Регулирование давления при буровых работах с помощью поправки, применяемой при заданных условиях

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к оборудованию и работам в процессе бурения скважин с регулированием давления. При осуществлении способа определяют требуемое установочное значение давления в скважине, прибавляют к установочному значению поправку, если фактическое давление в скважине отклоняется от установочной величины на заданную величину, и регулируют устройство управления расходом так, чтобы приблизить фактическое давление в скважине к установочному значению с учетом поправки. Скважинная система может содержать устройство управления расходом, которое регулируемо ограничивает расход потока из скважины, и систему управления, которая определяет требуемое установочное значение давления в скважине, сравнивает это установочное значение с фактическим давлением в скважине и, при заданном уровне отклонения фактического давления в скважине от установочного значения прибавляет поправку к установочному значению, благодаря чему система управления регулирует устройство управления расходом и тем самым приближает фактическое давление в скважине к установочному значению давления с поправкой. Повышается точность регулирования давления. 3 н. и 17 з.п. ф-лы, 6 ил.

 

Область техники

Настоящее изобретение, в общем, относится к применяемому оборудованию и работам, выполняемым в процессе бурения подземных скважин, а в частности, в раскрытом ниже примере настоящее изобретение обеспечивает регулирование давления при бурении, с применением поправки к установочному значению давления в соответствии с определенными заданными условиями.

Уровень техники

Известно регулирование давления в скважине путем регулирования уровня давления, приложенного к скважине на или возле поверхности. Это приложенное давление может создаваться различными источниками, одним или несколькими, например противодавлением, создаваемым дросселем в линии возврата бурового раствора, давлением, создаваемым специальным насосом противодавления, и/или давлением, отводимым от стояка к линии возврата бурового раствора.

Поэтому понятно, что в технологии регулирования давления при бурении нужны постоянные усовершенствования.

Краткое описание графических материалов

На фиг. 1 показаны частичный разрез системы бурения скважин и связанный с этой системой способ, который может осуществить принципы настоящего изобретения.

На фиг. 2 схематически показан другой пример системы бурения скважины и соответствующего способа.

На фиг. 3 схематически показана система регулирования давления и расхода, которая может быть использована с системой и способом по фиг. 1 и 2.

На фиг. 4 показана блок-схема примера способа регулирования давления в скважине, в котором могут быть реализованы принципы настоящего изобретения.

На фиг. 5А и В показаны блок-схемы другого примера способа регулирования давления в скважине.

Подробное раскрытие изобретения

На фиг. 1 иллюстративно представлены система 10 бурения скважины и связанный с этой системой способ, в котором можно осуществить принципы настоящего изобретения. Однако следует ясно понимать, что система 10 и этот способ - это лишь один пример применения на практике идей настоящего изобретения, и возможен широкий спектр других примеров. Поэтому объем настоящего изобретения отнюдь не ограничен деталями системы 10 и способа, раскрытых в настоящем описании и/или проиллюстрированных на чертежах.

В примере на фиг. 1 скважина 12 пробуривается вращающимся буровым долотом 14 на конце бурильной колонны 16. Буровая текучая среда 18, обычно называемая «буровым раствором»), циркулирует вниз по бурильной колонне 16, из бурового долота 14 и вверх через кольцевое пространство 20 между бурильной колонной и стенкой скважины 12 с целью охлаждения бурового долота, смазки бурильной колонны, удаления обломков породы и обеспечения измерений для регулирования давления в стволе скважины. Обратный клапан 21 (как правило, тарельчатый запорный клапан) предотвращает течение бурового раствора 18 вверх по бурильной колонне 16 (например, при производстве соединений в бурильной колонне).

Управление давления в скважине очень важен при бурении с регулируемым давлением и в других типах операций бурения. Предпочтительно, давление в скважине точно регулируется для предотвращения чрезмерной потери текучей среды из-за ухода в геологические породы, окружающие скважину 12, нежелательного разрыва пласта, нежелательного притока пластовых текучих сред в скважину и т.д.

В типовом случае бурения с регулируемым давлением требуется поддерживать давление в скважине чуть более высоким, чем поровое давление пласта, сквозь который проходит скважина, не превышая давления разрыва пласта. Такая технология особенно полезна в ситуациях, когда интервал между поровым давлением и давлением разрыва сравнительно мал.

В типовом случае бурения с отрицательным дифференциальным давлением требуется поддерживать давление в скважине несколько меньшим, чем поровое давление, получая тем самым контролируемый приток текучей среды из пласта. В типовом случае бурения с положительным дифференциальным давлением требуется поддерживать давление в скважине несколько более высоким, чем поровое давление, предотвращая тем самым (или, по меньшей мере, ограничивая) приток текучей среды из пласта.

Азот или другой газ - или другая легкая текучая среда - может быть добавлен к буровому раствору 18 для контроля давления. Такая технология полезна, например, в операциях бурения с отрицательным дифференциальным давлением.

В системе 10 дополнительный контроль давления в скважине достигается за счет того, что кольцевое пространство 20 герметизируют (например, изолировав его от сообщения с атмосферой и допуская повышение давления в кольцевом пространстве на поверхности или в приповерхностном слое) и используют вращающийся отклоняющий превентор (ВОП) 22. ВОП 22 уплотняет бурильную колонну 16 над устьем 24 скважины. Хотя это не показано на фиг. 1, бурильная колонна 16 проходит вверх через ВОП 22 для соединения, например, с буровым ротором (не показано), трубопроводом 26 стояка, ведущей бурильной трубой (не показано), верхним приводом и/или с другим традиционным бурильным оборудованием.

Буровой раствор 18 выходит из устья 24 скважины через задвижку 28 в линию, которая сообщается с кольцевым пространством 20 ниже ВОП 22. Далее буровой раствор 18 течет через линии 30, 73 возврата бурового раствора к дроссельному манифольду 32, содержащему резервные дроссели 34 (из которых в каждый момент времени может быть использован только один). Противодавление прикладывается к кольцевому пространству 20 посредством регулируемого ограничения расхода текучей среды 18 через рабочий дроссель(дроссели) 34.

Чем больше ограничен расход через дроссель 34, тем выше противодавление, приложенное к кольцевому пространству 20. Таким образом, скважинное давление (например, давление в забое скважины 12, давление у башмака обсадной колонны, давление на уровне конкретного пласта или пояса и т.д.) можно удобно регулировать изменением противодавления, приложенного к кольцевому пространству 20. Чтобы определить, какое давление, приложенное к кольцевому пространству 20 на поверхности или возле нее, приведет к требуемому скважинному давлению, может быть использована, как полнее раскрыто ниже, гидравлическая модель, так что оператор (или автоматизированная система управления) легко может определить, как регулировать приложенное к кольцевому пространству на поверхности или возле нее давление (которое легко может быть измерено), чтобы получить требуемое скважинное давление.

Давление, приложенное к кольцевому пространству 20, может быть измерено на поверхности или возле нее рядом датчиков давления 36, 38, 40, каждый из которых сообщается с кольцевым пространством. Датчик давления 36 воспринимает давление ниже ВОП 22, но выше блока 42 противовыбросовых превенторов (ПВП). Датчик давления 38 воспринимает давление в устье скважины ниже блока 42 ПВП. Датчик давления 40 воспринимает давление в линиях 30, 73 возврата бурового раствора перед дроссельным манифольдом 32.

