Термостойкая заливочная композиция для нейтронной защиты

Изобретение может быть использовано для формирования радиационно-защитного слоя от нейтронного излучения транспортно-упаковочных комплектов (ТУК) для транспортировки отработанного ядерного топлива (ОЯТ). Композиция на основе жидкого полидиметилсилоксана с концевыми силанольными группами включает 30-50 масс. ч. низкомолекулярного полидиэтилсилоксана, 8-20 масс. ч. карбида бора, 0,1-4,0 масс. ч. оловоорганического катализатора и 1,0-3,0 масс. ч. полисилазановой смолы. Композиция может также содержать до 150 масс. ч. гидрида титана и до 50 масс. ч. оксида цинка. Композиция обладает сбалансированным комплексом эксплуатационных требований: эластичностью, длительной термостабильностью в замкнутом объеме с минимальной потерей водорода, радиационной стойкостью, негорючестью, повышенным объемным содержанием ядер водорода, улучшенной теплопроводностью, и не требует использования растворителя. 3 з.п. ф-лы, 1 табл.

 

Изобретение относится к области создания термостойких эластичных материалов, применяемых методом заливки, для формирования радиационно-защитного слоя от нейтронного излучения транспортно-упаковочных комплектов (ТУК), для транспортировки отработанного ядерного топлива (ОЯТ).

Известна нейтронпоглощающая эластомерная композиция и методы ее приготовления (DE 3018548, С08К 3/10, приор. от 14.05.80). Композиция состоит из: (а) диорганополисилоксана, представленного формулой: (НО)xSiR3-x(SiR2)nSiR3-x(ОН)х, имеющего от 15 до 20 мол. % Si-C-связанных фенильнных групп, включая дифенилсилоксановые звенья, и вязкость от 1·105 до 1·107 мПа·с при 25°C; (б) нейтронпоглощающего наполнителя, выбранного из группы, содержащей карбид бора, оксид бора, борную кислоту, оксид кадмия, оксид лития и их смеси в количестве от 30 до 70% от общего объема полимера и наполнителей; и (в) «сшивающего» агента. В качестве последнего используют пероксидное соединение и/или соединение, содержащее платину. Композицию отверждают при 150-200°C. После отверждения получают эластичный материал в виде листов, устойчивый к поглощенной дозе γ-излучения более 1·109 Гр, который может абсорбировать по крайней мере 1·1017 нейтрон/см2.

Недостатками композиции являются: невозможность использования ее для заливки в полости или формования отливкой, а также необходимость проведения отверждения только при высокой температуре. Следует также отметить, что замещение в полисилоксане части метальных групп на фенильные увеличивает термо- и радиационную стойкость, но снижает при этом объемное содержание ядер водорода, которое в значительной степени определяет защитные свойства материала от потока тепловых нейтронов (Гусев Н.Г., Машкович В.П., Суворов А.П. 3ащита от ионизирующих излучений. - М.: Атомиздат, 1980).

Известна термостойкая заливочная композиция для нейтронной защиты (RU №2522580, G21F l/00, приор. от 31.07.12), состоящая из магнийфосфатного связующего (24-33 масс. %) и порошковой части (76-67 масс. %), при этом порошковая часть содержит 90,3-95,5 масс. % гидрида титана, 2,7-4,5 масс. % оксида магния и 1,8-5,2 масс. % карбида бора. Компоненты перемешивают до однородного состояния и заливают в специальную полость, а после отвердевания подвергают термической обработке. Полученный материал обладает высокой механической прочностью, термостойкостью, высокой теплопроводностью и большой удельной плотностью содержащихся в нем водорода и бора, что обеспечивает высокие коэффициенты ослабления нейтронного излучения. При температурах нормальной эксплуатации около 250°C выход водорода из гидрида титана практически отсутствует.

