предотвратить его закоксовывание.

Заявленный способ реализуют следующим образом.

Способ получения синтез-газа по изобретению относится к процессам высокотемпературного каталитического окислительного превращения метана в смесь СО и Н2. Согласно изобретению процесс осуществляют в обогреваемом кварцевом реакторе проточного типа, изготовленном в виде трубки U-образной формы с карманом для термопары, расположенным между входящей и выходящей трубками реактора. В нижней части реактора помещают катализатор. Свободный объем реактора до и после катализатора заполняют инертным наполнителем, например кварцевой крошкой. Возможно также использование в качестве исходного сырья смеси магистрального природного газа и углекислого газа, а также реакторов другой формы.

Исходную сырьевую газовую смесь подают в реактор, в котором она достигает катализатора, и осуществляют нагрев катализатора до температуры 778-964°C, предпочтительно 900-964°C, которую поддерживают в течение протекания всего процесса окислительного превращения метана. Подачу сырья в реактор осуществляют со скоростью 11,1-13,4 л/г катализатора в час (далее - л/г/ч). Объемное отношение метан: углекислый газ в исходной газовой смеси может быть различным и составлять, например, 0,8-1,5:1, предпочтительно 1-1,2:1.

В описываемом способе получения синтез-газа в качестве катализатора используют катализатор, выбранный из группы, включающей пеноникель, имеющий значение PPI - количество пор на линейный дюйм, выше 80, пеноникель с нанесенным на его поверхность электрохимическим способом гидроксидом никеля с последующей сушкой поверхности с образованием на ней гидроксида никеля или с последующей сушкой и термообработкой поверхности с образованием на ней оксида никеля или пеноникель с нанесенным на его поверхность электрохимическим способом переходным металлом VI группы периодической системы Менделеева с последующей сушкой и термообработкой поверхности, причем термообработку поверхности проводят на воздухе при температуре 500-600°C.

Получение используемого катализатора характеризуется простотой технологии и доступностью исходных компонентов. При этом наноструктурированные материалы на основе пеноникеля синтезируют электрохимической обработкой пеноникеля.

Нанесение электрохимическим способом проводят в двухэлектродной ячейке, в которой анод и катод выполнены из пеноникеля или анод выполнен из переходного металла VI группы периодической системы Менделеева, а катод выполнен из пеноникеля.

Форма анода или катода может быть различной, в частности, например, последние могут быть использованы в виде пластин, фольги.

Используемый катализатор может содержать наносимые компоненты в количестве от 0,01 до 2% мас. В примере №№2, 3 - 0,05% мас, в примере №4, 5 - 0,5%.

Таким образом, в описываемом способе в качестве катализатора используют промышленно производимый пеноникель, или пеноникель, на поверхности которого электрохимическим способом созданы наноструктурные оксидные или гидроксидные слои никеля, или сформированы наночастицы переходных металлов. Преимуществом данного катализатора являются высокие эксплуатационные характеристики, а также доступность и простота изготовления.

Используют пеноникель открытоячеистый, изготовленный ЗАО «ЭКАТ», г. Пермь, по ТУ 4153-011-72202761-2013. Электроды погружают в электрохимическую ячейку с электролитом, в частности с водным раствором KOH концентрацией 0,05-1 моль/л, водным раствором (NH4)2C2O7 концентрацией 0,1 моль/л. Условия электрохимического метода варьируют. Так, напряжение на электродах может составлять 5-20 В, расстояние между электродами 10-20 мм, плотность тока 30-1500 мА/см2, время обработки 1-8 ч.

Прошедший электрохимическую обработку электрод из пеноникеля извлекают из ячейки, высушивают и, если требуется, подвергают нагреву на воздухе при температуре 500-600°C. Описанная методика позволяет получать на поверхности пеноникеля покрытия с воспроизводимыми и стабильными характеристиками.

Допустимо использование катализатора различной конфигурации, в частности в виде частиц произвольного размера, в виде пористой ленты и цилиндрических блоков в реакторах большого объема.

Ниже приведены примеры, иллюстрирующие изобретение, но не ограничивающие его.