Еще один датчик давления 44 воспринимает давление в трубопроводе 26 стояка. Следующий датчик давления 46 воспринимает давление после дроссельного манифольда 32, но до сепаратора 48, вибратора 50 и отстойника 52 для бурового раствора. К дополнительным датчикам относятся термочувствительные элементы 54, 56, кориолисов расходомер 58 и расходомеры 62, 64, 66.

Не все эти датчики необходимы. Например, система 10 может содержать только два из трех расходомеров 62, 64, 66. Однако сигналы всех имеющихся датчиков, поданные на вход гидравлической модели, могут быть полезны при определении того, каким должно быть давление, приложенное к кольцевому пространству 20, в процессе бурения.

При необходимости могут быть использованы и другие типы датчиков. Например, расходомер 58 не обязательно должен быть кориолисовым расходомером, так как вместо него может быть использован турборасходомер, акустический расходомер или расходомер другого типа.

Кроме того, бурильная колонна 16 может содержать свои собственные датчики 60, например, для непосредственного измерения скважинного давления. Эти датчики 60 могут быть известными специалистам датчиками измерения давления во время бурения (ИДВБ), измерений во время бурения (ИВБ) и/или каротажа во время бурения (КВБ). Эти системы датчиков бурильной колонны, в общем, обеспечивают, по меньшей мере, измерение давления и могут также обеспечить измерение температуры, определение характеристик бурильной колонны (например, вибрацию, нагрузку на буровое долото, заедание-смещение и т.д.), характеристик пласта (например, удельное сопротивление, плотность и т.д.) и/или другие измерения. Для передачи замеров скважинных датчиков на поверхность могут быть использованы различные виды проводной или беспроводной телеметрии (акустическая, гидроимпульсная, электромагнитная и т.д.).

При необходимости в систему 10 могут быть включены дополнительные датчики. Например, еще один расходомер 67 может быть использован для измерения расхода текучей среды 18, выходящей из устья 24 скважины, еще один кориолисов расходомер (не показан) может быть подключен непосредственно перед буровым насосом 68 или после него и т.д.

При необходимости, в систему 10 может быть включено меньше датчиков. Например, производительность бурового насоса 68 может быть определена по числу ходов поршня насоса, вместо использования расходомера 62 или каких-либо других расходомеров.

Заметим, что сепаратор 48 может быть 3- или 4-фазным сепаратором или газосепаратором для бурового раствора (иногда его называют «дегазатором бурового раствора»). Однако использовать в системе 10 сепаратор 48 не обязательно.

Буровой раствор 18 закачивается по трубопроводу 26 стояка внутрь бурильной колонны 16 буровым насосом 68. Насос 68 получает текучую среду 18 из отстойника 52 для бурового раствора и подает ее через нагнетательный манифольд 70 в стояк 26. После чего текучая среда 18 циркулирует вниз по бурильной колонне 16, вверх через кольцевое пространство 20, через линии 30, 73 возврата бурового раствора, через дроссельный манифольд 32 и, далее, через сепаратор 48 и вибратор 50 к отстойнику 52 бурового раствора для кондиционирования и рециркуляции.

Заметим, что в системе 10, как было раскрыто выше, дроссель 34 не может быть использован для регулирования противодавления, приложенного к кольцевому пространству 20 для регулирования скважинного давления, если текучая среда 18 не течет через дроссель. В традиционных операциях бурения с положительным дифференциальным давлением отсутствие потока текучей среды 18 возникает всякий раз, когда, например, производятся соединения в бурильной колонне 16 (например, при добавлении очередного отрезка бурильной трубы к бурильной колонне, когда скважина 12 пробуривается глубже), и отсутствие циркуляции требует, чтобы скважинное давление регулировалось исключительно плотностью текучей среды 18.

В системе 10, однако, поток текучей среды 18 через дроссель 34 может быть сохранен, даже когда текучая среда не циркулирует по бурильной колонне 16 и кольцевому пространству 20 в процессе соединений, производимых в бурильной колонне. Таким образом, давление может быть по-прежнему приложено к кольцевому пространству 20 посредством ограничения расхода текучей среды 18 через дроссель 34, даже несмотря на то что отдельный насос противодавления может не использоваться.

Когда текучая среда 18 не циркулирует по бурильной колонне 16 и кольцевому пространству 20 (например, когда в бурильной колонне производятся соединения), текучая среда течет от насоса 68 к дроссельному манифольду 32 через байпасный трубопровод 72, 75. Таким образом, текучая среда 18 может обойти трубопровод 26 стояка, бурильную колонну 16 и кольцевое пространство 20 и может течь непосредственного от насоса 68 в линию 30 возврата бурового раствора, которая по-прежнему сообщается с кольцевым пространством 20. Таким образом, ограничение этого потока дросселем 34 создаст давление, приложенное к кольцевому пространству 20 (например, в типовом случае бурения с регулируемым давлением).

Как показано на фиг. 1, и байпасный трубопровод 75, и линия 30 возврата бурового раствора сообщаются с кольцевым пространством 20 через один трубопровод 73. Однако байпасный трубопровод 75 и линия 30 возврата бурового раствора могут вместо этого по отдельности соединяться с устьем 24 скважины, например, при использовании дополнительной задвижки (например, ниже ВОП 22); в этом случае каждая из линий 30, 75 будет непосредственного сообщаться с кольцевым пространством 20.

Это может потребовать прокладки дополнительных трубопроводов на месте установки буровой вышки, но влияние на давление в кольцевом пространстве будет, по существу, таким же, как и при подсоединении байпасного трубопровода 75 и линии возврата 30 бурового раствора к общему трубопроводу 73. Таким образом, должно быть ясно, что могут быть использованы многие различные компоновки элементов системы 10, которые, тем не менее, входят в объем настоящего изобретения.

Расход текучей среды 18 через байпасный трубопровод 72, 75 регулируется дросселем или другого типа регулятором 74 расхода. Трубопровод 72 включен до байпасного регулятора 74 расхода, а трубопровод 75 включен после байпасного регулятора расхода.

Расход текучей среды 18 по трубопроводу 26 стояка, по существу, регулируется клапаном или другого типа регулятором 76 расхода. Так как значения расхода текучей среды 18 через линии 26, 72 стояка и байпаса полезны при определении того, как эти расходы влияют на давление в скважине, в эти линии введены расходомеры 64, 66, как показано на фиг. 1.

Однако расход через трубопровод 26 стояка может быть определен даже при использовании только расходомеров 62, 64, а расход через байпасный трубопровод 72 может быть определен даже при использовании только расходомеров 62, 66. Таким образом, должно быть понятно, что система 10 не обязательно должна содержать все датчики, показанные на фиг. 1 и раскрытые в настоящем описании, а вместо этого система может содержать дополнительные датчики, различные сочетания и/или типы датчиков и т.д.