К недостаткам материала можно отнести:

- малое «время жизни» композиции (всего несколько минут), которое еще значительно уменьшается с увеличением температуры. Как сказано в описании патента, после добавления оксида магния происходит химическая реакция с выделением тепла, под действием которого смесь разогревается, и уже через несколько минут происходит ее затвердевание. То есть за время до наступления затвердевания смесь необходимо успеть залить в ТУК. Это может вызвать серьезные технологические трудности при заливке, а также образование воздушных полостей, особенно при заливке «с торца» в полость с большим соотношением высоты к эффективной ширине;

- возможность образования полостей по контуру заполняемого объема из-за усадки при охлаждении, по причине объемного расширения за счет саморазогрева при отверждении еще вязко-текучей массы, что ухудшает защитные свойства, теплообмен и увеличивает риск разрушения материала при разнонаправленных и ударных механических нагрузках.

Серьезным недостатком является также необходимость «глубокой осушки» залитого материала, который проводят в течение нескольких суток при постепенном повышении окружающей температуры от комнатной до максимальной, что в случае крупногабаритного и имеющего большую массу ТУК требует специальных термокамер, помещений и больших энергозатрат, к тому же при необходимости заливки «с торца» в полость с большим соотношением высоты к эффективной ширине удаление воды может быть малоэффективным.

Известна термостойкая заливочная композиция для нейтронной защиты на основе полидиметилсилоксанов, которая может быть использована в качестве защитного слоя при изготовлении транспортно-упаковочных комплектов (ТУК) для транспортировки отработанного ядерного топлива, а также для биологической защиты от других случаев нейтронных излучений (RU №2451704, C08L 83/04, G21F l/10, приор. от 07.10.10). Заливочная композиция содержит полидиметилсилоксан с концевыми силанольными группами, низкомолекулярный полидиметилсилоксан с концевыми триметилсилильными группами, борсодержащее соединение, этилсиликат, оловоорганический катализатор при следующем соотношении компонентов, масс. ч.:

полидиметилсилоксан с концевыми силанольными группами 100
полидиметилсилоксан с концевыми
триметилсилильными группами 6-14
борсодержащее соединение 3-30
этилсиликат 0,1-0,2
катализатор 0,5-1,0

Недостатками композиции являются: низкое содержание ядер водорода (4,5·1022-4,7·1022 ядер водорода/см3), определяющее защитные свойства материала, а также низкая теплопроводность - 0,19-0,22 Вт/(м·К), что очень нежелательно, так как в случае применения в ТУК через поверхность производится отвод тепла и используемая композиция не должна создавать избыточное тепловое сопротивление.

Наиболее близким аналогом по технической сущности является термостойкая заливочная композиция для нейтронной защиты, предложенная в патенте RU №2373587 (C21F 5/00, приор. от 18.06.08). Композиция может быть использована в качестве защитного слоя в транспортно-упаковочных конструкциях для транспортировки или хранения отработанного ядерного топлива. Композиция имеет состав, масс. ч.:

полидиметилсилоксан с концевыми силильными группами
с мол. массой от 70000 до 100000 100
борсодержащее соединение 4-30
низкомолекулярный полидиэтилсилоксан 8-12
этилсиликат 0,1-0,2
оловоорганический катализатор 0,5-1,0

Отверждение проходит при комнатной температуре в замкнутом объеме.

Композиция длительно работоспособна при температуре 200°C, имеет: динамическую вязкость от 3,6 до 20 Па·с, «время жизни» от 11 до 18 часов, плотность 0,98 г/см, при облучении композиции потоком нейтронов до флюенса 4·1014 нейтронов/см2 и гамма-излучением до поглощенной дозы 1 МГр изменений свойств материала не обнаружено.

Недостатками композиции являются: невысокое содержание ядер водорода (4,7·1022-4,8·1022 ядер водорода/см3), определяющее защитные свойства материала, а также низкая теплопроводность, которая составляет 0,19-0,22 Вт/(м·К). Следует также отметить, что большое «время жизни» композиции в сочетании с достаточно низкой вязкостью может приводить к оседанию соединений бора, что, в свою очередь, приводит к неоднородности состава и естественно снижению защитных свойств.