В примерах 1-6 описаны используемые в описываемом способе катализаторы.

В примерах 7-36 описаны процессы окислительного превращения метана в синтез-газ.

Пример 1. В качестве катализатора (в таблице приведен под номером 1) используют пеноникель открытоячеистый, изготовленный по ТУ 0401.14-165-95 ЗАО «ЭКАТ», г. Пермь в виде пористых пластин методом электрохимического осаждения никеля на ретикулированный пенополиуретан с последующей деструкцией полимера и спеканием в среде водорода. Плотность пеноникеля 334,821 г/л, PPI (количество пор на линейный дюйм) 110.

Пример 2. Для приготовления катализатора электрохимическим способом (в таблице приведен под номером 2) в качестве исходных веществ используют пеноникель по примеру 1. Пластины пеноникеля размером 10×60×1 мм используют в качестве анода и катода. Расстояние между электродами - 20 мм. Электроды погружают в электрохимическую ячейку объемом 100 мл, заполненную водным раствором 0,1 моль/л KOH. Создают напряжение между электродами 10 В/см2, плотность тока 100-1500 мА/см2, время обработки 60 мин. Электроды извлекают из ячейки, анод высушивают и нагревают на воздухе при температуре 600°C. Происходит термическое окисление с образованием на поверхности пеноникеля оксида никеля (пример 2). Для приготовления катализатора электрохимическим способом (в таблице приведен под номером 2) в качестве исходных веществ используют пеноникель по примеру 1. Пластины пеноникеля размером 10×60×1 мм используют в качестве анода и катода. Расстояние между электродами - 20 мм. Электроды погружают в электрохимическую ячейку объемом 100 мл, заполненную водным раствором 0,1 моль/л KOH. Создают напряжение между электродами 10 В/см2, плотность тока составляет 100-1500 мА/см2, время обработки 60 мин. Электроды извлекают из ячейки, анод высушивают и нагревают на воздухе при температуре 600°C. Происходит термическое окисление с образованием на поверхности пеноникеля оксида никеля.

Пример 3. Условия и процедура приготовления катализатора (в таблице приведен под номером 3) аналогичны примеру 2, за исключением того, что извлеченный из электрохимической ячейки анод не подвергают термическому окислению. Метод рентгеноструктурного анализа показывает, что образовавшийся на поверхности пеноникеля слой содержит две фазы: гексагональную фазу Ni(OH)2 (частицы игольчатой формы с наибольшей длиной 15 нм и диаметром 2-6 нм) и кубическую фазу металлического никеля со средним размером частиц 20 нм. Средний размер кристаллитов определяют методом Шеррера по данным рентгенографии с учетом инструментального уширения.

Пример 4. Для получения катализатора на основе пеноникеля с наноструктурным молибденовым покрытием (в таблице приведен под номером 4) проводят электрохимический синтез по следующей методике. Электроды с площадью поверхности 4 см2 погружают в электрохимическую ячейку, расстояние между электродами 20 мм. В качестве катода используют пеноникель, а в качестве анода - молибденовую фольгу. В качестве электролита используют нейтральный 0,1 моль/л водный раствор (NH4)2C2O7, с температурой 32°C. Создают напряжение между электродами U, равное 5 В (2,5 B/см2), плотность тока 500 мА/см2. Время обработки 4 часа. После завершения обработки пеноникелевый электрод с наночастицами молибдена высушивают и нагревают на воздухе при температуре 500°C.

Пример 5. Условия и процедура приготовления катализатора (в таблице приведен под номером 5) аналогичны примеру 4, за исключением следующего. Электроды, площадью поверхности 6 см2, погружают в электрохимическую ячейку, расстояние между электродами 10 мм. В качестве катода используют пеноникель, а в качестве анода - вольфрамовую фольгу. Электролит - нейтральный 0,1 моль/л водный раствор (NH4)2C2O7. Напряжение между электродами U составляет 20 В (20 В/см2), плотность тока 30 мА/см2. Время обработки 8 часов, температура электролита 32°C. Затем электрод из пеноникеля с синтезированным слоем наночастиц вольфрама сушат и нагревают на воздухе при температуре 500°C.

