Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля



Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля
Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля
Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля
Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля
Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля
Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля
Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля
G01N1/22 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2597763:

федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" (RU)

Изобретение относится к отбору проб твердой составляющей сварочного аэрозоля (ТССА), образующейся при дуговой сварке, для последующего анализа и может быть использовано для улавливания и отбора проб ТССА при проведении различных сварочных процессов. Способ включает улавливание твердой составляющей сварочного аэрозоля в зоне дыхания сварщика с помощью пробоотборного устройства, причем отбор пробы осуществляют после зажигания сварочной дуги и создания направленного воздушного потока в зону дыхания сварщика, пробоотборным устройством для улавливания твердой составляющей сварочного аэрозоля служит углеродсодержащая поверхность двухстороннего углеродного скотча, который липкой стороной приклеивают к маске сварщика, а по окончании процесса сварки скотч отклеивают от маски и помещают в контейнер для осуществления последующего анализа. Обеспечивается возможность отбора проб в стационарных и полевых условиях без использования дорогостоящего оборудования при низкой трудоемкости. 2 з.п. ф-лы, 3 ил., 3 табл., 1 пр.

 

Изобретение относится к сварочной отрасли, а именно к способам улавливания твердой составляющей сварочного аэрозоля (ТССА), образующейся при дуговой сварке. Способ может быть использован для улавливания и отбора проб ТССА при проведении различных сварочных процессов, например сварки под флюсом, сварки порошковой проволокой, сварки в углекислом газе, а также при кислородной и плазменной резке металлов.

Известен метод исследования аэрозольных частиц с помощью просвечивающей электронной микроскопии с целью получения проб естественного и искусственного ТССА, осажденного на миллипоровый фильтр (RU 1529071, опубл. 15.12.1989 г.). Предварительно фильтр пропитывают (10-15%)-ным раствором нитроцеллюлозы в амилацетате или ацетоне, что приводит к его растворению, в результате чего поверхность фильтра после высыхания раствора становится плотной и гладкой, что позволяет исключить путем напыления угля на его поверхность угольную реплику с экстракцией частиц, которую возможно далее исследовать методами электронной микроскопии и микроанализа.

Недостатком известного способа является то, что отбор проб производится при самолетном зондировании и не предназначен для улавливания мельчайших частиц ТССА.

Также известны способы отбора проб при улавливании ТССА (авт. св.№559074, опубл. 25.05.1977 г., RU 2185575, опубл. 20.07.2002 г.), общими недостатками которых являются то, что они исключительно стационарны, трудоемки и требуют специального оборудования.

Наиболее близким к заявляемому является способ отбора твердых частиц аэрозоля для последующего определения массовой концентрации металлов и металлоидов в воздухе рабочей зоны, с использованием атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (ISO 15202-1: 2012 Workplace air - Determination of metals and metalloids in airborne particulate matter by inductively coupled plasma atomic emission spectrometry - Part 1: Sampling (Стандарт ISO 15202-1: 2012. Воздух рабочий - Определение твердых частиц металлов и металлоидов в воздухе рабочей зоны при помощи атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой. - Часть 1: Отбор проб), опубликован 01.06.2012 г.

(http://www.iso.org/iso/catalogue_detail.htm?csnumber=51315)

По указанному способу отбор проб производят на рабочем месте сварщика. Зона отбора проб - пространство вокруг лица сварщика, время отбора проб: 8 часов - для долгосрочных измерений и 15 минут - для краткосрочных измерений.

Улавливание частиц осуществляют на специальном пробоотборном устройстве путем прокачки измеренного объема воздуха через фильтр, установленный в пробоотборном устройстве. Способ предназначен для определения массовой концентрации ТССА.

Недостатком известного способа является то, что он исключительно стационарный, трудоемкий, т.к. для осуществления отбора проб требует специального оборудования на рабочем месте сварщика и предназначен лишь для определения массовой концентрации ТССА.

