Способ изготовления заряда смесевого ракетного твердого топлива

Изобретение относится к изготовлению зарядов смесевого ракетного топлива, а именно к технологии формования зарядов методом свободного литья. Формование заряда осуществляют методом свободного литья топливной массы в корпус, установленный в барокамере. При этом барокамеру или каналообразующую оснастку, или барокамеру и каналообразующую оснастку одновременно подвергают обогреву. Способ обеспечивает эффективный обогрев системы формообразующая оснастка - корпус и получение стабильной среднеобъемной температуры топливной смеси на конец формования зарядов и может быть применен при изготовлении крупногабаритных зарядов твердого топлива 3 пр.

 

Изобретение относится к области изготовления крупногабаритных зарядов смесевого ракетного твердого топлива (СРТТ), а именно к технологии формования зарядов методом свободного литья.

Из уровня техники известны способы изготовления зарядов методом литья топливной массы с формированием заряда в корпусе ракетного двигателя патенты РФ №№2194687 (дата публикации 20.12.2002 г.) и №2179543 (дата публикации 20.02.2002 г.).

Недостатком описанных способов является большой разброс давления топливной смеси в корпусе в процессе отверждения однотипных зарядов, что приводит к разбросу равновесной температуры, определяющей уровень действующих в процессе эксплуатации температурных напряжений в заряде. Наиболее близким и потому принятым за прототип является техническое решение по патенту РФ №2239621 (дата публикации 10.11.2004), включающее формование заряда из топливной массы в корпус, собранный с формообразующей оснасткой с применением обогрева.

К недостаткам способа, описанного в прототипе, следует отнести неэффективность обогрева собранного с формообразующей оснасткой корпуса, и неприменимость его к зарядам, формуемым в барокамере для получения заданной среднеобъемной температуры топливной смеси на конец формования и равновесной температуры.

Технической задачей настоящего изобретения является разработка способа изготовления заряда из смесевого твердого топлива, который обеспечивает более эффективный обогрев системы формообразующая оснастка - корпус, получение стабильной среднеобъемной температуры топливной смеси на конец формования зарядов.

Поставленная задача решается предлагаемым способом изготовления заряда смесевого ракетного твердого топлива, который включает формование заряда из топливной массы в корпус, собранный с формообразующей оснасткой с применением обогрева, формование заряда осуществляется методом свободного литья топливной массы в корпус, установленный в барокамере, при этом обогреву подвергают барокамеру или формообразующую оснастку, или барокамеру и формообразующую оснастку одновременно.

Результат предлагаемого технического решения достигается за счет создания эффективной системы обогрева формообразующей оснастки и барокамеры с установленным в ней корпусом в процессе формования и получение стабильной среднеобъемной температуры топливной смеси на конец формования заряда.

Размещение корпуса в барокамере обусловлено тем, что таким методом формуется очень чувствительное топливо.

Обогрев формообразующей оснастки значительно уменьшает оседание влаги на ее поверхности, которая отрицательно влияет на механические характеристики и стабильность топлива, особенно, нитроэфирсодержащего. Кроме того, обогрев формообразующей оснастки уменьшает вязкость топливной смеси, расположенной на канале заряда, что благоприятно сказывается на его монолитности.

Обогрев барокамеры и формообразующей оснастки одновременно в процессе формования позволяет независимо от колебаний температуры окружающей среды и длительности процесса формования обеспечить стабильную среднеобъемную температуру топливной смеси на конец формования.

Обогрев формообразующей оснастки проводят водой. Обогревать барокамеру можно воздухом и водой.

Выбор системы обогрева - барокамера или формообразующая оснастка, или барокамера и формообразующая оснастка одновременно определяется массой, конструкцией заряда, корпуса, технологическими особенностями приготовления топливной смеси, особенностями формования и отверждения. Это же касается выбора теплоносителя (воздух, вода), температуры и длительности времени обогрева. При назначении параметров обогрева учитывают « живучесть» топливной смеси.