В примере на фиг. 1 байпасный регулятор 78 расхода и ограничитель 80 расхода могут быть использованы для заполнения трубопровода 26 стояка и бурильной колонны 16 после выполнения соединения в бурильной колонне и для уравнивания давлений в трубопроводе стояка и линиях 30, 73 возврата бурового раствора перед открытием регулятора 76 расхода. В противном случае внезапное - до заполнения текучей средой 18 трубопровода 26 стояка и бурильной колонны 16 и повышения в них давления - открытие регулятора 76 расхода может вызвать нежелательные переходные колебания давления в кольцевом пространстве 20 (например, из-за временного отсутствия потока к дроссельному манифольду 32 в процессе заполнения текучей средой трубопровода стояка и бурильной колонны и т.д.).

Открытие регулятора 78 расхода байпаса стояка после выполнения соединения дает возможность текучей среде 18 заполнить трубопровод 26 стояка и бурильную колонну 16, в то время как, по существу, преобладающая часть текучей среды продолжает течь через байпасный трубопровод 72, позволяя тем самым осуществлять непрерывное регулируемое приложение давления к кольцевому пространству 20. После того как давление в трубопроводе 26 стояка уравняется с давлением в линиях 30, 73 возврата бурового раствора и в байпасном трубопроводе 75, регулятор 76 расхода может быть открыт, и, далее, регулятор 74 расхода может быть закрыт для медленного перенаправления более значительной части текучей среды 18 из байпасного трубопровода 72 в трубопровод 26 стояка.

Аналогичный процесс, но в обратном порядке, может быть выполнен в бурильной колонне 16 до производства соединения - для постепенного перенаправления потока текучей среды 18 из трубопровода 26 стояка в байпасный трубопровод 72 с целью подготовки добавления бурильных труб к бурильной колонне 16. То есть, регулятор 74 расхода может быть постепенно открыт для медленного перенаправления более значительной части текучей среды 18 из трубопровода 26 стояка в байпасный трубопровод 72, а затем регулятор 76 расхода может быть закрыт.

Заметим, что регулятор 78 расхода и ограничитель 80 расхода могут быть объединены в один элемент (например, регулятор расхода со встроенным ограничителем расхода), а регуляторы 76, 78 расхода могут быть объединены в один регулятор 81 расхода (например, в один дроссель, который можно постепенно открывать для медленного заполнения и постановки под давление трубопровода 26 стояка и бурильной колонны 16 после выполнения соединения бурильной трубы и, далее, открывать полностью для обеспечения максимального расхода в процессе бурения).

Однако, поскольку типовые традиционные буровые вышки оборудованы регулятором 76 расхода в виде клапана в нагнетательном манифольде 70 и использование клапана стояка входит в обычную практику бурения, индивидуально управляемые регуляторы 76, 78 расхода предотвращают использование регулятора 76 расхода. Регуляторы 76, 78 расхода ниже иногда обозначаются в целом как один регулятор 81 расхода, но должно быть понятно, что регулятор 81 расхода может содержать отдельные регуляторы 76, 78 расхода.

Другой пример представлен на фиг. 2. В этом примере регулятор 76 расхода введен до нагнетательного манифольда 70 буровой вышки. Эта компоновка имеет определенные преимущества, например, не требуется модифицировать нагнетательный манифольд 70 буровой вышки или трубопровод между манифольдом и ведущей бурильной трубой; спускной клапан 82 стояка буровой вышки может быть использован для продувки стояка 26, как в стандартных операциях бурения (нет необходимости изменять методику с привлечением буровой бригады) и т.д.

Регулятор 76 расхода можно присоединить между буровым насосом 68 и нагнетательным манифольдом 70, используя, например, быстросоединяемые замки 84 (например, муфты с защелками и т.п.). Это позволит удобно адаптировать регулятор 76 расхода для включения в различные линии бурового насоса.

Вместо использования традиционного клапана стояка в нагнетательном манифольде 70 буровой вышки, для регулирования расхода по трубопроводу 26 стояка может быть использован специально приспособленный полностью автоматизированный регулятор 76 расхода (например, автоматически управляемый контроллером 96, показанным на фиг. 3). В целом, регулятор 81 расхода может быть выполнен, скорее, не для целей традиционного бурения, а по условиям заказчика - для такого применения, как раскрытое в настоящем описании (например, для регулирования расхода по трубопроводу 26 стояка в связи с распределением текучей среды 18 между трубопроводом стояка и байпасным трубопроводом 72, чтобы тем самым регулировать давление в кольцевом пространстве 20 и т.п.).

В примере на фиг. 2 дистанционно управляемый клапан или другой регулятор 160 расхода опционально используется для перенаправления потока текучей среды 18 из трубопровода 26 стояка в линию 30 возврата 30 бурового раствора после дроссельного манифольда 32, с целью передачи сигналов, данных, команд и т.д. к скважинным инструментам (например, к компоновке низа бурильной колонны с фиг. 1, включающей в себя датчики 60, и к другому оборудованию, включая забойные турбинные двигатели, отклоняющие устройства, регуляторы отклонения и т.д.). Регулятор 160 управляется по телеметрии контроллером 162, который может кодировать информацию в виде последовательности отклонений расхода, определяемых скважинными инструментами (например, определенное снижение расхода через скважинный инструмент явится следствием соответствующего перенаправления потока регулятором 160 из трубопровода 26 стояка в линию 30 возврата 30 бурового раствора).

Подходящий телеметрический контроллер и подходящий дистанционно управляемый регулятор расхода имеются в системе GEO-SPAN (ТМ), поставляемой компанией Halliburton Energy Services, Inc. Телеметрический контроллер 162 может быть подсоединен к системе INSITE (ТМ) или к другому интерфейсу 94 сбора данных и управления в системе 90 управления. Однако и другие типы телеметрических контроллеров и регуляторов расхода могут быть использованы без отступления от объема настоящего изобретения.

Заметим, что каждый из регуляторов 74, 76, 78 расхода и дросселей 34, предпочтительно, дистанционно и автоматически управляются так, чтобы поддерживать требуемое скважинное давление, поддерживая требуемое давление в кольцевом пространстве на поверхности или возле нее. Однако любой (любые) один или более из этих регуляторов 74, 76, 78 расхода и дросселей 34 может (могут) управляться вручную, без отступления от объема настоящего изобретения.

Система 90 управления давлением и расходом, которая может быть использована в связи с системой 10 и связанными с ней способами по фиг. 1 и 2, представлена на фиг. 3. Система 90 управления, предпочтительно, полностью автоматизирована, хотя некоторое человеческое вмешательство может быть использовано, например, для защиты от нештатной работы, запуска определенных программ, корректировки параметров и т.п.

Система 90 управления содержит гидравлическую модель 92, интерфейс 94 сбора данных и управления и контроллер 96 (например, Программируемый Логический Контроллер, или ПЛК (PLC), соответствующим образом запрограммированный компьютер и т.д.). Хотя эти элементы 92, 94, 96 показаны на фиг. 3 по отдельности, какие-то из них или все они могут быть объединены в один элемент, или функции элементов могут быть распределены по дополнительным элементам, или могут быть обеспечены другие дополнительные элементы и/или функции и т.д.