Технический результат заключается в создании способа отбора пробы для последующего анализа ТССА, позволяющего осуществлять отбор проб в полевых условиях без использования дорогостоящего оборудования при низкой трудоемкости.

Сущность изобретения заключается в том, что при осуществлении способа отбора пробы для последующего анализа ТССА, включающего улавливание ТССА в зоне дыхания сварщика с помощью пробоотборного устройства, согласно п. 1 формулы отбор пробы осуществляют после зажигания сварочной дуги и создания направленного воздушного потока в зону дыхания сварщика, пробоотборным устройством для улавливания ТССА служит углеродсодержащая поверхность двухстороннего углеродный скотча, который липкой стороной приклеивают к маске сварщика, а по окончании процесса сварки скотч отклеивают от маски и помещают в контейнер для осуществления последующего анализа.

Кроме того, с целью получения более полной информации о характеристиках ТССА последующий анализ пробы включает определение морфологического, химического и фракционного составов ТССА с использованием растровой электронной сканирующей микроскопии, фотонной корреляционной спектрометрии и рентгеноспектрального микрозондового анализатора (п. 2 формулы).

В процессе сварки используют не менее 5 электродов (п. 3 формулы).

Выбор такого количества электродов основан на том, что при визуальном осмотре углеродсодержащей поверхности скотча при меньшем количестве электродов не было обнаружено существенного прилипания частиц сварочной аэрозоли.

В способе использован двухсторонний углеродный скотч производства ООО «ТЕСКАН» (Чехия), представленный на сайте http://tescan.ru/products/bycategory/3/74/skotch-klej-kraska

Одна сторона скотча представляет собой слой высокодисперсного углерода (0,5-1,0 µm), нанесенный на клейкую основу. Спектрометрический анализ показал наличие 91,81-94,02% углерода, остальное - кислород, натрий и сера.

Нижняя сторона скотча, а также клейкая основа углеродсодержащего слоя представляют собой липкую поверхность, которая обычно используется в разных скотчах, например марки 3М (http://forum.xumuk.ru/index.php?showtopic=73868).

Твердые частицы сварочного аэрозоля осаждаются на углеродсодержащую поверхность скотча и за счет клейкой основы удерживаются на нем.

Создание направленного потока, например с помощью местной принудительной вентиляции, обеспечивает более равномерное осаждение твердых частиц на углеродсодержащую поверхность скотча, повышая достоверность дальнейшего анализа осажденных частиц.

Возможность приклеивания скотча, отклеивание его после окончания процесса сварки и хранение его в контейнере дает возможность осуществлять последующий анализ пробы в специальных лабораторных условиях, а не непосредственно у рабочего места сварщика, что упрощает и удешевляет известные способы отбора проб.

Изобретение проиллюстрировано следующими фигурами.

На фиг. 1 показана схема осуществления отбора пробы ТССА согласно заявляемому способу, где:

1 - маска сварщика;

2 - углеродный скотч;

3 - электрод;

4 - металлическая пластина;

5 - поток воздуха;

6 - поток, содержащий ТССА.

На фиг. 2 показана микрофотография углеродсодержащей поверхности скотча. Спектрометрический анализ показал наличие 91,81-94,02% углерода, остальное - кислород, натрий и сера, дисперсность углеродных частиц составляет 0,5-1,0 µm.

На фиг. 3 - результаты морфологического исследования частиц ТССА с использованием 2-х видов электродов (1-й столбик - электроды LB-52U, 2-й столбик - электроды ОК 46.00).

Осуществление заявляемого способа представлено на конкретном примере.

Пример

Объектом исследования являлись частицы твердой составляющей сварочного аэрозоля, которые образуются в процессе ручной дуговой сварки на пластине из стали 20 толщиной 10 мм.

Использовали электроды двух видов:

- Kobe Steel LB-52U с основным покрытием;

- ESAB ОК 46.00 с рутиловым покрытием.

Диаметр электродов d=3 мм, сварочный ток 90 А, сварочный выпрямитель ВД-306. Количество электродов - 5 штук. Расстояние от сварочной дуги до маски сварщика - 300 мм.

