Установка для гашения ракетного двигателя на твердом топливе при испытаниях

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей на твердом топливе. Установка для гашения ракетного двигателя на твердом топливе при испытаниях содержит источник жидкого хладагента, а также соединенное с ним через трубопровод и управляющий клапан кольцевое сверло с отверстиями в стаканообразном корпусе, закрепленное в механизме привода вращения и подачи кольцевого сверла. Внутри стаканообразного корпуса размещен подпружиненный поршень с возможностью перекрытия отверстий при перемещении. На поршне установлены толкатели с осевыми отверстиями, при этом в отверстиях стенок стаканообразного корпуса и толкателях размещены поворотные форсунки. В стаканообразном корпусе кольцевого сверла соосно установлено центрирующее сверло. Изобретение позволяет повысить достоверность получаемой при испытаниях информации о состоянии материальной части ракетного двигателя твердого топлива за счет повышения эффективности его гашения. 2 з.п. ф-лы, 7 ил.

 

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей на твердом топливе (РДТТ), и предназначено для гашения РДТТ при наземной отработке, в том числе высотных РДТТ при испытании в газодинамических трубах (ГДТ), а также РДТТ специального назначения.

В процессе отработки РДТТ возникает необходимость оценки состояния материальной части РДТТ путем дефектации ее после огневых стендовых испытаний (ОСИ). По результатам дефектации элементов РДТТ (корпуса, сопла) определяются: состояние теплозащитных покрытий, степень уноса, деструкции и разрушения материалов. Однако за период от окончания работы РДТТ до проведения дефектации материалы конструкции подвергаются дополнительным воздействиям, которые обусловлены догоранием остатков твердого топлива в камере сгорания, выравниванием температуры по толщине стенок, взаимодействием с атмосферным кислородом. Выделяемая в этот период теплота вызывает дополнительное коксование теплозащитных материалов, тепловое повреждение силовых элементов конструкции.

Описанные процессы приводят к ошибочной оценке результатов испытаний и надежности работы конструкции РДТТ, что, в свою очередь, может существенно повысить погрешности расчетов удельного импульса тяги, требуемых толщин стенок корпуса и его теплозащиты.

Наиболее эффективным средством фиксации состояния материальной части РДТТ после ОСИ является гашение, при котором происходит быстрое прекращение процессов горения в двигателе и устраняются или минимизируются эффекты последействия.

Известна установка для гашения РДТТ при испытаниях (см. патент РФ №2477810). Установка содержит источник хладагента, соединенное с ним через управляющий клапан устройство подачи хладагента в камеру сгорания.

Недостатком установки является подача хладагента в камеру сгорания через систему узла давления (через штуцер в донной части), использующегося для измерения давления в камере сгорания РДТТ, что изменяет штатную конструкцию РДТТ и является недопустимым при зачетных испытаниях.

Известна установка для испытаний высотных РДТТ (см. патент РФ №2514326), содержащая связанную с системой подачи охлаждающей жидкости полую штангу с форсункой. При этом охлаждающая жидкость подается со стороны сопла РДТТ.

При проведении гашения форсунка находится напротив выходного сечения сопла, что не позволяет создавать зоны распыления охлаждающей жидкости по всей поверхности камеры сгорания РДТТ. Не обеспечивается одно из основных требований при гашении - равномерное охлаждение всей поверхности камеры сгорания РДТТ (см. Конструкция и отработка РДТТ / Под редакцией A.M. Виницкого. - М.: Машиностроение, 1980. - Стр. 117). Кроме того, нахождение форсунки напротив выходного сечения сопла приводит к попаданию струи на элементы сопла в начальный момент подачи охлаждающей жидкости, а как следствие, к механическому и термическому разрушению элементов сопла. В дополнение к указанному выше установка не позволяет проводить гашение РДТТ специального назначения, например с вынесенными сопловыми блоками (см. Экспериментальные методы определения параметров двигателей специального назначения. И.М. Гладков, B.C. Мухаммедов, Е.Л. Валуев, В.И. Черепанов. - М.: НТЦ «Информ-техника», 1993. - Стр. 9-15).

Известна установка для гашения РДТТ при испытаниях, содержащая источник жидкого хладагента, соединенное с ним устройство подачи жидкого хладагента в камеру сгорания через отверстие в корпусе РДТТ (см. Экспериментальные методы определения параметров двигателей специального назначения. И.М. Гладков, B.C. Мухаммедов, Е.Л. Валуев, В.И. Черепанов. - М.: НТЦ «Информ-техника», 1993. - Стр. 69).