Гидравлическая модель 92 используется в системе 90 управления для определения требуемого давления в кольцевом пространстве на поверхности или в приповерхностном слое, обеспечивающего достижение требуемого скважинного давления. Чтобы провести это определение, в гидравлической модели 92 используются, например, данные о геометрии скважины, данные о свойствах текучей среды, информация из соседних скважин (например, геотермический градиент, градиент порового давления и т.п.), а также данные датчиков в режиме реального времени, полученные через интерфейс 94 сбора данных и управления.

Таким образом, имеет место непрерывный двусторонний обмен данными и информацией между гидравлической моделью 92 и интерфейсом 94 сбора данных и управления. Важно понять, что интерфейс 94 сбора данных и управления работает для поддержания существенно непрерывного потока данных в реальном масштабе времени от датчиков 44, 54, 66, 62, 64, 60, 58, 46, 36, 38, 40, 56, 67 к гидравлической модели 92, так что гидравлическая модель получает информацию, которая ей нужна для адаптации к меняющимся условиям и для корректировки требуемого давления в кольцевом пространстве, причем гидравлическая модель работает для того, чтобы существенно непрерывно снабжать интерфейс сбора данных и управления величиной требуемого давления в кольцевом пространстве.

Подходящие гидравлические модели для использования в качестве гидравлической модели 92 в системе 90 управления - REAL TIME HYDRAULICS (ТМ) или GB SETPOINT (ТМ), поставляемые компанией Halliburton Energy Services, Inc., Хьюстон, Техас, США. Еще одна подходящая гидравлическая модель выпускается под торговым наименованием IRIS (ТМ), и еще одна поставляется компанией SINTEF, Тронхейм, Норвегия. Любые подходящие гидравлические модели могут быть использованы в системе 90 управления в соответствии с идеями настоящего изобретения.

Подходящие интерфейсы сбора данных и управления для использования в качестве интерфейса 94 сбора данных и управления в системе 90 управления - SENTRY(TM) и INSITE(TM), поставляемые компанией Halliburton Energy Services, Inc. Любой подходящий интерфейс сбора данных и управления может быть использован в системе 90 управления в соответствии с идеями настоящего изобретения.

Контроллер 96 работает для поддержания требуемого установочного значения давления в кольцевом пространстве посредством управления работой дросселя 34 возврата бурового раствора и других устройств. Например, контроллер 96 может также использоваться для управления работой регуляторов 76, 78 расхода стояка и байпасного регулятора 74 расхода. Таким образом, контроллер 96 может использоваться для автоматизации процессов перенаправления потока текучей среды 18 из трубопровода 26 стояка в байпасный трубопровод 72 перед производством соединения в бурильной колонне 16; далее, для перенаправления потока из байпасного трубопровода в трубопровод стояка после производства соединения и, далее, для возобновления нормальной циркуляции текучей среды 18 для бурения. Опять-таки, эти автоматизированные процессы могут не требовать вмешательства человека, хотя при необходимости человеческое вмешательство может быть использовано, например, для запуска каждого процесса по очереди, для ручного управления элементами системы и т.д.

Методики подтверждения и предсказания данных могут быть использованы в системе 90 для защиты от использования ошибочных данных, для обеспечения соответствия замеренных величин предсказанным величинам и т.д. Подходящие методики подтверждения и предсказания данных раскрыты в международной заявке №PCT/US11/59743, хотя, при необходимости, могут быть использованы другие методики.

В прошлом, когда откорректированная величина требуемого давления в кольцевом пространстве передавалась от интерфейса 94 сбора данных и управления на контроллер 96, контроллер использовал требуемое давление в кольцевом пространстве как установочное значение и регулировал работу дросселя 34 так, чтобы поддерживать (например, повышая или понижая по мере надобности сопротивление потоку через дроссель) установочное значение давления в кольцевом пространстве 20. Дроссель 34 закрывался больше, чтобы повысить сопротивление течению, или открывался больше, чтобы понизить сопротивление течению.

Поддержание установочного значения давления осуществляли, сравнивая установочное значение давления с давлением, замеренным в кольцевом пространстве (например, с давлением, замеренным любым из датчиков 36, 38, 40), и уменьшая сопротивление течению через дроссель 34, если замеренное давление оказывалось выше установочного значения давления, или увеличивая сопротивление течению через дроссель, если замеренное давление оказывалось ниже установочного значения давления. К сожалению, регулировка дросселя, в типовом случае, определялась пропорционально-интегрально-дифференциальным (ПИД)-регулятором, поэтому (в зависимости от коэффициентов входа ПИД-регулятора) дроссель легко мог быть перерегулирован, или недорегулирован, или требовался длительный период времени для выполнения ряда приращений, необходимого для приведения дросселя в окончательное положение, при котором дроссель способен поддерживать требуемое давление в кольцевом пространстве.

Одна из причин такой ситуации заключалась в том, что коэффициенты, используемые в ПИД-регуляторе, оставались одними и теми же в течение всей операции бурения и выбирались для использования в обычных, относительно стабильных условиях. Эти одинаковые коэффициенты были неидеальны при использовании в быстро меняющихся условиях, например, при внезапном изменении давления или расхода.

Но в примере способа, более полно раскрытого ниже, на такие быстрые изменения условий бурения можно отреагировать быстрее путем добавления поправки к установочному значению давления. Добавление поправки к установочному значению давления в процессе регулировки дросселя 34 приводит к более быстрому достижению расхода, соответствующего управлению в меняющихся условиях бурения. При восстановлении относительно стабильных условий поправку можно убрать, и контроллер 96 будет регулировать работу дросселя 34 так, чтобы поддерживать требуемое установочное значение давления в скважине.

Теперь обратимся к фиг. 4; на ней представлен в виде упрощенной блок-схемы способ 100 регулирования давления в скважине. Способ 100 может быть использован с системой 10, раскрытой выше, или с другими системами.

На начальном шаге 102 способа 100 определяют требуемое установочное значение давления. В системе 10 это установочное значение давления соответствует давлению в кольцевом пространстве 20 в устье или около устья 24 скважины. Это давление может замеряться в любой точке до дроссельного манифольда 32.

Однако в других примерах установочное значение давления может задаваться для местоположения, отличающемуся от устья 24 скважины. Например, установочное значение давления может задаваться в глубине скважины (например, у башмака обсадной колонны, на уровне конкретного пласта, в забое скважины 12 и т.д.). В этом случае замеры фактического давления на поверхности или в скважине могут использоваться контроллером 96 для сравнения с установочным значением давления.

На шаге 104 измеряют фактическое давление в скважине. Как было сказано выше, измерение давления можно выполнять в любом месте скважины. Например, для измерения давления могут использоваться датчики 36, 38, 40 давления на поверхности или скважинные датчики 60 (или подводные датчики).

На шаге 106 фактическое давление в скважине отклоняется от требуемого установочного значения давления. В системе 10 сравнение фактического давления в скважине с требуемым выполняется контроллером 96.

При относительно стабильных режимах буровых работ следует ожидать возникновения некоторых отклонений фактического давления в скважине от требуемого, и контроллер 96 автоматически регулирует дроссель 34 для минимизации (или, в идеале, для устранения) этих отклонений. Однако при возникновении больших отклонений способ 100 дает дополнительную «добавку» к установочному значению давления (в том направлении, в котором должно быть изменено фактическое давление, чтобы приблизиться к требуемой величине давления), так что контроллер 96 быстрее отрегулирует дроссель 34 на расход, при котором фактическое давление равно требуемому или близко к нему.