Пример 6 (сравнительный). В качестве катализатора используют нанопорошок Ni(OH)2 размером частиц менее 0,1 мм с небольшой примесью металлического никеля (в таблице приведен под номером 6).

Примеры 7-36. Окислительное превращение метана в синтез-газ.

В обогреваемый кварцевый реактор проточного типа, изготовленный в виде трубки U-образной формы с карманом для термопары, расположенным между входящей и выходящей трубками реактора, помещают 0,2 г катализатора в виде кусочков размером 1,5×1,5 мм, толщиной 1 мм, а свободный объем реактора до и после катализатора заполняют кварцевой крошкой. В случае катализатора №6 в реактор загружают нанопорошок Ni(OH)2 размером частиц менее 0,1 мм.

Исходное сырье представляет собой смесь метана и углекислого газа в соотношении 1-1,2:1, причем возможно использование в качестве исходного сырья смеси магистрального природного газа и углекислого газа.

Метан и кислород через расходомеры подают в реактор, где они, контактируя с кварцевой крошкой, образуют гомогенную смесь. Поток гомогенной метан-кислородной смеси в реакторе достигает слоя катализатора, и катализатор в токе этой смеси нагревают до необходимой температуры, значение которой оговорено в таблице.

Исходное сырье представляет собой смесь метана и углекислого газа в соотношении 1-1,2:1, причем возможно использование в качестве исходного сырья смеси магистрального природного газа.

Метан и углекислый газ через расходомеры подают в реактор, где они, контактируя с кварцевой крошкой, образуют гомогенную смесь. Поток гомогенной метан - углекислотной смеси в реакторе достигает слоя катализатора, и катализатор в токе этой смеси нагревают до необходимой температуры, значение которой оговорено в таблице.

Газовую смесь, образовавшуюся в результате реакции на катализаторе, охлаждают в конденсаторе для отделения паров воды и часть смеси направляют в газовый хроматограф для определения состава продуктов реакции.

Анализ реакционной газовой смеси, выходящей из реактора, показал, что помимо целевых продуктов - смеси Н2 и СО, она может включать в свой состав непрореагировавший метан и воду.

Результаты проведения получения синтез-газа, полученные с использованием разных катализаторов при варьировании значений температуры в слое катализатора (Т), мольном отношении метан:углекислый газ (СН4/СО2), скорости подачи метан-углекислотной смеси (W) приведены в таблице.

В таблице в качестве показателей эффективности способа приведены данные по конверсии метана, селективности образования продуктов реакции (в расчете на превращенный метан), выходу целевых продуктов.

Выход монооксида углерода рассчитывают путем деления суммарного числа молей полученного СО на сумму числа молей поданных в реактор метана и углекислого газа.

Выход водорода рассчитывают по формуле wH2×100/(wCH4×2), где wH2 - количество водорода на выходе из реактора моль, wCH4 - скорость подачи метана на входе в реактор, моль.

Селективность образования СО рассчитывают путем деления суммарного числа молей полученного СО на сумму числа молей превращенных метана и углекислого газа. Селективность образования водорода определяют путем деления численных значений выхода водорода на численное значение конверсии метана. Полученные величины умножают на 100%.

Согласно экспериментальным данным, приведенным в таблице, способ по изобретению обеспечивает конверсию метана до 99% масс., конверсию CO2 до 100% масс., селективность по Н2 и СО до 100% масс., выход Н2 и СО до 99% масс., что превышает данные по известному способу на 10-20%.

Данные таблицы показывают, что увеличение значений температуры в слое катализатора с 778 до 900-964°C способствует увеличению конверсии метана и углекислого газа, увеличению селективности по водороду и монооксиду углерода, увеличению выхода целевых продуктов. Проведение процесса предпочтительно осуществлять при температуре в слое катализатора не ниже 900°C.