В известной установке отверстие в корпусе РДТТ может вскрываться с помощью детонирующего удлиненного заряда (ДУЗ), используемого, например, в системах аварийного выключения двигателя. При этом в качестве устройства подачи жидкого хладагента, например воды, через отверстие в корпусе РДТТ может использоваться штанга-труба с распылительным насадком.

Следует отметить, что использование специальных пиротехнических устройств, в том числе ДУЗ (см. Конструкции ракетных двигателей на твердом топливе / Под редакцией Л.Н. Лаврова. - М.: Машиностроение, 1993. - Стр. 169), для вскрытия отверстий в корпусе РДТТ с целью гашения в ряде случаев недопустимо, так как ведет к ударному отслоению теплозащиты, а следовательно, к увеличению погрешности определения состояния и толщины стенок корпуса и теплозащиты.

Также в известной установке для вскрытия отверстия в корпусе РДТТ и подачи жидкого хладагента в камеру сгорания может использоваться кольцевое сверло с отверстиями в стаканообразном корпусе (см. авторское свидетельство СССР №1611595). При этом жидкий хладагент, например вода, в процессе сверления и гашения подается через отверстия в стаканообразном корпусе.

Использование в известной установке кольцевого сверла с отверстиями в качестве распылительного насадка при гашении не обеспечивает подачу жидкого хладагента в виде турбулентных зон распыления, равномерно обволакивающих внутреннюю поверхность камеры сгорания, включая труднодоступные участки, что ведет к неравномерному охлаждению. Неравномерность охлаждения обусловлена в том числе тем, что высверленный участок оболочки корпуса РДТТ из полимерных композиционных материалов остается внутри стаканообразного корпуса кольцевого сверла, перекрывает ряд отверстий и препятствует подаче жидкого хладагента в процессе гашения. Особенно большая неравномерность охлаждения камеры сгорания РДТТ характерна для двигателей, сопла которых вдвинуты в камеру сгорания (см. Конструкции ракетных двигателей на твердом топливе / Под редакцией Л.Н. Лаврова. - М.: Машиностроение, 1993. - Стр. 44).

Кроме того, установка не позволяет регулировать порционную подачу жидкого хладагента перекрытием всех отверстий кольцевого сверла в процессе гашения с возможностью полного испарения жидкого хладагента для исключения его скопления в нижней части корпуса РДТТ (см. Конструкция и отработка РДТТ. / Под редакцией A.M. Виницкого. - М.: Машиностроение, 1980. - Стр. 118).

Таким образом, в известной установке не представляется возможным проведение эффективного гашения двигателя и получение с требуемой точностью информации о состоянии материальной части и работоспособности РДТТ.

Технической задачей данного изобретения является обеспечение эффективного гашения РДТТ, в том числе высотных РДТТ при испытаниях в газодинамических трубах (ГДТ), а также РДТТ специального назначения, например с вынесенными сопловыми блоками.

Технический результат достигается тем, что в установке для гашения ракетного двигателя твердого топлива при испытаниях, содержащей источник жидкого хладагента, соединенное с ним через трубопровод и управляющий клапан кольцевое сверло с отверстиями в стаканообразном корпусе, закрепленное в механизме привода вращения и подачи кольцевого сверла, внутри стаканообразного корпуса размещен подпружиненный поршень с возможностью перекрытия отверстий при перемещении, а на поршне установлены толкатели с осевыми отверстиями, при этом в отверстиях стенок стаканообразного корпуса и толкателях размещены форсунки.

Форсунки могут быть поворотными.

В стаканообразном корпусе кольцевого сверла может быть соосно установлено центрирующее сверло.

Размещение внутри стаканообразного корпуса кольцевого сверла подпружиненного поршня с возможностью перекрытия отверстий при перемещении, а на поршне установка толкателей с осевыми отверстиями, при этом размещение в отверстиях стенок стаканообразного корпуса кольцевого сверла и толкателях форсунок, обеспечивает подачу жидкого хладагента в виде турбулентных зон распыления, равномерно обволакивающих внутреннюю поверхность камеры сгорания, включая труднодоступные участки, и обеспечивает регулируемую порционную подачу жидкого хладагента с возможностью его полного испарения для исключения скопления в нижней части корпуса РДТТ.