На маске сварщика углеродсодержащей стороной сверху была приклеена таблетка диаметром 6 мм двухстороннего углеродного скотча производства фирмы ООО «ТЕСКАН», Чехия.

При проведении сварочных работ осуществляли принудительную вентиляцию с помощью вентилятора, создавая направленный поток воздуха и аэрозоли.

Время проведения каждой из сварочной работ составило в среднем 10 минут.

После завершения процесса сварки таблетку скотча снимали с маски сварщика и помещали в специальный контейнер.

При взаимодействии с кислородом частицы, осажденные на углеродный скотч, могут окислятся, поэтому после отбора частиц необходимо было в течении 2-х суток производить исследования проб.

Исследования показали следующие результаты.

Морфология частиц представлена на фото на фиг. 3. По морфологии частицы условно были разделены на 3 группы: сферы, агломераты и кластеры.

На фиг. 3 видно, что после сварки электродами Kobe Steel LB-52U с основным покрытием ТССА состоят из агломератов, сферических частиц и кластеров. При использовании электродов ESAB ОК 46.00 с рутиловым покрытием - из сферических частиц с гладкой поверхностью.

Размеры частиц определяли при помощи растровой (сканирующей) электронной микроскопии (РЭМ) на сканирующем электронном микроскопе высокого разрешения (3-10 нм, максимальное увеличение 300000Х) «S3400N» фирмы «HITACHI» (Япония).

Размер частиц составил от 5 до 32 µm, что показано на таблице 1.

Исследование химического состава ТССА осуществляли с помощью рентгеноспектрального микрозондового анализа.

Результаты исследований представлены в таблицах 2, 3.

Видно (табл. 2),что в составе ТССА присутствуют следующие химические элементы: Fe, О, Na, Са, Si, К, S, Al. Агломераты содержат O, Na, Si, S, Cl, К, Ca и Fe, сферические частицы с волокнистой поверхностью - Fe, О. Кластеры по химическому составу схожи с агломератами, т.к. они содержат О, Na, Al, Si, К. углерод отсутствует.

ТССА при использовании электродов ОК 46.00 (табл.3) содержит в своем составе: агломераты с кластерами, в состав которых входят О, Mg, Al, Si, F, S, Са, Fe, Zn; сферические частицы, включающие в себя такие элементы как О, Na, Mg, Al, Si, К, Fe, и волокнистые частицы, состоящие из следующих химических элементов: О, Al, Si, Са, Ti, Mn, Fe, углерод отсутствует.

1. Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля, включающий улавливание твердой составляющей сварочного аэрозоля в зоне дыхания сварщика с помощью пробоотборного устройства, отличающийся тем, что отбор пробы осуществляют после зажигания сварочной дуги и создания направленного воздушного потока в зону дыхания сварщика, пробоотборным устройством для улавливания твердой составляющей сварочного аэрозоля служит углеродсодержащая поверхность двухстороннего углеродного скотча, который липкой стороной приклеивают к маске сварщика, а по окончании процесса сварки скотч отклеивают от маски и помещают в контейнер для осуществления последующего анализа.

2. Способ по п. 1, отличающийся тем, что последующий анализ пробы включает определение морфологического, химического и фракционного составов ТССА с использованием растровой электронной сканирующей микроскопии, фотонной корреляционной спектрометрии и рентгеноспектрального микрозондового анализатора.

3. Способ по п. 3, отличающийся тем, что в процессе сварки используют не менее 5 электродов.



 

Похожие патенты:
Изобретение относится к микробиологии и касается способа окраски гистологических срезов при диагностике трихинеллеза. Сущность способа заключается в окрашивании гистологических срезов гематоксилином Эрлиха, для этого добавляют 2-3 капли 10% диметилсульфоксида, промывают в воде до посинения среза.

Изобретение относится к медицине и биологии и может быть использовано для фиксации головки бедренной кости в процессе ее распила при подготовке биологического материала к гистологическому исследованию.