Примеры конкретного выполнения.

Пример 1.

Формование крупногабаритного заряда массой 15 тонн проводят методом свободного литья топливной смеси в собранный с формообразующей оснасткой и установленный в барокамере корпус. Весь цикл формования состоит из 10 сливов. Общая длительность формования составляет 100 часов. Барокамеру обогревают воздухом с наружной стороны. Обогрев начинается за 24 часа до первого слива. Температура обогревающего барокамеру воздуха составляет 16-19°C, при температуре сливаемой топливной смеси 28-33°C. Обогрев барокамеры проводят вплоть до отсекания топливной смеси в корпусе.

Пример 2.

Формование крупногабаритного заряда массой 3,2 т проводят методом свободного литья топливной смеси в собранный с формообразующей оснасткой и установленный в барокамере корпус. Весь цикл формования составляет 3 слива. Общая длительность формования составляет 40 часов. Обогревают барокамеру и формообразующую оснастку. Барокамеру начинают обогревать воздухом за 24 часа до начала формования, а формообразующую оснастку - водой за 2 часа до начала формования.

Температура обогревающего барокамеру воздуха и формобразующую оснастку воды, как и температура сливаемой топливной смеси составляет 30-32°C. Обогрев барокамеры и оснастки проводят вплоть до отсекания топливной смеси в корпусе.

Пример 3.

Формование крупногабаритного заряда массой 48,3 тонны осуществляют методом свободного литья в собранный с формообразующей оснасткой и установленный в барокамере корпус.

Температура топливной смеси в процессе составляет 53-55°C. В течение всего процесса формования, который длится 72 часа, формообразующую оснастку обогревают водой, температура которой составляет 50-53°C. Обогрев формообразующей оснастки способствует лучшему растеканию топливной смеси, формирующей канал заряда. Обогрев оснастки прекращают после отсекания топливной смеси в корпусе от формующего аппарата.

Давление топливной смеси в корпусе в процессе отверждения стабильно поддерживается в диапазоне 22-23 кгс/см2.

Изготовленные таким способом изделия не имеют раковин на поверхности канала.

Предложенный способ формования обеспечивает стабильное значение равновесной температуры, легко реализуется на имеющемся оборудовании и был многократно проверен при изготовлении при изготовлении крупногабаритных зарядов смесевого ракетного твердого топлива.

Способ изготовления заряда смесевого ракетного твердого топлива, включающий формование заряда из топливной массы в корпус, собранный с формообразующей оснасткой с применением обогрева, отличающийся тем, что формование заряда осуществляется методом свободного литья топливной массы в корпус, установленный в барокамере, при этом обогреву подвергают барокамеру или формообразующую оснастку, или барокамеру и формообразующую оснастку одновременно.



 

Похожие патенты:

Изобретение относится к изготовлению бронированных твердотопливных зарядов, покрытие которых исключает горение забронированных поверхностей. Бронирование термостойкого заряда топлива осуществляется в две стадии.

Твердотопливный заряд ракетного двигателя авиационной ракеты включает канальную шашку, обеспечивает форсированную тягу при стартовом режиме, последующий спад и прогрессивное нарастание тяги на маршевом режиме.

При изготовлении зарядов смесевого твердого топлива формообразующий сердечник разделяют по длине на ступицы и иглу. Через переднее дно сквозь весь корпус вводят штангу, к которой крепят первую ступицу и нижнюю часть формообразующих элементов.
Предлагаемый способ относится к ракетной технике и предназначен для подготовки внутренней поверхности корпуса твердотопливного ракетного двигателя перед заливкой в корпус смесевого топлива.

Изобретение относится к области ракетной техники, способу изготовления заряда из смесевого твердого ракетного топлива (СТРТ) методом литья под давлением. .