При этом в зависимости от цикла выполнения гашения поршень находится в соответствующих положениях относительно перекрываемых отверстий в стаканообразном корпусе кольцевого сверла и толкателях:

- при сверлении отверстия в корпусе РДТТ поршень находится в положении когда открыты осевые отверстия в толкателе для охлаждения кольцевого сверла;

- при гашении поршень находится в положении, когда открыты все отверстия, а высверленный участок оболочки корпуса РДТТ из полимерных композиционных материалов вытолкнут из стаканообразного корпуса кольцевого сопла. Открытие всех отверстий с одновременным вращением кольцевого сверла позволяет форсункам создавать турбулентные зоны распыления жидкого хладагента по всей поверхности камеры сгорания РДТТ, включая труднодоступные участки. При этом форсунки, установленные в различных отверстиях стаканообразного корпуса и толкателях, имеют величину расхода в зависимости от требуемой интенсивности охлаждения, что позволяет выполнять равномерное охлаждение всей поверхности камеры сгорания РДТТ;

- в интервалах прекращения подачи жидкого хладагента поршень находится в положении, когда все отверстия закрыты, что обеспечивает полное испарение жидкого хладагента и исключает его скопление в нижней части корпуса РДТТ.

Поворотные форсунки позволяют проводить настройку направления струй с целью уравнивания интенсивности охлаждения по всей поверхности камеры сгорания при гашении РДТТ различных конструкций.

Размещение центрирующего сверла соосно кольцевому уменьшает время вскрытия отверстия, в том числе в корпусах РДТТ из полимерных композиционных материалов различной конфигурации.

Разработанная совокупность существенных признаков предлагаемого технического решения является новой и позволяет получить требуемый технический результат.

На фиг. 1 показан общий вид установки гашения РДТТ перед ОСИ в ГДТ.

На фиг. 2 показан вид А фиг. 1.

На фиг. 3 показан вид Б фиг. 2.

На фиг. 4 показан общий вид установки гашения РДТТ при ОСИ в ГДТ в процессе вскрытия отверстия в корпусе РДТТ.

На фиг. 5 показан вид В фиг. 4.

На фиг. 6 показан общий вид установки гашения РДТТ при ОСИ в ГДТ в процессе гашения.

На фиг. 7 показан вид Г фиг. 6.

Установка для гашения РДТТ, в том числе камеры сгорания 1 и сопла 2 при ОСИ в ГДТ 3 имеет источник жидкого хладагента 4. Источник жидкого хладагента соединен трубопроводом 5 через управляющий клапан 6 и отверстие 7 в днище стаканообразного корпуса кольцевого сверла 8 с полостью 9, выполняющей функции коллектора раздачи жидкого хладагента. У режущих кромок 10 кольцевого сверла 8 выполнены дренажные окна 11 для выхода жидкого хладагента при сверлении корпуса 12 РДТТ из полимерных композиционных материалов. В стенках стаканообразного корпуса кольцевого сверла 8 выполнены отверстия 13, в которых установлены форсунки 14. Внутри стаканообразного корпуса кольцевого сверла 8 (в полости 9) размещен подпружиненный поршень 15. На поршне установлены толкатели 16 с осевыми отверстиями 17, а в отверстиях размещены форсунки 18. Хвостовик 19 стаканообразного корпуса кольцевого сверла 8 закреплен в механизме 20 привода вращения и подачи кольцевого сверла 8. Давление в камере сгорания РДТТ контролируется датчиком давления 21.

Форсунки 14, 18 могут быть выполнены поворотными с втулками регулирования 22.

В стаканообразном корпусе кольцевого сопла 8 может быть соосно размещено центрирующее сверло 23, при этом хвостовик центрирующего сверла закреплен в опоре 24.

Работа установки гашения заключается в следующем.