Целью изобретения является создание термостойкой заливочной композиции для нейтронной защиты на основе полисилоксанов, отверждаемой при комнатной температуре, обладающей наряду с эластичностью длительной термостабильностью без доступа воздуха, радиационной стойкостью, увеличенными по сравнению с прототипом объемным содержанием ядер водорода (для обеспечения необходимой степени защиты от тепловых нейтронов) и повышенной теплопроводностью.

Поставленная цель достигается тем, что термостойкая заливочная композиция для нейтронной защиты, отверждаемая при комнатной температуре, на основе полидиметилсилоксана с концевыми силанольными группами, включающая низкомолекулярный полидиэтилсилоксан, борсодержащее соединение и оловоорганический катализатор, в качестве основы использует жидкий полидиметилсилоксан, а в качестве борсодержащего соединения - карбид бора и дополнительно содержит полисилазановую смолу при следующем соотношении компонентов, масс. ч:

жидкий полидиметилсилоксан 100
полидиэтилсилоксан 30-50
карбид бора 8-20
оловоорганический катализатор 0,1-4,0
полисилазановая смола 1,0-3,0

Композиция может дополнительно содержать до 150 масс. ч. гидрида титана и до 50 масс. ч. оксида цинка.

В качестве жидкого полидиметилсилоксана с концевыми силанольными группами используют, например, жидкие каучуки марки СКТН, имеющие предпочтительно динамическую вязкость от 1,5 до 5,0 Па·с.

В качестве низкомолекулярного полидиэтилсилоксана используют, например, полидиэтилсилоксановую жидкость марки ПЭС-5 или марки 132-24.

В качестве оловоорганического катализатора применяют, например, катализатор СБО или октоат олова, причем последний используют в сочетании с полиэтоксисилоксаном (Этилсиликат-40, Этилсиликат-32), взятым в количестве 0,1-5,0 масс. ч. на 100 масс. ч. полидиметилсилоксана.

В качестве полисилазановой смолы используют смолы, например, марок МСН-7-80 или МФСН-А.

Предпочтительно, чтобы зернистость твердых наполнителей не превышала 10 мкм.

Примеры, иллюстрирующие предлагаемое изобретение с описанием состава и свойств отвержденных композиций, для удобства представления сведены в таблицу 1.

Для получения композиций, представленных в таблице 1, использовался аппарат-смеситель емкостного типа с рабочим избыточным давлением до 0,5 МПа, оснащенный: вертикальной мешалкой якорно-ленточного или планетарного типа, донным вентилем «грибкового» типа с подсоединенной линией разгрузки в модельную форму, линиями подвода азота и вакуума. Композицию приготавливают последовательным введением компонентов в аппарат при работающей мешалке. По окончании введения последнего компонента аппарат герметизируют и вакуумируют, выдерживают 20-30 мин, затем вакуум стравливают азотом. Заполнение модельной формы проводят из аппарата смесителя через линию разгрузки, подсоединенную к донному вентилю, за счет создания давления азота в аппарате-смесителе при одновременном вакуумировании модельной формы. Модельная форма представляет собой трубу длинной 5000 мм, диаметром 300 мм, с одной стороны заварена, с другой приварена крышка со штуцерами загрузки компаунда и вакуумирования.

Таким образом, как видно из данных приведенных в таблице, предлагаемая композиция имеет повышенное объемное содержание ядер водорода, что способствует повышению ее защитных свойств, а также обладает улучшенной теплопроводностью. За счет сбалансированного состава композиция представляет собой тиксотропную систему, стабильную в неотвержденном состоянии до нескольких месяцев, что предотвращает оседание тяжелых наполнителей.

Композиция не использует растворителей, т.е. не требует дополнительной термообработки для их удаления. Физические свойства отвержденной композиции и «время жизни» приведены в таблице 1. Характеристики, не включенные в таблицу, составляют: средний коэффициент линейного расширения, при температуре от 20°C до 200°C - (2,0±0,3)·10-4 К-1; твердость - от 5 до 40 ед. Шор А, которая может регулироваться соотношением компонентов системы отверждения. Испытания, в том числе в модельной форме, показали длительную термостабильность в замкнутом объеме при температуре 200°C и аутогенном давлении за счет теплового расширения композиции в закрытом объеме. Огневые испытания показали, что композиция тлеет в огне и самозатухает при удалении источника огня. Радиационные испытания образцов показали сохранение свойств композиции при суммарной поглощенной дозе до 1 МГр (по γ-излучению) и флюэнсе излучения тепловых нейтронов до 1·1014 нейтронов/см2.