Внешний вид катализаторов №1-5 на основе пеноникеля после выгрузки из реактора не меняется, что указывает на отсутствие образования углеродистых отложений. Катализатор №6 (нанопорошок гидроксида никеля) превращается в тонкую металлическую пленку на поверхности реактора и не показывает значимых результатов. Следовательно, непосредственно нанопорошок гидроксида никеля, т.е. последний, не нанесенный на пеноникель, не может быть использован в качестве катализатора в данном способе.

Таким образом, способ согласно изобретению обеспечивает более высокие конверсию метана и CO2, более высокие селективности по оксиду углерода и водороду без использования инертных газов, наличие которых значительно усложняет технологию проведения способа. При этом указанный способ проводят с использованием катализатора, обладающего высокой теплопроводностью, что позволяет избежать локального перегрева.

1. Способ получения синтез-газа высокотемпературным каталитическим окислительным превращением метана, заключающийся в подаче в реактор, в который помещен катализатор, исходной газовой смеси, содержащей смесь метана и углекислого газа, и проведении процесса при температуре 778-964°С, при этом в качестве катализатора используют катализатор пеноникелевого типа, выбранный из группы, включающей пеноникель, имеющий значение PPI - количество пор на линейный дюйм, выше 80, пеноникель с нанесенным на его поверхность электрохимическим способом гидроксидом никеля с последующей сушкой поверхности с образованием на ней гидроксида никеля или с последующей сушкой и термообработкой поверхности с образованием на ней оксида никеля или пеноникель с нанесенным на его поверхность электрохимическим способом переходным металлом VI группы периодической системы Менделеева с последующей сушкой и термообработкой поверхности, причем термообработку поверхности проводят на воздухе при температуре 500-600°С.

2. Способ по п. 1, отличающийся тем, что процесс проводят при температуре 900-964°С.

3. Способ по п. 1, отличающийся тем, что в качестве исходной газовой смеси преимущественно используют смесь метана и углекислого газа с объемным отношением метан:углекислый газ, равным 1-1,2:1.



 

Похожие патенты:
Настоящее изобретение относится к способу производства жидкого водорода и электроэнергии. Способ производства водорода и/или электроэнергии включает создание системы, подходящей для производства водорода и/или электроэнергии, содержащей, по меньшей мере, устройство реформинга, приспособленное для приема сырьевого природного газа и реформинга природного газа с получением водородсодержащего газа; устройство для производства электроэнергии, приспособленное для приема, по меньшей мере, части водорода, содержащегося в водородсодержащем газе, и осуществления реформинга водорода для производства электроэнергии; и устройство для сжижения водорода, приспособленное для приема части водорода, содержащегося в водородсодержащем газе, и для сжижения водорода с получением жидкого водорода, при этом во время работы в устройство для сжижения водорода подают по меньшей мере часть электроэнергии, произведенной в устройстве для выработки электроэнергии, и во время работы из системы отводят жидкий водород и/или электроэнергию; при этом в течение первого периода природный газ направляют в устройство реформинга газа, и система работает для отвода жидкого водорода; и в течение второго периода природный газ направляют в устройство реформинга газа, и система работает для отвода электроэнергии.

Изобретение касается улучшенного способа изготовления ацетилена и синтез-газа. Предложен способ получения ацетилена и синтез-газа путем частичного окисления углеводородов кислородом, причем исходные газы, в состав которых входит поток, содержащий углеводород, и поток, содержащий кислород, сначала предварительно нагревают по отдельности, затем смешивают в смесительной зоне, а после протекания через блок горелок вызывают их реакцию в камере сгорания, после чего быстро охлаждают.

Изобретение относится к способу и устройству обработки газообразного водорода, выделяющегося при растворении металла кислотой или щелочью. Способ включает подачу выделяющегося газообразного водорода через реактор, содержащий окислитель для окисления газообразного водорода в воду, а затем восстановление окислителя.

Изобретение может быть использовано для получения синтез-газа. Микроволновой плазменный газификатор содержит вертикально расположенный цилиндрический корпус 2, питающее устройство 1, верхнюю форсунку 5 распыления пара, нижнюю форсунку 4 диоксида углерода/пара, выпуск для синтез-газа, блок мониторинга 6, микроволновой генератор плазмы, внешнее нагревающее устройство 9.