До начала ОСИ механизм 20 привода вращения и подачи кольцевого сверла 8 ориентируется относительно корпуса 12 РДТТ с возможностью вскрытия в нем отверстия для гашения. В момент спада давления в камере сгорания по датчику давления 21 до заданной величины начала гашения подается сигнал на включение механизма 20 привода углового вращения и подачи кольцевого сверла 8, начинается сверление корпуса 12 РДТТ. Одновременно подается сигнал на управляющий клапан 6 для подачи жидкого хладагента с целью охлаждения кольцевого сверла 8 и центрирующего сверла 23. При этом давление жидкого хладагента, задаваемое управляющим клапаном 6, соответствует перемещению подпружиненного поршня 15 с открытием осевых отверстий 17 в толкателях 16. Жидкий хладагент через отверстие 7 в днище стаканообразного корпуса и отверстия 17 в толкателях 16 поступает на охлаждение режущих кромок 10 кольцевого сверла 8 и центрирующего сверла 23, а затем удаляется из зоны сверления через дренажные окна 11. При этом отверстия 13 в корпусе кольцевого сверла 8 закрыты. Центрирующее сверло 23 выполняет роль направляющей опоры, что позволяет увеличить подачу кольцевого сверла 8 и уменьшить время вскрытия отверстия, в том числе в корпусах РДТТ из полимерных композиционных материалов различной конфигурации. При этом высверленный участок корпуса 12 РДТТ размещается в стаканообразном корпусе кольцевого сверла 8.

По окончании сверления кольцевое сверло 8 перемещается в полость камеры сгорания 1 на глубину длины кольцевого сверла, продольная подача сверла прекращается, а вращение продолжается. На управляющий клапан 6 подается сигнал на увеличение давления подачи жидкого хладагента с целью гашения РДТТ, давление в полости 9 возрастает. При этом поршень 15 с толкателями 16 перемещается и выталкивает из стаканообразного корпуса кольцевого сверла 8 участок высверленного корпуса 12 РДТТ, открываются форсунки 18, установленные на толкателях 16. Дальнейшее перемещение поршня последовательно открывает поступление жидкого хладагента ко всем отверстиям 13, в которых установлены форсунки 14.

За счет вращения кольцевого сверла 8 распыленные струи жидкого хладагента на выходе из форсунок 14, 18 имеют дополнительные составляющие окружных скоростей, что обеспечивает отклонение результирующего вектора скорости и винтовое движение струй жидкого хладагента. Образующиеся турбулентные зоны распыления покрывают, в том числе, труднодоступные участки, находящиеся за выступами конструктивных элементов с наветренной стороны относительно результирующего вектора скорости струй жидкого хладагента. В дальнейшем выполняется реверс вращения кольцевого сверла 8, а распыленные струи соответственно достигают труднодоступные участки, находящиеся ранее (при предыдущем направлении вращения) с подветренной стороны.

Перед каждым реверсом вращения кольцевого сверла 8 на управляющий клапан 6 подается сигнал на сброс давления с целью прекращения подачи жидкого хладагента в камеру сгорания 1 РДТТ. При этом поршень 15 под действием пружины перемещается и перекрывает все отверстия 13 и 17 подачи жидкого хладагента. Далее подается сигнал на выключение механизма 20 привода углового вращения кольцевого сверла 8.

За время до подачи сигнала на очередное включение механизма 20 привода углового вращения кольцевого сверла 8 и подачи жидкого хладагента в камеру сгорания 1 происходит ее полное испарение и исключается скопление жидкого хладагента в нижней части корпуса 12 РДТТ.

В конечном итоге обеспечивается подача жидкого хладагента в виде турбулентных зон распыления, равномерно обволакивающих внутреннюю поверхность камеры сгорания, включая труднодоступные участки. При этом результирующие векторы скоростей струй жидкого хладагента при вращении кольцевого сверла 8 направлены под углом к оси сопла 2, что исключает их прямое попадание на элементы соплового блока. Образующаяся парогазовая смесь отводится через сопло 2 РДТТ, обеспечивая более «мягкий» режим охлаждения элементов соплового блока.

В предлагаемой установке в качестве жидкого хладагента может использоваться вода, являющаяся эффективным, недорогим и общедоступным хладагентом.

Таким образом, предлагаемая установка позволяет получить эффективное гашение РДТТ подачей жидкого хладагента через отверстие в корпусе РДТТ (см. Конструкция и отработка РДТТ / Под редакцией A.M. Виницкого. - М.: Машиностроение, 1980. - Стр. 117). Эффективное гашение обеспечивает получение достоверности информации о состоянии материальной части, в том числе высотных РДТТ при испытании в ГДТ, а также РДТТ специального назначения.