Свойства композиции позволяют ее применять для создания слоя защиты от нейтронного излучения, например в составе ТУК для транспортировки ОЯТ, и экранов для защиты от радиации, эксплуатирующихся при высокой температуре, как методом заливки и отверждения в полостях изделий, так и методом укладки отформованных блоков из отвержденного компаунда. Следует также отметить, что все используемые ингредиенты доступны и выпускаются в промышленности.

1.Термостойкая заливочная композиция для нейтронной защиты, отверждаемая при комнатной температуре, на основе полидиметилсилоксана с концевыми силанольными группами, включающая низкомолекулярный полидиэтилсилоксан, борсодержащее соединение и оловоорганический катализатор, отличающаяся тем, что в качестве основы она использует жидкий полидиметилсилоксан, а в качестве борсодержащего соединения - карбид бора и дополнительно содержит полисилозановую смолу при следующем соотношении компонентов, масс. ч.:

жидкий полидиметилсилоксан 100
полидиэтилсилоксан 30-50
карбид бора 8-20
оловоорганический катализатор 0,1-4,0
полисилозановая смола 1,0-3,0

2. Композиция по п. 1, отличающаяся тем, что она дополнительно содержит гидрид титана в количестве 50-150 масс. ч.

3. Композиция по п. 1 или 2, отличающаяся тем, что она дополнительно содержит оксид цинка в количестве 5-50 масс. ч.

4. Композиция по любому из пп. 1, 2, 3, отличающаяся тем, что в качестве оловоорганического катализатора она использует катализатор СБО или окоат олова в сочетании с полиэтоксисилоксаном.



 

Похожие патенты:

Изобретение относится к вулканизующимся композициям на основе содержащих эпоксидные группы нитрильных каучуков. Вулканизующаяся композиция в твердой форме содержит нитрильный каучук с эпоксидными группами, который содержит повторяющиеся звенья, производные сопряженного диена и α,β-ненасыщенного нитрила.

Изобретение относится к композиции смолы, способу ее получения и многослойным конструкциям, включающим по меньшей мере один слой, полученный из композиции смолы. Композиция смолы содержит (A) сополимер этилена-винилового спирта, (B) по меньшей мере одного представителя, выбираемого из ряда, состоящего из карбоновой кислоты и карбоксилатного иона; и (C) металлический ион, где компонент (В) содержит (В2) по меньшей мере одного представителя, выбираемого из набора, состоящего из соединения, имеющего по меньшей мере две карбоксильные группы на молекулу, и аниона этого соединения.

Изобретение относится к многоцелевой полимерной композиции для получения карбамидного пенопласта с расширенным диапазоном функционально-технологических возможностей, используемого для защиты от промерзания карьеров, сырьевых материалов, как противопожарные средство, а также при обработке и рекультивации пахотных земель.

Изобретение относится к компаундам на основе термореактивных смол и может быть использовано для герметизации изделий электронной техники, для пропитки и заливки узлов в авиа-, судо- и автомобилестроении, в том числе при создании полимерных композитов конструкционного назначения, например, в качестве связующих при производстве углепластиков, применяемых для изготовления фюзеляжей самолетов, лопастей вертолетов, корпусов двигателей, спортивного инвентаря и других.

Изобретение относится к полиамидной композиции, способной эффективно поглощать кислород. Композиция содержит полиамидное соединение (A) и соединение переходного металла (B).

Изобретение относится к сельскому хозяйству, в частности к полимерным композиционным материалам для парников и теплиц. Светопреобразующий композиционный полимерный материал включает полимерную матрицу с диспергированным в ней красным неорганическим широкополосным люминофором, состав которого отвечает формуле: Lis(M(1-x)-Eux)1MgmAlnSipNq, где М=Sr, Са, Ва, взятые порознь или совместно, и где значения индексов у элементов, входящих в состав соединения, составляют: 0,045≤s≤0,60, 0,005≤х≤0,12, 0≤m≤0,12, 0≤n≤1,0, 1,0≤р≤2,40, 3,015≤q≤4,20, с ограничением, что для всех композиций 2,0≤p+n≤2,40 и q≠4.