Изобретение относится к пористому катализатору для получения водорода путем парового реформинга. Предлагаемый пористый катализатор содержит алюминий и магний, а также дополнительно содержит бор и никель.

Изобретение относится к области химической технологии и, более конкретно, к электролизу воды, и предлагает способ получения потока газа путем прохождения потока воздуха по ионной поверхности, применимый при производстве электроэнергии.

Изобретение относится к области химического машиностроения, а именно к каталитическому реактору для получения синтез-газа, который может быть использован в качестве инициирующих водородных добавок к основному топливу в двигатели внутреннего сгорания и в газотурбинных двигателях.

Изобретение относится к способу получения катализатора, пригодного для применения в способе парового риформинга. Способ включает стадии: (i) распыление взвеси, содержащей измельченное соединение-катализатор, содержащее один или большее количество каталитических металлов, выбранных из группы, включающей Ni, Cu, Pt, Pd, Rh, Ru и Au, на поверхность сформованной подложки, содержащей оксид подложки, выбранный из группы, включающей оксид алюминия, диоксид церия, оксид магния, диоксид титана или диоксид циркония, алюминат кальция или алюминат магния и их смеси, в баковом устройстве для нанесения покрытий с получением формованного материала подложки с покрытием, содержащего каталитический металл в поверхностном слое, в котором содержание твердых веществ во взвеси находится в диапазоне 10-60 масс.

Изобретение относится к области атомной энергетики и предназначено для использования в паротурбинных установках АЭС с системой сжигания водорода с кислородом с содержанием недоокисленного водорода в основном потоке рабочего тела под давлением после системы сжигания перед поступлением в турбину.

Изобретение относится к химической промышленности. Мембранный модуль содержит множество трубчатых мембранных элементов для переноса кислорода, вступающего в контакт со стороной ретентата мембранных элементов.

Изобретение относится к области катализа в нефтепереработке и может быть использовано в нефтеперерабатывающей промышленности. Катализатор высокотемпературного гидрофинишинга гидроочищенных низкозастывающих дизельных фракций содержит, масс.

Изобретение относится к наноразмерному катализатору на основе меди с размером частиц 1-50 нм и способу его получения, включающему: растворение в водном растворе первого компонента, содержащего исходную медь (Cu), второго исходного компонента, содержащего один или более металлов, отобранных из группы, включающей переходный металл, щелочноземельный металл и металл группы IIIb, и третьего исходного компонента, содержащего один или более элементов, отобранных из группы, включающей глинозем, кремнезем, кремнезем-глинозем, магнезию, двуокись титана, диоксид циркония и углерод, последующее перемешивание полученного раствора для получения перемешанного раствора смесей; осаждение перемешанного раствора смесей для осаждения исходного катализатора путем добавления Na2CO3 до достижения значения pH 4.0-5.0 и последующего добавления NaOH до достижения значения pH 7.0; и промывку и фильтрацию осажденного исходного катализатора.

Изобретение относится к способам получения предшественника катализатора, катализатора синтеза Фишера-Тропша и к самому способу синтеза Фишера-Тропша. Способ получения предшественника катализатора синтеза Фишера-Тропша включает стадии, на которых: (i) используют раствор карбоксилата Fe(II); (ii) если молярное отношение карбоксильных и карбоксилатных групп, которые вступили в реакцию или способны вступать в реакцию с железом, и Fe(II) в растворе, используемом на стадии (i), не составляет, по меньшей мере, 3:1, в раствор добавляют источник карбоксильной или карбоксилатной группы, чтобы упомянутое молярное отношение составляло, по меньшей мере, 3:1, до завершения окисления карбоксилата Fe(II) на следующей стадии (iii); (iii) обрабатывают раствор карбоксилата Fe(II) окислителем, чтобы преобразовать его в раствор карбоксилата Fe(III) в условиях, исключающих такое окисление одновременно с растворением Fe(0); (iv) осуществляют гидролиз раствора карбоксилата Fe(III), полученного на стадии (iii), и осаждение одного или нескольких продуктов гидролиза Fe(III); (v) восстанавливают один или несколько продуктов гидролиза, полученных на стадии (iv); и (vi) добавляют источник активатора в форме растворимой соли переходного металла и химический активатор в форме растворимой соли щелочного металла или щелочноземельного металла во время или после осуществления любой из предшествующих стадий, чтобы получить предшественник катализатора синтеза Фишера-Тропша.