Изобретение относится к способу бронирования заряда баллиститного твердого ракетного топлива (БТРТ) торцевыми бронировками и может быть использовано при изготовлении заряда к различным ракетным системам (ракетным двигателям твердого топлива (РДТТ), газогенераторам (ГТ), катапультным устройствам (КУ), системам разделения ступеней ракет, пороховым аккумуляторам давления и др.).

Изобретение относится к области уничтожения и утилизации ракетных двигателей твердого топлива (РДТТ) путем сжигания зарядов твердого ракетного топлива (ТРТ), и в частности к способам утилизации зарядов ТРТ на стационарных стендовых установках.

Изобретение относится к области изготовления твердотопливных зарядов торцевого и канального горения, получаемых методом заливки топливной массы в корпус. .

Изобретение относится к ракетной технике, а именно к устройству при ликвидации заряда ракетного двигателя на твердом топливе методом сжигания на стенде, оборудованном камерой локализации и охлаждения продуктов сгорания.

Изобретение относится к ракетной технике, а именно - к устройству при ликвидации заряда ракетного двигателя на твердом топливе методом сжигания на стенде, оборудованном камерой локализации и охлаждения продуктов сгорания.

Изобретение раскрывает катализатор ракетного топлива, содержащий: носитель, изготовленный посредством горячего изостатического прессования и имеющий теоретическую плотность, по меньшей мере, 97%, который содержит оксид гафния и вплоть до равной части оксид циркония по массе, причем объединенные оксид гафния и оксид циркония, когда присутствуют, составляют, по меньшей мере, 50% масс.

Изобретение относится к ракетной технике, а именно к технологии изготовления бронечехла для бронирования вкладного заряда из смесевого твердого топлива (СТТ) к маршевому ракетному двигателю (РД) переносных зенитных ракетных комплексов (ПЗРК), а также к теплозащитному материалу для изготовления бронечехла.

Изобретение относится к ракетным топливам для жидкостных, твердотопливных и гибридных ракетных двигателей, а также для поршневых, турбореактивных двигателей.

Изобретение относится к ракетной технике и касается разработки способа получения органического термостойкого наполнителя для обеспечения термоэрозионной стойкости бронепокрытия.

Изобретение относится к ракетным топливам для жидкостных, твердотопливных и гибридных ракетных двигателей, а также для экстремальных поршневых и турбореактивных двигателей.
Изобретение относится к вариантам ракетного топлива для твердотопливных и гибридных ракетных двигателей. Ракетное топливо содержит нитросоединение, например нитроформ, которое находится в нем в связанном соединении с непредельными углеводородами (нитроэтилен, этилен, стирол, пропилен, нитропропилен, нитрил акриловой кислоты, диацетилен) с помощью реакции Михаэля.
Изобретение относится к области ракетной техники и касается разработки крепящей полимерной композиции, предназначенной для скрепления забронированного заряда из твердого ракетного топлива (ТРТ) с корпусом газогенератора (ГГ), исключающего продольное перемещение заряда в корпусе ГГ.
Изобретение относится к пороховым зарядам, используемым в артиллерии, и, в частности, может использоваться для легкогазовых орудий, для огнестрельных оружий. Порох содержит гидрид, например бораны, силаны, фосфины, гидрид германия, или смесь нескольких гидридов с общей положительной энтальпией образования.
Изобретение относится к области стрелкового вооружения, а именно к пороховому заряду для легкогазового орудия или огнестрельного оружия. .
Изобретение относится к области стрелкового вооружения, а именно к пороховому заряду для легкогазового орудия или огнестрельного оружия. .
Изобретение относится к технологии взрывчатых веществ, а именно пластичных взрывчатых составов, используемых в конструкциях взрывных зарядов. Способ приготовления пластичного взрывчатого состава заключается в смешивании кристаллического взрывчатого вещества (ВВ) с раствором пластичного полимера в летучем растворителе, последующей отгонке растворителя, грануляции и сушке.
Наверх