Изобретение относится к материалу, содержащему карбонат кальция, обладающему повышенной объемной плотностью при равной или улучшенной сыпучести, и к способу получения данного материала.

Изобретение относится к способу получения материала для изготовления светокорректирующей полимерной пленки, которая может быть использована в сельском хозяйстве, в производстве экранов, мониторов и в других областях техники.

Изобретение относится к термопластичным формовочным массам, содержащим: A) 10-98 мас.% термопластичного полиамида, B) 0,01-20 мас.% сильно разветвленного меламинового полимера или сильно разветвленного меламин-карбамидного полимера или их смесей, причем степень разветвления составляет 10-99,9%, C) 0-70 мас.% добавок, выбранных из группы, включающей волокнистые или гранулированные наполнители, лубриканты, стерически затрудненные фенолы, нигрозин, порошок железа, вязкоупругие полимеризаты, стабилизаторы, ингибиторы окисления, средства против термического разложения и разрушения при ультрафиолетовом свете, смазки и смазки для отделения от формы, красящие вещества, средства для образования центров кристаллизации и пластификаторы, С3) 0,05-3 мас.% содержащего медь стабилизатора.

Изобретение относится к полимерным композициям для получения светотрансформирующего пленочного материала и может быть использовано для получения пленок сельскохозяйственного назначения.

Изобретение относится к области производства материалов для твердотельной электроники, а именно к составам для получения композиционных материалов с высокой диэлектрической проницаемостью, и может быть использовано при создании конденсаторов, суперконденсаторов, оптоэлектронных преобразователей, топливных элементов, приборов фотовольтаки и др. Состав включает водный 2-9%-ный раствор поливинилового спирта, титанат калия-железа, имеющий структуру голландита и химический состав, соответствующий формуле K1,54Ti8-xFexO16, предпочтительно K1,54Ti7,4Fe0,6O16, добавку в виде фосфорно-вольфрамовой кислоты и пластификатор в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта - 38-64, титанат калия-железа - 20-50, фосфорно-вольфрамовая кислота - 0-1, глицерин - остальное. Получаемый из состава композиционный материал обладает высокими диэлектрическими характеристиками. 2 з.п. ф-лы, 2 табл.

Изобретение относится к способу получения сшитой битум-полимерной композиции (PmB) со сниженным выбросом H2S, а также к производственной единице для осуществления такого процесса. Способ получения включает следующие последовательные этапы: (i) приготовление сшитой битум-полимерной композиции (PmB) в реакторе (i) и (ii) перенос заданного количества указанной композиции из реактора (1) в емкость для хранения (2) и/или непосредственно на станцию загрузки (3) с помощью распределительной линии (8), причем указанную композицию поддерживают при температуре от 100 до 220°C в течение указанного переноса. Снижение выбросов сульфида водорода (H2S) осуществляется с помощью прямой инжекции эффективного количества поглотителя сульфида водорода (H2S) во время этапа переноса. Инжекция осуществляется путем непрерывного введения указанного поглотителя сульфида водорода (H2S) в распределительную линию (8) после реактора (1) и перед емкостью для хранения (2) и/или станцией загрузки (3). 2 н. и 16 з.п. ф-лы, 1 ил., 1 табл., 2 пр.

Изобретение относится к эластомерным полимерным материалам для изготовления набухающих уплотняющих изделий с контролируемыми свойствами набухания и к использованию таких материалов. Эластомерная композиция включает эластомерную матрицу и смещанный с ней прекурсор. При этом прекурсор имеет ограниченную растворимость в жидкости, такой как вода, и может быть превращен в соединение, которое растворимо в указанной жидкости, такой как вода, в результате чего эластомерная композиция становится набухающей. Композиции изобретения могут быть использованы в способе, который включает размещение композиции в заданном месте, и превращение указанного прекурсора в соединение, растворимое в жидкости, приведением в контакт указанной композиции с указанной жидкостью до, во время и/или после указанного превращения указанного прекурсора. Описан также продукт, который используется в виде средства расширяющегося типа, прокладки или уплотнения. Технический результат – обеспечение контроля набухания уплотнительных средств при использовании их в месте применения. 3 н. и 6 з.п. ф-лы, 1 ил., 2 табл., 1 пр.