На шаге 108 к установочному значению давления прибавляют поправку, если разница между фактическим и требуемым давлением превышает заданную величину. Эту заданную величину выбирают так, чтобы при относительно стабильных режимах буровых работ поправка не добавлялась к установочному значению давления. Поправка добавляется только в том случае, когда разница между фактическим и требуемым давлением достаточна велика.

На шаге 110 контроллер 96 регулирует дроссель 34 так, чтобы приблизить фактическое давление к установочному значению давления с учетом поправки, прибавленной на шаге 108. Например, если фактическое давление достаточно низко по сравнению с установочным значением давления, к этому установочному значению может быть прибавлена положительная поправка, чтобы контроллер 96 управлял дросселем 34 так, чтобы изначально ограничить расход текучей среды 18 из кольцевого пространства 20 больше, чем было бы, если бы контроллер использовал только установочное значение давления для регулирования работы дросселя. Наоборот, если фактическое давление достаточно велико по сравнению с установочным значением давления, к этому установочному значению может быть прибавлена отрицательная поправка, чтобы контроллер 96 перевел дроссель 34 на меньшее начальное ограничение расхода текучей среды 18 из кольцевого пространства 20, чем было бы, если бы контроллер использовал только установочное значение давления для регулирования работы дросселя.

На шаге 112, когда возобновлены относительно стабильные режимы буровых работ, поправка уже не применяется. Если больших отклонений, запускающих применение поправки, нет, поправка убирается, чтобы контроллер 96 снова управлял дросселем 34 для поддержания фактического давления на уровне требуемого установочного значения давления (без поправки).

Теперь обратимся еще к фиг. 5А и В; на ней более подробно представлен в виде блок-схем пример способа 100. Пример с фиг. 5А и В - это просто один случай применения принципов настоящего изобретения в конкретной ситуации бурения, но принципы настоящего изобретения могут принести выгоду в широком спектре других ситуаций бурения, и следует ясно понимать, что объем настоящего изобретения отнюдь не ограничен никакими деталями системы 10 или способа 100, изображенными на чертежах или раскрытыми в настоящем описании.

Блок-схемы на фиг. 5А и В представляют программу, называющуюся «Lead Chokes» (Ведущие дроссели), что указывает на ее применение для более быстрого перевода дросселя (дросселей) 34 на расход, соответствующий поддержанию фактического давления на уровне требуемого установочного значения давления. Эта программа применяется в ситуации бурения, когда внезапное падение расхода через дроссель 34 вызывает внезапное большое падение давления перед дросселем. Такая ситуация может возникнуть, например, при внезапном падении расхода подачи из бурового насоса 68, при сбое или нештатной работе другого регулятора расхода, при больших потерях текучей среды в скважине и т.д.

В программе «Lead Chokes» используются следующие переменные:

WHP - фактическое давление, измеренное в кольцевом пространстве 20 в устье 24 или около устья 24 перед дросселем 34;

WHP_Target - требуемое установочное значение давления, выдаваемое гидравлической моделью 92;

CD_Hydrostatic - гидростатическое давление на глубине регулирования в скважине 12 (глубина, на которой требуется поддерживать требуемое давление);

CD_Target - требуемое давление (гидростатическое плюс потери давления на трение, если имеются) на глубине регулирования;

TurhOffLeadChokesWithin - отклонение фактического давления от требуемого установочного значения давления, ниже которого к требуемому установочному значению давления не добавляют поправку;

Pumps_Down_Offset - поправка, выбранная специально для ситуации бурения, при которой внезапно падает расход из бурового насоса 68;

lnjection_Flow_Rate - расход текучей среды 18, закачиваемой в бурильную колонну 16;

Delta_Flow - изменение расхода закачивания;

Delta_Time - время перехода между текущим расходом закачивания и предыдущим расходом закачивания;

Rate_Change - изменение отношения расхода закачивания к времени перехода;

FlowRateChangeThreshold - изменение расхода в единицу времени, выше которого предписано добавление поправки;

LeadChokesStatus - показывает, следует ли добавлять поправку к требуемому установочному значению давления;

LeadChokesOffset - поправка, применяемая к требуемому установочному значению давления в результате действия программы «Lead Chokes»;

CurrentMaxFlowRateChange - максимальное изменение расхода при выполнении программы;

LastMaxFlowRateChange - предыдущее максимальное изменение расхода;

Previous_Flow - предыдущий расход, использованный в программе;

Previous_Flow_Timestamp - время записи предыдущего расхода;

PreviousLeadChokesOffset - предыдущая поправка, примененная к требуемой установочному значению давления;

PreviousLeadChokesStatus - предыдущий индикатор, показывающий, добавлялась ли поправка к требуемой установочному значению давления.

Специалистам будет понятно, что добавление поправки в программе «Ведущие дроссели», представленное на фиг. 5А и В, «запускается», когда скорость изменения расхода закачивания (Rate_Change) достигает или становится больше заданного уровня (FlowRateChangeThreshold), а измеренное фактическое давление (WHP) - меньше требуемого установочного значения давления (WHP_Target) на заданную величину (TurhOffLeadChokesWithin). Если эти (и другие) условия выполнены, то поправка (LeadChokesOffset) добавляется к требуемому установочному значению давления.

Поправка (LeadChokesOffset) может быть заранее выбранной поправкой (Pumps_Down_Offset) для данной конкретной ситуации бурения. Альтернативно, если установочное значение давления с поправкой окажется больше требуемого давления на глубине регулирования (CD_Targef) минус гидростатическое давление на этой глубине (CD_Hydrostatic), то поправка может быть уменьшена до разности между требуемым давлением на глубине регулирования и гидростатическим давлением на этой глубине. Это должно снизить вероятность того, что дроссель 34 после добавления поправки к установочному значению давления слишком сильно ограничит расход, так что на глубине регулирования возникнет избыточное давление.

В других примерах могут быть отражены другие ситуации бурения. Так, например, могут быть предложены отдельные программы для притока текучей среды, фильтрации, производства соединений в бурильной колонне 16 и для любой другой ситуации. Таким образом, объем настоящего изобретения не ограничен применением поправки только при внезапном падении расхода.

Теперь может быть вполне понято, что раскрытое выше изобретение обеспечивает значительное усовершенствование техники регулирования давления при бурении. Способ 100 может быть применен при регулировании дросселя 34, необходимом для быстрого восстановления требуемого давления в скважине. В раскрытом выше примере поправка может быть добавлена к требуемому установочному значению давления в скважине 12 для более быстрого перевода дросселя 34 на расход, соответствующий поддержанию требуемого давления в скважине.

Выше раскрыт способ 100 регулирования давления в скважине 12 при бурении. В одном из примеров способ 100 включает следующие шаги: определяют требуемое установочное значение давления в скважине; к установочному значению давления в скважине прибавляют поправку, если фактическое давление в скважине отклоняется от установочного значения давления на заданную величину; и регулируют устройство управления расходом (например, дроссель 34) так, чтобы приблизить фактическое давление в скважине к установочному значению давления в скважине с учетом поправки.