Изобретение относится к области гидрологии, а именно к устройствам для забора проб воды при измерении локального и общего расхода воды малых струящихся водопадов, где площадь стекания воды может составлять несколько десятков квадратных метров.

Изобретение относится к устройствам для взятия проб в жидком или текучем состоянии и может быть использовано в ядерных реакторах с жидкометаллическим теплоносителем для отбора проб расплавленного теплоносителя.

Изобретение относится к системам аналитического контроля пульповых продуктов, растворов или суспензий в потоке, применяемых в горно-обогатительной и других отраслях промышленности.

Изобретение относится к ветеринарии и медицине и может использоваться при неинвазивном исследовании крови животных с помощью ультразвуковых волн. Способ окраски тромбоцитов после ультразвукового воздействия включает обработку образцов крови ультразвуком от 30 с до 45 с, интенсивностью 0,4 Вт/см2, частотой 880 кГц, бегущей ультразвуковой волной, режим непрерывный, с последующим приготовлением мазков крови и их окраской дифференциальными красителями.

Изобретение относится к медицине, а именно к лабораторной диагностике, и может быть использовано для окраски тромбоцитов после воздействия ультразвуком. Для этого проводят предварительную обработку образцов крови in vitro модулированным ультразвуком со скважностью 2, интенсивностью 0,05 Вт/см2 в течение 30-40 с, или интенсивностью 0,2 Вт/см2 в течение 20-35 с, или 0,4 Вт/см2 в течение 15-30 с, или 0,7 Вт/см2 в течение 15-20 с с любой частотой модуляции в диапазоне частот модуляции от 10 до 30 Гц или с частотой модуляции 800 Гц и несущей частотой 880 кГц, а также УЗ с несущей частотой 2,64 МГц, интенсивностью 0,4 Вт/см2 в течение 15-30 с в импульсном режиме с последующим приготовлением мазков крови и их окраской дифференциальными красителями.

Изобретение относится к нефтяной промышленности и предназначено для отбора проб из манифольда арматуры устья нефтедобывающей скважины, а также при отборе проб жидкости из трубопровода.

Группа изобретений относится к области экологии и воздухотехнического оборудования и предназначена для измерения качества воздуха. Для измерения качества воздуха осуществляют отбор проб воздуха с первой частотой выборки, чтобы получить множество проб качества воздуха при использовании первого датчика.

Изобретение относится к определению моющей способности синтетических моющих средств (CMC) и может быть использовано при товароведной оценке непродовольственных товаров.

Изобретение относится к способам определения механических характеристик материалов, конкретно - к способу определения модуля упругости, предела прочности и предельной деформации. Сущность: осуществляют формование полого трубчатого изделия на оправке, вырезку из него образцов, нагружение образцов до разрушения с измерением силы и перемещения и последующий расчет значений механических характеристик. Образцы получают путем разрезки полого неотвержденного изделия на оправке вдоль и поперек оси с последующей разверткой и отверждением листа на плоской оправке, вырезкой из него образцов заданных размеров с толщиной листа вдоль и поперек первоначальной оси изделия и определения механических свойств (модуля упругости, прочности и предельной деформации) в осевом и окружном направлениях известными методами испытаний на растяжение, сжатие, изгиб, преимущественно методом продольного изгиба. Технический результат: разработка универсального способа определения механических характеристик (прочности, предельной деформации и модуля упругости) в осевом и окружном направлениях полых трубчатых изделий из композиционных материалов, повышение точности (достоверности) результатов испытаний и снижение их трудоемкости. 4 ил.

