Газоанализатор

Изобретение относится к области измерительной техники и может быть использовано в газоанализаторах при контроле инертных газов по кислороду. Предложено ввести дополнительную термопару в газоанализатор, использующий ПТЭЯ для измерения концентрации кислорода в инертных газах и азоте. Дополнительная термопара своим спаем установлена рядом с закругленной частью пробирки ПТЭЯ, а электрически соединена последовательно с термопарой, установленной по центру возле наружного электрода ПТЭЯ. Технический результат – устранение термоЭДС ПТЭЯ. 1 ил.

 

Изобретение относится к области аналитического приборостроения и может быть использовано в газоанализаторах при контроле инертных газов по кислороду и при проведении научно-исследовательских работ, связанных с разработкой технологий получения чистых газов.

Известен газоанализатор для определения кислорода масс-спектрометрическим способом (Вейнеров М.Л. и др. Автоматические газоанализаторы. Центральный институт научно-технической информации электротехнической промышленности и приборостроения, М., 1961 г.).

В датчике газоанализатора газ ионизируется. Образовавшиеся ионы разделяются по характерному для каждого из них отношению массы иона к его заряду, а затем поступают на коллектор и дают в его цепи ток, пропорциональный парциальному давлению кислорода.

Газоанализатор имеет ряд недостатков:

- сложное аппаратное оформление;

- узкий диапазон измерений.

Известен термомагнитный газоанализатор для определения концентраций кислорода в газах (Колеров Д.К. Газоанализаторы. Проблемы практической метрологии. Издательство стандартов, М., 1980 г.).

Способ основан на парамагнитных свойствах кислорода. Под действием магнитного поля возникает термомагнитная конвенция кислорода, содержащегося в анализируем потоке газа, пропускаемого через кольцевой газопровод. По диаметру газопровода имеется соединительный газоход, находящийся под действием магнитного поля. В газоходе устанавливается поток газа, интенсивность которого зависит от концентрации кислорода. Поток газа охлаждает платиновые проволоки, являющиеся плечами измерительного моста постоянного тока. Разбаланс моста регистрируется прибором, отградуированным по кислороду.

Газоанализатор имеет ряд недостатков:

- измерения выполняются в диапазоне макроконцентраций;

- сложное аппаратное оформление.

Известен серийно выпускаемый газоанализатор типа Флюорит (Пирог В.П. и др. Широкодиапазонный твердоэлектролитный газоанализатор кислорода. Приборы, №3, 2007 г., с. 23-26), предназначенный для измерения концентрации кислорода в инертных газах и азоте.

Газоанализатор имеет следующие технические характеристики:

- диапазон измерений, % 10-6…100;

- основная относительная погрешность в зависимости от измеряемой концентрации, % ±4; ±6; ±10.

В качестве чувствительного элемента используется потенциометрическая твердоэлектролитная ячейка (ПТЭЯ), работающая при температуре (634±2)°C.

Чувствительный элемент газоанализатора выполнен в виде пробирки из циркониевой керамики, обладающей при высокой температуре чисто кислородной проводимостью. Рабочей частью элемента является его донышко, на которое с обеих сторон методом вжигания нанесены пористые платиновые электроды. Рабочим электродом является его внутренний электрод, электрод сравнения - наружный. Токоотводы от электродов выполнены в виде платиновых дорожек. С наружной стороны чувствительный элемент омывается за счет естественной конвенции воздухом, который является сравнительной средой. Объемная концентрация кислорода в воздухе принимается равной 20.7%.

Сущность работы ячейки заключается в следующем. Если твердый электролит имеет на поверхности металлический электрод, то благодаря подвижности ионов кислорода, на границе металл - твердый электролит газовая фаза устанавливает равновесие по кислороду, которое характеризуется определенным электродным потенциалом. Величина этого потенциала будет зависеть от концентрации кислорода в газовой фазе. Так как потенциал кислорода непосредственно измерить невозможно, измеряют разность потенциалов двух электродов, один из которых является рабочим, а другой сравнительным.

Разность электродных потенциалов связана с концентрацией кислорода в анализируемом газе и сравнительной среде соотношением Нернста:

где Е - разность электродных потенциалов (ЭДС ячейки), В;

R - газовая постоянная Дж/моль⋅К;

Т - температура, К;

4⋅F=4⋅96500 - количество электричества, необходимого для переноса 1 моля кислорода, кл/моль;

и - концентрация кислорода в сравнительной и анализируемой средах соответственно, %.

Конструктивно газоанализатор состоит из двух блоков - блока измерений и датчика.

Блок измерений газоанализатора состоит из следующих узлов: преобразователя ЭДС ПТЭЯ в показания концентрации кислорода, терморегулятора, который предназначен для точного поддержания температуры электродов ПТЭЯ.

Датчик газоанализатора состоит из следующих узлов: нагревателя, ПТЭЯ с токоотводом, термопары, которая установлена по центру возле наружного электрода, входного и выходного штуцеров, предназначенных для подачи анализируемого газа.

Датчик и блок измерений газоанализатора соединены между собой межблочным кабелем.

Недостатком данного газоанализатора является схема поддержания температуры между внутренним и внешним электродами ПТЭЯ. В качестве датчика температуры используется термопара, которая своим спаем устанавливается рядом с центром наружного электрода ПТЭЯ. При такой установке термопары между наружным и внутренним электродами ПТЭЯ существует небольшой температурный градиент, что приводит к возникновению термоэлектродвижущей силы (ТЭДС).