Изобретение относится к усовершенствованному способу гетерогенно-катализируемого парциального газофазного окисления пропилена до акриловой кислоты, в соответствии с которым в первой реакционной зоне исходную реакционную газовую смесь 1, содержащую пропилен и молекулярный кислород в качестве реагентов и по меньшей мере пропан в качестве инертного разбавляющего газа, при молярном отношении О2:С3Н6 1, на первой реакционной стадии при повышенной температуре пропускают по меньшей мере через один первый слой катализатора, активная масса которого содержит по меньшей мере один полиметаллический оксид на основе молибдена, железа и висмута, причем конверсия пропилена при однократном пропускании через первый слой катализатора составляет 90% мол., в то время как суммарная селективность (S AC) образования акролеина и акриловой кислоты в качестве побочного продукта составляет 80% мол., при необходимости снижают температуру полученной на первой реакционной стадии газовой смеси продуктов реакции 1 путем ее прямого охлаждения, косвенного охлаждения или прямого и косвенного охлаждения, при необходимости добавляют к ней вторичный газ в виде молекулярного кислорода или инертного газа либо молекулярного кислорода и инертного газа и в виде исходной реакционной газовой смеси 2, содержащей акролеин и молекулярный кислород в качестве реагентов и по меньшей мере пропан в качестве инертного разбавляющего газа, при молярном отношении молекулярного O2:С 3H4О 0,5, на второй реакционной стадии при повышенной температуре и с образованием газовой смеси продуктов реакции 2 пропускают по меньшей мере через один второй слой катализатора, активная масса которого содержит по меньшей мере один полиметаллический оксид на основе молибдена и ванадия, причем конверсия акролеина при однократном пропускании через второй слой катализатора составляет 95% мол., и причем суммарная селективность (SAA ) образования акриловой кислоты на обеих реакционных стадиях в пересчете на превращенный пропилен составляет 70% мол., причем исходная реакционная газовая смесь 1 содержит 3% мол.

Изобретение относится к области наноматериалов. .

Изобретение относится к усовершенствованному способу долговременного проведения гетерогенного каталитического частичного газофазного окисления исходного органического соединения, выбранного из пропилена, изобутена, акролеина, метакролеина, пропана или изобутана, до целевого органического соединения, при котором исходную реакционную газовую смесь, содержащую исходное органическое соединение и молекулярный кислород, проводят сначала через свежезагруженный твердый слой катализатора, засыпанный с разделением на две температурные зоны А и В, расположенные в пространстве друг за другом, температуры которых TA и TB заданы так, что разность TBA между температурой TB температурной зоны В и температурой TA температурной зоны А, рассчитанная с принятием более высокого из значений этих температур в качестве уменьшаемого, >0°С, таким образом, что исходная реакционная смесь газов протекает через температурные зоны А, В в последовательности «сначала А» и «затем В», причем температурная зона А простирается до превращения органического исходного соединения UA=15-85 мол.%, и в температурной зоне В превращение органического исходного соединения возрастает до величины U B 90 мол.%, и при котором затем при возрастании срока эксплуатации, чтобы компенсировать снижение качества твердого слоя катализатора, изменяют температуру температурных зон А, В, где с повышением длительности эксплуатации температуру той температурной зоны, которая сначала обладала более низкой температурой, повышают, а разность TBA между температурами обеих температурных зон снижают, причем при расчете разности температура той температурной зоны, что сначала характеризовалась более высокой температурой, сохраняет свое место уменьшаемого, благодаря чему достигается компенсация снижения качества твердого слоя катализатора при долгом сроке эксплуатации.