Изобретение относится к пробоотбору, морским исследованиям, изучению геологического и биологического осадочного материала. Седиментационный пробоотборник содержит конусообразную воронку и механизм. Воронка снизу имеет короб с сегментами в его нижней части. Механизм представляет собой две подпружиненные катушки, на которые с разных барабанов и разных сторон подается водонепроницаемая лента. При этом сегменты выполнены с радиусом, равным радиусам катушек, и короб плотно соприкасается с поверхностью лент. Ленты имеют полосы зацепления по краям и перпендикулярные полосы, упруго выступающие над поверхностью ленты для образования отсеков времени. Ширина полос ленты равна ширине торцевых дисков катушек. Слипшиеся ленты выполнены с возможностью поступления на принимающий барабан, имеющий силовой привод и расположенный под углом, близким к 90º к вертикали воронки. Обеспечивается повышение надежности работы и точности сбора осадочного материала. 2 ил.

Изобретение относится к способам изготовления стандартных образцов состава для оперативного и статистического контроля погрешности результатов измерений, в частности измерений массовой доли нефтепродуктов в почвах, грунтах и донных отложениях. Смешивают нефтепродукт с отмытым, высушенным и просеянным кварцевым песком фракцией 0,1-0,5 мм. Проводят аттестацию полученного материала по массовой доле нефтепродукта. При этом нефтепродукт добавляют к кварцевому песку в виде раствора в легколетучем неполярном органическом растворителе с последующим испарением растворителя при комнатной температуре в течение 5-7 дней. Полноту испарения растворителя контролируют взвешиванием сосуда с образцом. В качестве нефтепродукта используется моторное масло. В качестве растворителя используется гексан. Обеспечивается повышение качества анализа при определении содержания нефтепродуктов в почвах, грунтах и донных отложениях. 2 з.п. ф-лы, 3 табл.

Группа изобретений относится к оборудованию для проведения анализа и может быть использована для диагностики и лечения пациентов. Микрожидкостная резистентная сеть (20) содержит первый (112) и второй (114) микрожидкостные каналы в жидкостном сообщении с впускными отверстиями (22) и (24) для первой и второй текучих сред соответственно. Сеть (20) дополнительно содержит крестообразный отсек (100) разбавления, имеющий первый (112) и второй (114) каналы в качестве первого и второго впускных отверстий отсека разбавления. При этом первое и второе впускные отверстия образуют первый узел соединения (110). Отсек разбавления дополнительно содержит первый микрожидкостной выпускной канал (122) для соединения части первой текучей среды из первого канала со второй текучей средой из второго канала (114) и второй микрожидкостной выпускной канал (124) для приема оставшейся части первой текучей среды. Первое (122) и второе (124) отверстия образуют второй узел соединения (120), расположенный напротив первого узла соединения. Причем указанный первый узел соединения содержит центральную точку (116), где стыкуются соответствующие боковые стенки первого и второго микрожидкостных каналов. При этом воображаемая ось (118) через указанную центральную точку делит угол между первым и вторым микрожидкостными каналами. Второй узел соединения содержит дополнительную центральную точку (126), где стыкуются соответствующие боковые стенки первого и второго микрожидкостноых выпускных каналов. При этом дополнительная центральная точка смещена относительно указанной воображаемой оси на предварительно заданное расстояние. Одноразовый картридж для системы анализа текучих сред организма содержит микрожидкостную резистентную сеть (20). Микрожидкостное устройство (200) содержит микрожидкостную резистентную сеть (20) и измерительное устройство (50), содержащее канал образца в жидкостном сообщении с первым микрожидкостным выпускным каналом. Канал образца содержит средство (52, 54, 62, 64) измерения. Обеспечивается получение определенных оптимальных скоростей потоков текучих сред и уменьшается риск застревания пузырьков воздуха. 3 н. и 11 з.п. ф-лы, 6 ил.