1. Установка для гашения ракетного двигателя на твердом топливе при испытаниях, содержащая источник жидкого хладагента, соединенное с ним через трубопровод и управляющий клапан кольцевое сверло с отверстиями в стаканообразном корпусе, закрепленное в механизме привода вращения и подачи кольцевого сверла, отличающаяся тем, что внутри стаканообразного корпуса размещен подпружиненный поршень с возможностью перекрытия отверстий при перемещении, а на поршне установлены толкатели с осевыми отверстиями, при этом в отверстиях стенок стаканообразного корпуса и толкателях размещены форсунки.

2. Установка по п. 1, отличающаяся тем, что форсунки выполнены поворотными.

3. Установка по п. 1, отличающаяся тем, в стаканообразном корпусе кольцевого сверла соосно установлено центрирующее сверло.



 

Похожие патенты:

Изобретение относится к испытаниям ракетной техники, а именно к испытаниям и утилизации ракетных двигателей твердого топлива, имеющих сопла, направленные перпендикулярно оси стенда.

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ).

Изобретение относится к ракетно-космической технике, в частности к моделированию процесса сжигания продуктов газификации неизрасходованных остатков жидких компонентов ракетного топлива в баках отработанной ступени ракеты-носителя.

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива.

Изобретение относится к ракетной технике и может быть использовано для определения скорости горения твердого ракетного топлива при стационарном и переменном давлении в камере сгорания.

При подтверждении внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя сжигают серию зарядов с различной скоростью горения в камере-имитаторе с расходным круглым отверстием критического сечения с замером давления в камере-имитаторе.

Изобретение относится к области двигателестроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД), снабженных устройствами гашения колебаний (демпферами).

Экспериментальный газогенератор для определения параметров продуктов сгорания твердых топлив, включающий корпус, переднюю крышку, сопловой блок и заряд торцевого горения из твердого топлива, а также датчик тяги, выполненный с возможностью упора в опорную плиту.

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива.

Изобретение относится к ракетной технике, а именно к стендам для проведения гидроиспытаний корпусов ракетных двигателей на твердом топливе, как на рабочее давление, так и на давление формования твердотопливного заряда.

Изобретение относится к области машиностроения, в частности к ракетной технике, и может быть использовано при отработке корпусов ракетных двигателей твердого топлива. Устройство для испытаний на прочность раскрепляющей манжеты корпуса ракетного двигателя содержит неподвижное кольцо, подвижное кольцо, клинья, прижимы и динамометр. Неподвижное кольцо закреплено снаружи на фланце корпуса двигателя, а подвижное кольцо установлено с внутренней стороны корпуса с возможностью соосного осевого перемещения относительно неподвижного кольца по скрепленным с ним направляющим. Клинья установлены на периферии подвижного кольца, равномерно по окружности, и имеют внутренние и наружные профилированные поверхности. Клинья расположены в зазоре между внутренней поверхностью раскрепляющей манжеты и теплозащитным покрытием корпуса. Прижимы выполнены с профилированной поверхностью, сопрягаемой с наружной поверхностью раскрепляющей манжеты. Динамометр соединен с неподвижным кольцом и упирается в подвижное кольцо. Изобретение позволяет повысить качество контроля изготовления корпуса ракетного двигателя за счет проведения контроля раскрепляющей манжеты путем приложения усилия, имитирующего усилие, воздействующее на манжету при усадке заряда в процессе отверждения топлива. 3 ил.

Изобретение относится к ракетной технике, а именно к способам определения характеристик новых композиций твердого ракетного топлива, в частности для прямоточных воздушно-реактивных двигателей. При определении единичного импульса твердого топлива сжигают бронированный образец исследуемого топлива в объеме газа и измеряют реактивную силу истекающих продуктов сгорания. Образец топлива размещают в модели камеры дожигания, газодинамически подобной камере дожигания натурного двигателя, и обдувают потоком газа с параметрами, соответствующими обдуву заряда твердого топлива натурного двигателя. Часть поверхности образца покрывают бронировкой, обеспечивающей задержку воспламенения бронированной поверхности в течение времени, составляющего 10-50% от длительности сгорания образца исследуемого топлива без бронировки. Изобретение позволяет повысить достоверность измерения единичного импульса твердого топлива, а также сократить длительность и количество натурных испытаний двигателя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике, а именно к ракетным двигателям твердого топлива, и, в частности, может найти применение при испытаниях скрепленных с корпусом крупногабаритных зарядов в ракетных системах различного назначения, преимущественно эксплуатирующихся на подвижных носителях автомобильного или железнодорожного типа. При испытании скрепленного с корпусом заряда ракетного двигателя твердого топлива осуществляют термостатирование заряда при форсированных нагрузках и последующую проверку работоспособности огневыми стендовыми испытаниями. На заряд воздействуют последовательным приложением статической и повторно-переменной форсированных нагрузок, уровень и длительность которых определяют из условия равенства накопленных повреждений в заряде в режиме штатной эксплуатации и при форсированных испытаниях. Непосредственно перед огневыми стендовыми испытаниями проводят контроль структурной целостности скрепленного заряда. Изобретение позволяет повысить достоверность и сократить длительность испытаний скрепленных с корпусом зарядов ракетных двигателей твердого топлива. 3 з.п. ф-лы, 4 ил.