Изобретение относится к антифрикционным материалам на эпоксидной основе, предназначенным для формования покрытий узлов трения, в том числе сложной конфигурации, и может быть использовано в машиностроении, в частности в станкостроении. Изобретение включает (мас.ч.): эпоксидиановую смолу - 100, активный разбавитель – 15-20, аминный отвердитель – 18-22, графит 35-40 , дисульфид молибдена – 5-10, цирконат-титанат свинца – 200-250, и дополнительно содержит смесь парафинового углеводорода С10Н22-С11Н24 и полиметилсилоксана, взятых в соотношении 5:1 по массе 1-10, тонкую фракцию гидроокиси алюминия с размером частиц 0,08-0,12 мкм – 5-10. В качестве активного разбавителя - глицидиловый эфир, преимущественно алкилглицидиловый или арилглицидиловый или диглицидиловый эфир. Изобретение позволяет упростить процесс приготовления компаунда за счет исключения нагрева при смешивании компонентов. 3 з.п. ф-лы, 3 табл., 8 пр.

Изобретение относится к вулканизующимся композициям на основе нитрильных каучуков, содержащих эпоксидные группы, особые кислотные сшивающие агенты, а также ускорители сшивания, в которых отсутствует необходимость использовать обычные сшивающие агенты. Композиция включает по меньшей мере один содержащий эпоксидные группы нитрильный каучук, который содержит повторяющиеся единицы одного сопряженного диена, по меньшей мере одного α,β-ненасыщенного нитрила и при необходимости одного или нескольких других способных к сополимеризации мономеров, но в котором отсутствуют повторяющиеся единицы несопряженных циклических полиенов; в качестве сшивающего агента по меньшей мере одну кислоту Льюиса; и по меньшей мере один ускоритель сшивания, выбранный из группы, включающей тиурамы, ксатогенаты, тиокарбамиды, дитиокарбаматы и карбаматы. Изобретение позволяет получать вулканизаты с благоприятными показателями остаточной деформации сжатия при комнатной температуре, 100°C и 150°C и вместе с тем высоким напряжением при растяжении и оптимальным разрывным удлинением. 4 н. и 2 з.п. ф-лы., 14 табл., 4 пр.

Изобретение относится к высыхающей на воздухе самоокислющейся полимерной композиции, содержащей высушивающее вещество на основе марганца. Самоокисляющаяся полимерная композиция включает высушивающее вещество, полученное путем смешивания 1,4,7-триалкил-1,4,7-триазациклононана (L) и соли марганца, имеющей общую формулу Mn2+[X]n, в которой в качестве аниона X выбирают PF6-, SbF6-, AsF6-, BF4-, B(C6F5)4-, Cl-, Br-, I-, NO3- или R2COO-, и в этом случае n=2, или анион X представляет собой SO42-, и в этом случае n=1, причем R2 представляет собой C1-C20-алкил. Причем 1,4,7-триалкил-1,4,7-триазациклононан (L) присутствует в смеси в таком количестве, что молярное соотношение L:Mn составляет по меньшей мере 1,25:1 и предпочтительнее по меньшей мере 1,5:1. Описаны также покровная композиция из самоокисляющейся полимерной композиции, способ нанесения покрытия на подложку, подложка и применение композиции в красках, связующих веществах, лаках, чернилах и глазурях и применение смеси L и Mn в качестве высушивающего вещества для высыхающей на воздухе самоокисляющейся полимерной композиции. Технический результат – обеспечение не содержащих кобальта катализаторов, которые могут обеспечить быстрое высыхание и одновременно способствовать уменьшению желтизны покровных композиций. 6 н. и 8 з.п. ф-лы, 12 табл., 15 пр.