Изобретение относится к одностадийному способу газофазного получения бутадиена, включающему превращение этанола или смеси этанола с ацетальдегидом в присутствии катализатора, характеризующемуся тем, что взаимодействие проводят в присутствии твердофазного катализатора, содержащего металл, выбранный из группы: серебро, золото или медь, и оксид металла, выбранный из группы оксид магния, титана, циркония, тантала или ниобия.

Изобретение относится к усовершенствованному способу гетерогенного каталитического газофазного парциального окисления по меньшей мере одного исходного органического соединения, выбранного из пропилена, изобутена, акролеина, метакролеина, пропана или изобутана, молекулярным кислородом на свежевнесенном в реакционное пространство неподвижном слое катализатора, в котором с целью парциального окисления реакционную газовую смесь, содержащую по меньшей мере одно исходное органическое соединение и молекулярный кислород, пропускают через неподвижный слой катализатора, а также отводят тепло реакции посредством непрямого теплообмена с направляемым вне реакционного пространства жидким теплоносителем, а затем, когда с увеличением продолжительности работы происходит нарастающее снижение качества неподвижного слоя катализатора, то для восстановления качества неподвижного слоя катализатора не весь, а лишь часть неподвижного слоя катализатора заменяют частью заменяющего неподвижного слоя катализатора, причем удельно-объемная активность заменяющей части неподвижного слоя катализатора ниже, чем удельно-объемная активность заменяемой части неподвижного слоя катализатора в его свежевнесенном состоянии.

Изобретение относится к усовершенствованным способам получения акролеина, акриловой кислоты, метакролеина или метакриловой кислоты в качестве целевого продукта a) гетерогенно катализируемым парофазным частичным окислением по меньшей мере одного исходного органического соединения, выбранного из пропилена, пропана, изобутилена, изобутана, акролеина или метакролеина, молекулярным кислородом по меньшей мере в двух параллельно функционирующих системах реакторов окисления с загруженными в них катализаторами, приводящим к образованию по меньшей мере двух потоков получаемого газа, соответственно содержащих целевое соединение и соответственно образующихся в одной из по меньшей мере двух систем реакторов окисления, и b) последующим выделением целевого продукта по меньшей мере из двух потоков получаемого газа с образованием по меньшей мере одного потока сырого целевого продукта, в соответствии с которым c) перед выделением - по меньшей мере два из по меньшей мере двух потоков получаемого газа смешивают друг с другом в смешанный поток, причем в случае происходящего по мере эксплуатации изменения селективности образования целевого продукта и/или побочных продуктов, не во всех, по меньшей мере двух параллельно функционирующих систем реакторов окисления, в которых образовались содержащиеся в смешанном потоке целевые продукты, параллельно заменяют свежим катализатором все количество или частичное количество катализатора.

Изобретение относится к предшественникам катализаторов Фишера-Тропша, содержащим носитель и кобальт на данном носителе, к катализаторам Фишера-Тропша, способу получения предшественников катализаторов и к применению карбоновой кислоты в указанном способе. Предшественник катализатора содержит (i) носитель катализатора, содержащий оксид кремния и 11-18% масс. TiO2; и (ii) кобальт на данном носителе катализатора. Другой предшественник содержит (i) носитель катализатора, включающий оксид кремния и TiO2; и (ii) 35-60% масс. Co, представленного как Co3O4 на данном носителе катализатора, где среднечисловой диаметр частиц Co3O4 составляет меньше чем 12 нм, определенный с помощью XRD, и С-величина логарифмически нормального распределения размера частиц Co3O4 составляет от 0,19 до 0,31; или (b) D-величина логарифмически нормального распределения размера частиц составляет от 19 до 23,5. Способ получения предшественника катализатора включает следующие стадии: осаждают раствор или суспензию, содержащую, по меньшей мере, один предшественник металла катализатора и карбоновую кислоту, на носитель катализатора; сушат носитель катализатора, на который был осажден данный раствор или суспензия; и прокаливают носитель катализатора, на который был осажден данный раствор или суспензия, в кислородсодержащей атмосфере. Технический результат - низкая скорость дезактивации катализатора. 8 н. и 33 з.п. ф-лы, 30 ил., 7 табл.
Наверх