Требуемая установочная величина давления в скважине может быть получена на выходе гидравлической модели 92.

Прибавление поправки может также производиться при заданном уровне изменения расхода. Этот заданный уровень изменения расхода может включать в себя падение расхода через регулятор расхода (например, дроссель 34).

Способ может также включать шаг, на котором убирают поправку, когда фактическое давление в скважине отклоняется от установочного значения давления на величину, меньшую заданной величины.

Устройство управления расходом может содержать дроссель 34, ограничивающий расход текучей среды из скважины 12.

Способ может также включать шаг, на котором регулируют устройство управления расходом так, чтобы приблизить фактическое давление в скважине к установочному значению давления без поправки, перед тем как прибавлять поправку к установочному значению.

Выше раскрыта также скважинная система 10. В одном из примеров скважинная система 10 может включать регулятор расхода, который регулируемым образом ограничивает расход из скважины 12, и систему 90 управления, которая определяет требуемое установочное значение давления в скважине, сравнивает это установочное значение давления с фактическим давлением в скважине и, при заданном уровне отклонения фактического давления в скважине от установочного давления, добавляет поправку к требуемому установочному значению давления. Система 90 управления регулирует устройство управления расходом и, таким образом, приближает фактическое давление в скважине к установочному значению давления с поправкой.

В другом примере способ 100 регулирования давления в скважине 12 при бурении может включать следующие шаги: регулируют устройство управления расходом и тем самым приближают фактическое давление в скважине к требуемому установочному значению давления; затем к установочному значению давления в скважине прибавляют поправку, если фактическое давление в скважине отклоняется от установочного значения давления на заданную величину, после чего регулируют устройство управления расходом и тем самым приближают фактическое давление в скважине к установочному значению давления с учетом поправки.

Хотя выше раскрыты различные примеры и каждый пример имеет определенные признаки, должно быть понятно, что конкретный признак какого-либо примера не обязательно должен использоваться исключительно с этим примером. Напротив, любые признаки, раскрытые выше и/или показанные на чертежах, могут быть соединены с любым из примеров, в дополнение к любым другим признакам или взамен любых других признаков этих примеров. Отдельные признаки примеров не являются взаимоисключающими. Напротив, в объем настоящего изобретения входят любые комбинации любых признаков.

Хотя каждый пример, раскрытый выше, содержит определенные комбинации признаков, следует понимать, что не обязательно должны быть использованы все признаки примера. Напротив, любые признаки, раскрытые выше, могут быть использованы без одновременного использования любого другого конкретного признака или признаков.

Должно быть понятно, что различные варианты осуществления, раскрытые в настоящем описании, могут применяться в различных ориентациях, например наклонно, перевернуто, горизонтально, вертикально и т.д., и в различных компоновках, без отступления от идей настоящего изобретения. Варианты осуществления изобретения раскрыты просто как примеры полезного применения идей настоящего изобретения, которое не ограничено никакими конкретными деталями этих вариантов осуществления.

В вышеприведенном описании характерных примеров термины направлений (например, «над», «под», «верхний», «нижний» и т.д.) используются для удобства ссылок на сопроводительные чертежи. Однако следует ясно понимать, что объем настоящего изобретения не ограничен никакими конкретными направлениями, раскрытыми в настоящем описании.

Термины «включая», «включает», «содержащий», «содержит» и аналогичные термины используются в данном описании в неограничительном смысле. Например, если система, способ, устройство, прибор и т.д. описаны как «включающие» определенный признак или элемент, то система, способ, устройство, прибор и т.д. могут содержать этот признак или элемент и могут также содержать другие признаки или элементы. Аналогично, термин «содержит» понимается как означающий: «содержит, но не ограничительно».

Разумеется, специалист, после тщательного рассмотрения вышеприведенного описания характерных вариантов осуществления настоящего изобретения, легко поймет, что в конкретных вариантах осуществления могут быть произведены многочисленные модификации, дополнения, замены, изъятия и другие изменения, и такие изменения предполагаются принципами настоящего изобретения. Например, конструкции, раскрытые как обособленные, могут в других примерах быть объединены - и наоборот. Соответственно, вышеприведенное подробное описание должно быть ясно понято как данное лишь в качестве иллюстрации и примера, а сущность и объем изобретения ограничиваются исключительно прилагаемой формулой изобретения и ее эквивалентами.

1. Способ регулирования давления в стволе скважины при бурении, содержащий следующее:
определяют требуемое установочное значение давления в скважине;
к установочному значению давления в скважине прибавляют поправку при отклонении фактического давления в скважине от установочного значения давления в скважине на заданную величину; и
регулируют устройство управления расходом так, чтобы приблизить фактическое давление в скважине к установочному значению давления с поправкой.

2. Способ по п. 1, в котором требуемое установочное значение давления в скважине выдает гидравлическая модель.

3. Способ по п. 1, в котором прибавление поправки также выполняют при заданном уровне изменения расхода.

4. Способ по п. 3, в котором заданный уровень изменения расхода включает в себя уменьшение расхода через устройство управления расходом.

5. Способ по п. 1, дополнительно содержащий следующее: поправку убирают при отклонении фактического давления в скважине от установочного давления в скважине на величину, которая меньше заданной.

6. Способ по п. 1, в котором устройство управления расходом содержит дроссель, ограничивающий расход потока текучей среды из скважины.

7. Способ по п. 1, дополнительно содержащий регулирование устройства управления расходом, чтобы тем самым приблизить фактическое давление в скважине к установочному значению давления без поправки, перед ее прибавлением.

8. Скважинная система, содержащая:
устройство управления расходом, выполненное с возможностью регулируемым образом ограничивать расход потока из скважины, и
систему управления, выполненную с возможностью определения требуемого установочного давления в скважине, сравнения установочного давления с фактическим давлением в скважине и прибавления поправки к требуемому установочному значению давления при заданной величине отклонения фактического давления в скважине от установочного давления, при этом система управления выполнена с возможностью регулирования устройства управления расходом и, таким образом, приближения фактического давление в скважине к установочному значению давления с поправкой.

9. Система по п. 8, в которой система управления содержит гидравлическую модель, которая выполнена с возможностью выдавать требуемое установочное значение давления в скважине.

10. Система по п. 8, в которой система управления выполнена с возможностью прибавления поправки к установочному значению давления в скважине также при заданном уровне изменения расхода.

11. Система по п. 10, в которой заданный уровень изменения расхода включает в себя уменьшение расхода через устройство управления расходом.

12. Система по п. 8, в которой система управления способна убирать поправку при отклонении фактического давления в скважине от установочного значения давления на величину, которая меньше заданной.

13. Система по п. 8, в которой устройство управления расходом содержит автоматически регулируемый дроссель.

14. Система по п. 8, в которой система управления выполнена с возможностью регулировать устройство управления расходом так, чтобы приблизить фактическое давление в скважине к установочному значению давления без поправки при отклонении фактического давления в скважине от установочного значения давления на величину, меньше заданной.