Группа изобретений относится к приготовлению образца для минералогического анализа в электронно-лучевой системе в нефтегазовой и горнодобывающей отраслях. По первому варианту способа забирают минералогический образец для анализа, сушат его и отделяют от собранного образца более мелкую представительную аликвоту и помещают вместе аликвоту и оба компонента быстросхватывающегося двухкомпонентного фиксирующего состава на основе эпоксидной смолы в форму образца. Производят отверждение фиксирующего состава в течение 3 мин и добавляют аликвоту к фиксирующему составу в форме, смешивают аликвоту и фиксирующий состав в форме в автоматическом смесителе. Причем упомянутое смешивание начинается в течение 30 секунд с момента добавления аликвоты к фиксирующему составу в форме. Обеспечивают возможность отверждения фиксирующего состава для формирования отвержденной заготовки образца в форме, разрезают форму и отвержденную заготовку образца для удаления верхней части отвержденной заготовки образца и вскрытия плоской внутренней поверхности образца, и без шлифовки или полировки поверхности образца наносят слой проводящего материала на поверхность образца для получения образца для анализа. По второму варианту способа объединяют образец с неотвержденным фиксирующим составом на основе эпоксидной смолы, смешивают образец и фиксирующий состав в форме в автоматическом смесителе. Обеспечивают возможность отверждения фиксирующего состава для формирования отвержденной заготовки образца в форме. Разрезают форму и отвержденную заготовку образца для удаления верхней части отвержденной заготовки образца и вскрытия плоской внутренней поверхности образца. Наносят слой проводящего материала на поверхность образца для получения образца для анализа. Устройство содержит систему дозирования для дозирования неотвержденного фиксирующего состава на основе эпоксидной смолы, систему смешивания для смешивания неотвержденного фиксирующего состава с минералогическим образцом в форме, резак для разрезания отвержденного фиксирующего состава и минералогического образца в форме при разрезании самой формы, обеспечивающий без шлифовки достаточно гладкую поверхность образца для анализа образца с помощью пучка электронов. 3 н. и 17 з.п. ф-лы, 12 ил.

Изобретение относится к испытательной технике, в частности к образцам для определения остаточных технологических напряжений в деталях типа лопаток турбин авиационных двигателей. Образец 1 состоит из элементов корыта, спинки и скругленной кромки пера. Образец 1 имеет V-образную форму. Средняя часть образца 1 представляет собой стержень 2 с большой кривизной t/R>0,2, где: t - толщина стержня, R - радиус кромки, образованной скругленной кромкой 3. Вогнутая поверхность образца 1 является частью отверстия радиусом r=R-t, соосного со скругленной кромкой 3. Криволинейный стержень 2 сопряжен с длинными концами - удлинителями 4, разведенными на угол α. Метрологическая система включает параметры: толщину t криволинейной части, высоту Н, ширину А в основании, угол α развода удлинителей 4. Толщина t криволинейной части составляет 3…4 толщины снимаемого материала с остаточными напряжениями. Обеспечивается возможность определения тангенциальных остаточных напряжений в скругленной кромке пера полнотелой лопатки. 2 з.п. ф-лы, 6 ил.

Группа изобретений относится к пробоотборнику для отбора проб смеси из среды и твердых частиц. Пробоотборник включает эжектор (100) и внутреннюю трубу (104), проходящую внутри эжектора (100), внутри внешней трубы (106), и предназначенную для прохождения через эжектор (100) создающей разрежение среды. Эжектор (100) может быть помещен в смесь (102) твердых частиц и среды - газа и/или жидкости. При этом эжектор (100) выполнен с возможностью забора пробы (110) смеси под действием разрежения через по меньшей мере одно входное отверстие (108) и выпуска пробы (110) смеси через выходное отверстие (116) в смесь (102) так, что проба (110) смеси перемещается от входного отверстия (108) к выходному отверстию (116). Канал (112) для пробы расположен на конце (120) эжектора (100), противоположном выходному отверстию (116) эжектора (100), и вложен внутрь или находится рядом с внутренней трубой (104). Канал (112) предназначен для отбора необходимой для измерения пробы (122) из пробы (110) смеси, перемещающейся через эжектор (100). При этом твердые частицы и среда, по меньшей мере частично, могут быть отделены друг от друга в эжекторе (100) под действием потока и инерции в пробе (110) смеси. Способ пробоотбора содержит этапы, на которых обеспечивают (800) поток создающей разрежение среды через эжектор (100) по внутренней трубе (104) и выводят наружу из него через выходное отверстие (116) так, что внутри эжектора (100) образуется разрежение. Осуществляют забор (802) пробы (110) смеси, используя разрежение, через по меньшей мере одно входное отверстие (108) из смеси (102) среды и твердых частиц. Образуют (804) поток пробы (110) смеси вместе с потоком создающей разрежение среды через по меньшей мере одно выходное отверстие (116) в смесь (102). Осуществляют отбор (806) необходимой для измерения пробы (122) в канал (112) для пробы, путем отделения твердых частиц и среды друг от друга, по меньшей мере частично, под действием потока и инерции в пробе (110) смеси. Обеспечивается непрерывный пробоотбор и измерение параметров процесса горения. 2 н. и 14 з.п. ф-лы, 13 ил.