Изобретение относится к машиностроению и может быть использовано при испытании жидкостных ракетных двигателей (ЖРД) и других энергетических установок. Стенд для испытаний энергетических установок содержит систему подачи компонентов топлива с агрегатами управления и систему подачи технологического газа, при этом на выходе энергетической установки установлен трубопровод, связанный с газгольдером, газгольдер соединен с компрессором, который в свою очередь соединен с системой баллонов высокого давления, газгольдер установлен на подвижной платформе, полость наддува газом расходной емкости с компонентом топлива соединена со входом компрессора, а выход компрессора соединен со входом газа в систему баллонов высокого давления. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к радиотехническому испытательному оборудованию, предназначенному для проведения стендовых испытаний ракетных двигателей космических аппаратов, в частности для измерения электромагнитного излучения. Реверберационная камера содержит корпус, источник электромагнитного излучения, измерительную антенну, экран, выполненный из электропроводящего материала, узлы крепления элементов конструкции камеры к корпусу камеры, переизлучатель электромагнитного излучения, выполненный с возможностью вращения, и узел вращательного движения переизлучателя. Экран расположен в полости камеры между источником электромагнитного излучения и измерительной антенной. Переизлучатель выполнен в виде цилиндрической обечайки с расположенными на ее поверхности щелевыми отверстиями. В качестве источника электромагнитного излучения использован ракетный двигатель, генерирующий направленный поток заряженных частиц, а в качестве корпуса - осесимметричный корпус вакуумной камеры. Выходной канал ракетного двигателя ориентирован в направлении продольной оси симметрии корпуса вакуумной камеры. Переизлучатель расположен со стороны выходного канала ракетного двигателя, выполнен с возможностью вращения относительно продольной оси симметрии и соединен с узлом вращательного движения. Внутренний диаметр переизлучателя превышает поперечный размер ракетного двигателя, а продольная ось симметрии переизлучателя ориентирована вдоль направления движения генерируемого ракетным двигателем потока заряженных частиц. Изобретение позволяет повысить достоверность и точность измерения возбуждаемых ракетным двигателем электромагнитных колебаний в процессе испытаний на электромагнитную совместимость с радиотехническим оборудованием космического аппарата. 14 з.п. ф-лы, 4 ил.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива с имитацией высотных условий. Стенд для высотных испытаний ракетных двигателей содержит барокамеру, узел впрыска рабочей жидкости через струйные форсунки и выхлопной диффузор, оси струйных форсунок расположены под углом впрыска по отношению к оси выхлопного диффузора. Угол впрыска определяется соотношением, защищаемым настоящим изобретением. Изобретение позволяет повысить эффективность охлаждения наиболее теплонапряженного входного участка выхлопного диффузора в условиях сверхзвукового высокотемпературного течения продуктов сгорания при работе ракетного двигателя на твердом топливе. 3 ил.

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей на твердом топливе, и предназначено для гашения РДТТ при наземной отработке, в том числе высотных РДТТ. Установка для гашения ракетного двигателя на твердом топливе при испытаниях содержит поворотную штангу-трубу, связанную с приводом ее перемещения, распылительный насадок, источник хладагента и герметизирующий экран. На герметизирующем экране соосно распылительному насадку размещен кольцевой эжектор, содержащий сопло эжектирующего газа, сопло эжектируемого газа и диффузор. Сопло эжектируемого газа образовано наружной поверхностью распылительного насадка и охватывающей распылительный насадок наружной поверхностью сопла эжектирующего газа. На магистрали подвода эжектирующего газа установлен управляющий клапан, причем на герметизирующем экране установлен датчик давления. Распылительный насадок закреплен на пилонах внутри диффузора, а в пилонах выполнены каналы, соединяющие распылительный насадок с коллектором подачи хладагента, установленным с наружной стороны диффузора, причем полость коллектора соединяется с источником хладагента через штангу-трубу. Изобретение позволяет обеспечить получение достоверной информации о состоянии материальной части и работоспособности РДТТ, подвергающихся после окончания работы в высотных условиях эффектам последействия. 1 з.п. ф-лы, 6 ил.