15. Способ регулирования давления в скважине при бурении, содержащий следующее:
управляют устройством управления расходом, чтобы приблизить фактическое давление в скважине к требуемому установочному значению давления в скважине;
затем к установочному значению давления в скважине прибавляют поправку при отклонении фактического давления в скважине от установочного значения давления на заданную величину; и
затем регулируют устройство управления расходом так, чтобы приблизить фактическое давление в скважине к установочному значению давления с поправкой.

16. Способ по п. 15, в котором требуемое установочное значение давления в скважине выдает гидравлическая модель.

17. Способ по п. 15, в котором прибавление поправки также выполняют при заданном уровне изменения расхода.

18. Способ по п. 17, в котором заданный уровень изменения расхода включает в себя уменьшение расхода через устройство управления расходом.

19. Способ по п. 15, дополнительно содержащий следующее: после регулировки убирают поправку при отклонении фактического давления в скважине от установочного значения давления на величину, которая меньше заданной.

20. Способ по п. 15, в котором устройство управления расходом содержит дроссель, ограничивающий расход потока текучей среды из скважины.



 

Похожие патенты:

Изобретение относится к нефтяной и газовой промышленности, в частности к способам первичного вскрытия горизонтальными скважинами продуктивных пластов с углеводородным насыщением.

Группа изобретений относится к средствам управления давлением и потоком при буровых работах. Техническим результатом является повышение точности управления давлением в стволе скважины.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к регулированию давления бурового раствора в кольцевом пространстве скважины. Система и способ включают в себя перекачку бурового раствора через бурильную колонну, спущенную в ствол скважины, проходящий под дном водоема, выпуск из низа бурильной колонны и в кольцевое пространство ствола скважины.

Изобретение относится к бурению скважины и может найти применение при контроле циркуляционной системы. Способ основан на измерении изменения сигнала датчика, учитывающего выходной поток промывочной жидкости, протекающий через желоб, который выполняют в виде двух шарнирно соединенных между собой частей - подвижной и неподвижной, измеряют силу, создаваемую весом промывочной жидкости, протекающей по подвижному концу желоба, установленным под его днищем датчиком силы, преобразующим силу в электрический сигнал по алгоритму.

Группа изобретений относится к нефдегазодобывающей отрасли и может быть использована в операциях, выполняемых в подземных скважинах при бурении. Система включает гидроаккумулятор, сообщающийся со стволом скважины, при этом гидроаккумулятор подает давление в ствол скважины, штуцер, который дросселирует с регулированием давления поток текучей среды из ствола скважины.

Изобретение относится к технологии управления давлением в стволе скважины. Техническим результатом является возможность обеспечить давление в стволе скважины в любое время.

Группа изобретений относится к способам и системам управления потоком флюида в скважине. Система содержит флюидный модуль (150) с основным протоком (152), клапаном (162) и мостовой сетью.

Изобретение относится к области бурения и, в частности, к технологическому оснащению для усовершенствованного вычисления задержки. Способ расчета количества осыпи в открытом стволе буровой скважины содержит вычисление фактической задержки для скважины посредством выявления заданного компонента атмосферного воздуха в буровой жидкости.

Изобретение относится к бурению нефтяных и газовых скважин и может быть использовано при автоматическом непрерывном контроле параметров буровых растворов в процессе разбуривания горных пород.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к оборудованию и действиям, связанным с буровой скважиной. Способ включает сравнение измеренного значения давления в напорной линии с требуемым значением давления в напорной линии и автоматическое управление дросселем в зависимости от результатов этого сравнения, в результате чего уменьшается значение разности между указанным измеренным значением давления в напорной линии и указанным требуемым значением давления в напорной линии.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к уменьшению поршневых эффектов в скважине. При осуществлении способа уменьшения нежелательных изменений давления в скважине из-за перемещения скважинной инструментальной колонны включает выборочное уменьшение и увеличение связи по текучей среде между секциями скважины на противоположных сторонах скважинного инструмента в скважинной инструментальной колонне. Связь по текучей среде увеличивается в ответ на обнаружение превышающего порог перемещения скважинной инструментальной колонны относительно скважины. Инструментальная колонна содержит скважинный инструмент, соединенный в скважинной инструментальной колонне и имеющий увеличенный наружный размер относительно смежных секций инструментальной колонны, проточный канал, проходящий между противоположными концами скважинного инструмента, датчик и по меньшей мере одно устройство для регулирования потока, которое выборочно разрешает и прекращает связь по текучей среде между противоположными концами сквозь проточный канал в ответ на выходной сигнал датчика, указывающий на перемещение инструментальной колонны. Повышается эффективность процесса уменьшения нежелательных изменений давления в скважине. 3 н. и 27 з.п. ф-лы, 9 ил.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к системам управления в скважине с использованием винтовых забойных двигателей. Система содержит утяжеленную бурильную трубу, гильзу статора, установленную с возможностью вращения в утяжеленной бурильной трубе, ротор, установленный с возможностью вращения в гильзе статора, причем вращение ротора относительно гильзы статора имеет корреляцию с объемным расходом текучей среды, проходящей между ротором и гильзой статора, причем ротор закреплен для предотвращения планетарных перемещений так, что его ось является фиксированной относительно утяжеленной бурильной трубы во время его вращения относительно утяжеленной бурильной трубы. 5 н. и 18 з.п. ф-лы, 21 ил.

Изобретение относится к нефтяной и газовой промышленности, а именно к технологии строительства глубоких скважин, добычи нефти и газа, в частности, к способам раннего обнаружения газопроявлений при бурении горизонтальных стволов. При осуществлении способа устанавливают в межтрубном пространстве скважины датчик забойного давления, производят наблюдение за забойным давлением в условиях полного поглощения бурового раствора. При увеличении забойного давления более чем на 0,5 МПа устанавливают событие начала выхода газа из пласта в горизонтальный ствол. Сокращаются временные затраты при ликвидации газопроявлений, повышается техника безопасности. 2 ил.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к циркуляции буровой текучей среды при вскрытии пласта или заканчивании скважин. Прибор содержит корпус, выполненный с возможностью его присоединения к бурильной колонне и определяющий канал потока текучей среды, рукав, расположенный с возможностью поворота вокруг корпуса прибора и содержащий один или большее количество захватных элементов на наружном участке рукава, которые выполнены с возможностью захвата стенки ствола скважины, приводной вал, проходящий через корпус прибора и содержащий центральную шестерню, по меньшей мере одну приводную шестерню, прикрепленную с возможностью поворота к рукаву и выполненную с возможностью нахождения в зацеплении с внутренним участком рукава и с центральной шестерней, насосный механизм, прикрепленный к приводному валу для приема энергии, передаваемой вращением приводного вала. Насос выполнен с возможностью увеличения давления текучей среды в пределах канала потока. Обеспечивается удовлетворительная очистка ствола скважины. 4 н. и 16 з.п. ф-лы, 7 ил.