Изобретение относится к аналитической химии и может быть использовано для определения минеральных масел в атмосферном воздухе и воздухе закрытых помещений. Отбирают пробы из атмосферного воздуха и воздуха закрытых помещений путем концентрации их на фильтр АФА-ВП-20 со скоростью 100 л/мин в течение 20 мин. Далее проводят экстракцию изооктаном. Для построения градуировочного графика используют растворы минерального масла в изооктане с концентрацией 2,0; 5,0; 10,0; 20,0; 50,0; 100,0 мкг/см3. Измерение проводят при аналитической длине волны 210 нм. Диапазон определяемых концентраций минеральных масел в воздухе составляет 0,01-0,5 мг/м3. Обеспечивается повышение точности анализа. 1 ил., 1 табл.

Изобретение относится к устройству для обнаружения твердых веществ, в частности взрывчатых веществ или наркотиков. Устройство содержит несущий диск (20), на котором осесимметрично расположено несколько сеток. Сетки в первом угловом положении (21) снабжены всасывающим патрубком (42) для всасывания окружающего воздуха сквозь соответствующую сетку. Сетки во втором угловом положении (22) снабжены первым нагревательным элементом (40) для испарения задерживаемых соответствующей сеткой во время всасывания частиц. При этом с анализирующим устройством (45) соединен первый вытяжной патрубок (43) для вытяжки испаренных частиц. Угловое расстояние между двумя соседними сетками несущего диска (20) составляет четное кратное угла α, который покрывает несущий диск (20) при переходе от одного углового положения диска к соседнему угловому положению. Несущий диск (20) выполнен осесимметричным таким образом, что при повороте диска (20) на угол α от одного углового положения к следующему в одном угловом положении сетка сменяется на глухой участок (31) или наоборот, так что всасывающий и вытяжной патрубки (42, 43) в каждом втором угловом положении оказываются закрыты участком (31), не содержащим отверстия. Причем на глухих участках (31) несущего диска (20) между двумя сетками предусмотрена заглушка, которая повторяет форму сетки, и эти заглушки выполнены из немагнитного, предпочтительно аустенитного, материала. Обеспечивается повышение эффективности работы устройства, увеличение степени загрузки и эффективности эксплуатации используемых компонентов. 12 з.п. ф-лы, 5 ил.

Изобретение относится к области океанологии, гидрофизики, геохимии и экологии морей и может быть использовано для получения первичного материала с целью анализа взвеси, состава воды, а также для исследования связи донных осадков с картиной подводных течений и временное их распределение. Зонд отбора проб воды и донных осадков подвешен на кабель-тросе и содержит емкости с управляемыми клапанами и пробоотборную трубку. При этом зонд выполнен в виде конусообразного контейнера, разделенного на секции. Каждая секция снабжена клапаном забора воды. Внизу контейнера - конуса расположен блок управления с датчиками направления и скорости течения, к которому через датчик натяжения веса на расстоянии не менее 5 метров подвешена пробоотборная трубка для донных осадков с массой на верху. Обеспечивается возможность исследования всей толщи воды, донных осадков, получая информацию о взвеси в момент исследования. 1 ил.
Наверх