При экспериментальном определении поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях, включающих регистрацию диаграммы тяги датчиком силы, определяют силу сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем путем приложения силовых нагрузок. До начала огневого испытания двигателя силовую нагрузку, превышающую ожидаемую величину сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем, прикладывают поочередно в противоположном направлении действия тяги двигателя и в прямом направлении действия тяги двигателя, а после окончания огневого испытания двигателя - поочередно в прямом направлении действия тяги двигателя и в противоположном направлении действия тяги двигателя. Во время приложения силовой нагрузки регистрируют диаграммы этих силовых нагрузок тем же датчиком силы, которым регистрируют тягу двигателя при огневом испытании. Поправку к суммарному импульсу тяги двигателя определяют как разность произведения силы сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем в прямом направлении действия тяги двигателя на суммарное время прогрессивных участков диаграммы тяги двигателя и произведения силы сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем, в противоположном направлении действия тяги двигателя на суммарное время дегрессивных участков диаграммы тяги испытуемого двигателя. Изобретение позволяет повысить точность определения экспериментального значения суммарной тяги двигателя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике: устройству приборов, предназначенных для определения скорости горения твердых топлив, используемых в аккумуляторах давления нефтеносных скважин, ствольных системах различного назначения, работающих при высоких давлениях. Установка для определения скорости горения твердого топлива содержит источник давления газов, камеру сгорания, датчик давления, затвор с укрепленным топливным образцом, запалом и гермовыводом. Камера сгорания выполнена из нескольких радиально установленных в горизонтальной плоскости одинаковых камер. В каждой из камер размещен контрольный образец в виде цилиндрической бесканальной шашки, снабженной со стороны запала форсажными канальными шашками и надетой на бесканальную шашку с натягом в 1…2 мм эластичной трубкой, соединяющей шашку с измерительной вставкой. Длина эластичной трубки превышает длину шашки на величину, составляющую 0,7…1,4 от внутреннего диаметра эластичной трубки. В центральной части вставки расположены светопровод и фотодатчик. В полость корпуса помещена вода, заполняющая около 90% этой полости, и установлена сменная сопловая втулка с расходным отверстием, диаметр которого подбирается для каждого типа топлива. Изобретение позволяет проводить прямое измерение скорости горения твердого топлива при высоком давлении, а также исключить применение внешнего источника давления газа. 3 ил.

Изобретение относится к области энергомашиностроения и предназначено для осуществления испытаний энергоустановок с последующим проведением контроля параметров и состава продуктов сгорания. Способ испытания энергоустановок, основанный на управлении процессом испытания, включающем в себя поэтапную подачу компонентов топлива в камеру сгорания, их сжигание и смешение с балластировочной средой, контроль параметров энергоустановки, согласно изобретению продукты сгорания направляют в емкость с химически нейтральным газом, затем осуществляют контроль параметров и состава продуктов сгорания, в том числе полноты сгорания горючего, причем перед началом и по завершении подачи компонентов топлива в камеру сгорания осуществляют продувку полостей, магистралей энергоустановки, а также наддув емкости химически нейтральным газом, создавая в ней избыточное давление, а отбор пробы продуктов сгорания на анализ проводят из емкости без ограничения времени анализа. При запуске и остановке энергоустановки продукты сгорания сбрасываются в атмосферу, а забор продуктов сгорания в емкость с химически нейтральным газом, из которой проводят отбор пробы, проводят на стационарном режиме работы энергоустановки. Рассмотрен стенд для реализации способа. Изобретение обеспечивает повышение экологичности энергоустановки за счет снижения выброса вредных веществ в продуктах сгорания, предотвращения накопления в системах утилизации продуктов сгорания энергоустановки непрореагировавших компонентов топлива с целью обеспечения пожаровзрывобезопасности, а также повышение надежности работы энергоустановок. 2 н. и 2 з.п. ф-лы, 1 ил.
Наверх