Изобретение относится к композиции самоокисляемого смоляного состава, высыхающего в воздушной среде. Композиция включает осушитель для самоокисляемого смоляного состава, высыхающего в воздушной среде, и полимер, включающий ненасыщенные алифатические группы. Упомянутый осушитель получают путем смешивания марганцевой соли с 1, 4, 7-трехзамещенным-1, 4, 7-триазациклононаном (L). Марганцевая соль имеет общую формулу Mn2+[X]n, в которой анион Х выбирают из PF6-, SbF6-, AsF6-, BF4-, B(C6F5)4-, Cl-, Br-, I-, NO3- или R2COO-, в этом случае n=2, или анион Х является SO42-, при этом n=1, и где R2=C1-C20 алкил. При этом 1,4,7-триалкил-1,4,7-триазациклононан (L) присутствует в смеси в таком количестве, что молярное отношение Mn:L составляет по меньшей мере 1,25:1, предпочтительно по меньшей мере 1,5:1 и меньше чем 20:1. Описаны также покрывающий состав, способ покрытия подложки, подложка, покрытая составом, применение состава в красках, клеях, политурах, чернилах и лаках и применение смеси 1,4,7-триалкил-1,4,7-триазациклононана (L) и марганцевой соли в качестве осушителя для самоокисляемого смоляного состава, высыхающего в воздушной среде. Технический результат – обеспечение не кобальтовых катализаторов для составов покрытий, их содержащих, и которые одновременно обеспечивают быстросохнущие покрытия, отличающиеся существенной твердостью и глянцевыми свойствами. 6 н. и 8 з.п. ф-лы, 9 табл., 3 пр.

Изобретение относится к оптико-механической и электронной промышленности, а точнее к технологии получения композиционных материалов, содержащих полупроводниковые частицы, для оптических и электронных приборов и комплексов. Материал включает суспензию наночастиц сульфида свинца в водно-спиртовом растворе, нитрат металла и поливинилпирролидон. Также описан способ обработки материала, который включает облучение материала электромагнитным излучением с длинами волн 455-635 нм и последующую выдержку при комнатной температуре без облучения в течение 0,1-24 ч. Технический результат заключается в разработке композиционного материала, обладающего высокими нелинейно-оптическими и спектрально-люминесцентными характеристиками в видимом и ближнем ИК спектральном диапазоне, а также в разработке высокопроизводительного способа обработки материала, не требующего специального технологического оборудования. 2 н.п. ф-лы, 9 ил., 2 табл., 5 пр.

Изобретение относится к светопреобразующему силиконовому изделию для осветительного прибора, содержащему его осветительному прибору и к способу производства указанного изделия. Силиконовое изделие содержит светопропускающий полимерный материал из группы полисилоксанов, люминесцентный материал и частицы наполнителя. Люминесцентный материал содержит частицы, имеющие по меньшей мере в одном измерении размер в нанометровом диапазоне, квантовые точки, квантовые стержни или квантовые тетраподы. Люминесцентный материал выполнен с возможностью поглощения света первого спектрального диапазона и преобразования части поглощенного света в свет второго спектрального диапазона. Частицы наполнителя представляют светопропускающий инертный материал, такой как оксид алюминия, оксид титана, диоксид кремния или глина. Частицы наполнителя являются смешивающимися с частицами люминесцентного материала и обеспеченными в указанном полимерном материале. Частицы люминесцентного материала распределены вдоль поверхности частиц наполнителя. Изобретение обеспечивает повышение эффективности преобразования света и эффективности осветительного устройства. 3 н. и 9 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к пигментам с обработанной поверхностью для получения полимерных композиций, которые могут использоваться для получения суперконцентратов, формованных пластмассовых изделий и/или пластмассовых пленок. Пигмент выбран из частиц TiO2, BaSO4, ZnS и/или литопона и в ходе обработки исходные частицы пигмента приводят в контакт с конкретными алкоксилированными силоксанами для улучшения диспергирования в пластмассах. 4 н. и 8 з.п. ф-лы, 2 ил., 11 табл.
Наверх