Группа изобретений относится к бурению скважин, в частности к управлению скоростью скважинной турбины. Система содержит корпус, изменяемый канал протекания текучей среды, расположенный внутри корпуса, электромагнит, соединенный с корпусом, приводной механизм, управляемый текучей средой, соединенный по текучей среде с изменяемым каналом протекания текучей среды, узел создания нагрузки, соединенный с приводным механизмом, управляемым текучей средой. Узел создания нагрузки содержит смешивающую лопасть и вал, соединенный со смешивающей лопастью. Вал расположен в одной из электрореологической текучей среды и магнитореологической текучей среды. Вязкость упомянутых сред может быть изменена с помощью электромагнита. Повышается надежность системы управления, повышается точность и скорость управления частотой вращения турбины. 3 н. и 15 з.п.ф-лы, 7 ил.

Изобретение относится к строительству глубоких нефтяных и газовых скважин и, в частности, к способам вскрытия высоконапорных продуктивных пластов и крепления интервалов вскрытия обсадной колонной. Технический результат – повышение эффективности строительства скважин и обеспечение безаварийной добычи нефти и газа. По способу осуществляют бурение и крепление ствола скважины обсадной колонной до кровли высоконапорного пласта, вскрытие бурением высоконапорных пластов с использованием мер противофонтанного выброса. После вскрытия высоконапорных пластов производят подбуривание зумпфа. Осуществляют закачку в призабойную зону пласта буферной жидкости на основе охлажденного рассола. Используют охлажденный частично раскристаллизованный рассол из амбара, полученный ранее при бурении по высоконапорному пласту. Закачивают цементный раствор на основе магнезиально-фосфатного тампонажного раствора в заданном объеме. Его закачивают в зону проявления под давлением, обеспечивающим 5% запас над давлением высоконапорного пласта. После закачки скважину оставляют на этом противодавлении. При необходимости операцию повторяют. После снижения интенсивности проявления до значений 5-10 м3/час продолжают бурение на переливе с этим дебитом с одновременной закачкой получаемого объема притока рассола в заранее сформированную зону поглощения. При достижении забоем проектных отметок кровли продуктивного целевого пласта с нефтяным или газовым насыщением осуществляют спуск дополнительной обсадной колонны с прочностными характеристиками на смятие, превышающими пластовое давление в интервале проявления крепких рассолов. Производят цементирование упомянутой колонны тяжелым цементным раствором и магнезиально-фосфатным тампонажным раствором из расчета превышения гидростатического давления цементного раствора над давлением в проявляющем пласте. Опрессовку обсадной колонны производят не ранее, чем через 3 суток после цементирования. Далее продолжают бурение по целевому нефтяному или газовому пласту. 1 пр., 3 ил.

Группа изобретений относится к управлению вибрацией забойных двигателей при бурении скважин. Устройство содержит объемный двигатель, пару выходных отверстий, прикрепленных к выходному каналу для текучей среды двигателя и включающих выполненное с возможностью выборочного перемещения наружное выходное отверстие, расположенное рядом с неподвижным внутренним выходным отверстием, пружину, предназначенную для возвращения наружного выходного отверстия в нерабочее положение, когда поток буровой текучей среды уменьшен ниже выбранного нижнего предела. Амплитуда импульса давления текучей среды, вытекающей из наружного выходного отверстия, является управляемой посредством вращения наружного выходного отверстия вокруг продольной оси двигателя, когда буровая текучая среда протекает через указанную пару отверстий. Повышается эффективность управления вибрацией, повышается качество телеметрических операций. 4 н. и 17 з.п. ф-лы, 7 ил.

Изобретение относится к области строительства глубоких скважин, в частности к способам создания депрессии на пласт, и может быть использовано при углублении скважины для сохранения естественных коллекторских свойств разреза. Способ включает промывку скважины поверхностным насосом через бурильную колонну труб, передачу осевой нагрузки и крутящего момента долоту и углубление скважины, периодическую приостановку углубления скважины, герметизацию затрубного пространства вращающимся пакером, установленным на цилиндрическом корпусе, включение обратной призабойной промывки с перепадом давления жидкости на пакере, создаваемого струйным насосом, установленным выше пакера на нижнем конце бурильной колонны и выполненным в виде сопла, камеры смешения и диффузора, гидравлически связанного с затрубным пространством и возобновление углубления с депрессией на пласт. Передачу осевой нагрузки и крутящего момента долоту проводят непосредственно через цилиндрический корпус, выполненный с возможностью уплотнения по наружной поверхности, который перемещают в процессе углубления на всю его длину с вращением внутри пакера при допустимо малой утечке жидкости между сопрягаемыми поверхностями с использованием комбинированного уплотнения в виде металлического кольца, установленного первым по ходу утечки, и резинового элемента, установленного вторым по ходу утечки жидкости в области пониженного давления и гидравлически связанного своей внутренней полостью с затрубным пространством повышенного давления над пакером. Пакер снабжают механическим замком. Цилиндрический корпус в нижней части снабжают обратным клапаном и выполняют в виде одной бурильной трубы или нескольких труб с диаметром соединений последних, равным диаметру тела трубы при общей длине цилиндрического корпуса не более длины используемых свеч. Повышается эффективность способа за счет уменьшения загрязнения пласта и обеспечения бурения одной компоновкой на депрессии и репрессии. 4 ил.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к регулированию давления в скважине при циркуляции бурового раствора. Система содержит устройство сброса давления, подсоединенное к трубопроводу между выходным отверстием насоса бурового флюида и входным отверстием буровой колонны, процессор, подсоединенный к устройству сброса давления, выполненный с возможностью принимать сигналы измерений давления, представляющие давление бурового флюида в трубопроводе, принимать сигналы параметров потока бурового флюида через трубопровод, определять, из сигналов измерений давления и сигналов параметров потока, что параметр целевого давления бурового флюида в трубопроводе не является удовлетворенным, и в ответ на определение того, что параметр целевого давления не является удовлетворенным, снижать давление бурового флюида в трубопроводе до тех пор, пока он не станет удовлетворенным, с помощью, по меньшей мере частично, открытия устройства сброса давления. Параметр целевого давления является скоростью увеличения давления бурового флюида в трубопроводе. Определение того, что скорость увеличения давления бурового флюида является не удовлетворенной, содержит определение действующей скорости увеличения давления бурового флюида в трубопроводе из давления, представленного сигналами измерений давления, и давления потока, представленного сигналами параметров потока, и определение того, что действующая скорость увеличения давления превышает скорость увеличения давления. Предотвращается повреждение внутрискважинного оборудования, снижается аварийность. 3 н. и 23 з.п. ф-лы, 6 ил.
Изобретение относится к нефтяной и газовой промышленности, а именно к технологии строительства глубоких скважин, в частности к спуску обсадных колонн в сложных горно-геологических условиях. Способ включает бурение интервала горизонтального ствола скважины «на депрессии», спуск обсадной колонны. После достижения обсадной колонной глубины башмака эксплуатационной колонны спуск останавливают, проводят промежуточную промывку буровым раствором с одновременной регулируемой подачей азота до стабилизации значений гидростатического давления на уровне значений пластового давления, формируя равновесие в системе «скважина - пласт». Далее в условиях сформированного равновесия продолжают спуск обсадной колонны до планового забоя. Повышается эффективность разработки залежей нефти и газа в сложном кавернозно-трещинном карбонатном нефтегазонасыщенном пласте.
Наверх