Учитывая ТЭДС и содержание кислорода в сравнительной среде номинальная статическая характеристика преобразования принимает вид:

Где Ет - ТЭДС ПТЭЯ, В

Целью настоящего изобретения является устранение ТЭДС ПТЭЯ. Поставленная цель достигается тем, что в конструкцию датчика газоанализатора введена дополнительная термопара, которая своим спаем установлена рядом с закругленной частью пробирки, а электрически соединена последовательно с термопарой, которая установлена по центру возле наружного электрода ПТЭЯ, что позволяет увеличить зону точного поддержания необходимой температуры, и в эту зону попадают одновременно внешний и внутренний электроды, следовательно, температура электродов будет одинаковая, что необходимо для работоспособности газоанализатора по формуле (1), приведенной выше.

На фиг. 1 схематически изображен газоанализатор, использующий в качестве чувствительного элемента ПТЭЯ.

Конструктивно газоанализатор выполнен из двух блоков - блока измерений и датчика.

Блок измерений состоит из следующих узлов:

1. преобразователя ЭДС ПТЭЯ в показания концентрации кислорода;

2. терморегулятора, поддерживающего температуру ПТЭЯ.

Датчик газоанализатора состоит из следующих узлов:

3. нагревателя;

4. ПТЭЯ;

5. термопары, установленной рядом с закругленной частью пробирки ПТЭЯ;

6. термопары, установленной по центру возле наружного электрода ПТЭЯ;

7. входного и выходного штуцеров для подачи и отвода анализируемого газа;

8. электрический проводник внутреннего электрода ПТЭЯ;

9. электрический проводник внешнего электрода ПТЭЯ.

Датчик и блок измерений газоанализатора соединены между собой межблочным кабелем.

Газоанализатор, собранный по схеме, приведенной на фиг. 1, работает следующим образом: подают напряжение питания и выжидают прогрева ПТЭЯ до температуры (634±2)°C, а затем подают на штуцер «вход газа» анализируемый газ. ЭДС, возникающая между внутренним и внешним электродами ПТЭЯ, по проводникам и межблочному кабелю поступает в блок измерений, где с помощью преобразователя ЭДС ПТЭЯ, работающего по формуле (1), преобразуется в показания объемной доли кислорода в анализируемом газе.

Газоанализатор, состоящий из блока измерений и датчика, соединенных между собой межблочным кабелем, отличающийся тем, что с целью устранения термоЭДС ПТЭЯ в конструкцию датчика газоанализатора введена дополнительная термопара, которая своим спаем установлена рядом с закругленной частью пробирки ПТЭЯ, а электрически соединена последовательно с термопарой, установленной по центру возле наружного электрода ПТЭЯ.



 

Похожие патенты:

Изобретение относится к устройству для определения концентрации газа, которое способно получать точную концентрацию оксида серы (SOX), содержащуюся в выхлопных газах двигателя внутреннего сгорания.

Датчик (100) отработавших газов выполнен с возможностью измерения концентрации кислорода или соотношения компонентов в воздушно-топливной смеси в отработавших газах двигателя внутреннего сгорания.

Изобретение относится к датчикам выхлопных газов. Датчик (100, 200) выхлопных газов сконфигурирован для определения концентрации кислорода или соотношения компонентов в воздушно-топливной смеси в составе выхлопных газов.

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C.

Изобретение направлено на возможность измерения горючего газа в смеси с азотом или другим инертным газом. Способ заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого электролита, на противоположных поверхностях одного из которых расположена пара электродов, к электродам подают напряжение, необходимое для получения предельного тока, протекающего через ячейку, по величине которого определяют концентрацию горючего газа в анализируемой газовой смеси.

Изобретение относится к измерительной технике. Твердоэлектролитный датчик концентрации кислорода в газовых средах содержит керамический чувствительный элемент (3), герметично размещенный в металлическом корпусе (4), электрод сравнения (8), потенциалосъемный вывод (5), измерительный электрод (2), нанесенный на внешнюю часть керамического чувствительного элемента (3).

Изобретение может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в жидких и газовых средах в широком интервале температур и давлений.

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе.

Изобретение может быть использовано для измерения концентрации монооксида углерода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях выполнен в виде таблетки из твердого оксидного электролита, на одну из поверхностей таблетки припечен электрод сравнения, на противоположную - измерительный электрод, при этом твердый оксидный электролит выполнен на основе оксида церия состава Ce0.8(Sm0.8Ca0.2)0.2O2, электрод сравнения выполнен из манганита лантана-стронция состава La0.6Sr0.4MnO3, а измерительный электрод - из оксида цинка ZnO.

Использование: для контроля заполнения сорбентом кулонометрических чувствительных элементов после их изготовления или регенерации. Сущность: заключается в том, что с целью улучшения качества контроля заполнения сорбентом чувствительного элемента после его изготовления или регенерации количество сорбента определяют периодом времени активного поглощения влаги этим сорбентом без воздействия на электроды элемента постоянного напряжения.

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита состава La0,9Sr0,1ΥΟ3-σ, на противоположных поверхностях одного из дисков расположены электроды, на которые подают напряжение постоянного тока в пределах 400-500 мВ с подачей отрицательного полюса на внутренний электрод, посредством чего осуществляют электролиз паров воды, находящихся в анализируемом газе, и накачку полученного в результате электролиза водорода из потока анализируемого газа в полость ячейки по электрохимической цепи диска с электродами: наружный электрод - твердый электролит - внутренний электрод, в процессе достижения стационарного состояния, когда диффузионный поток продуктов восстановления углекислого газа из полости ячейки станет равным поступающему потоку анализируемого газа, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию водорода, потраченного на восстановление углекислого газа, определяют концентрацию углекислого газа в азоте. Изобретение обеспечивает возможность просто и надежно измерять содержание углекислого газа в азоте. 3 ил.

Изобретение относится к технике безопасности на предприятиях, а именно к автоматическим средствам измерения концентрации газов. Техническим результатом является повышение эффективности контроля параметров атмосферы за счет увеличения количества измеряемых значений и снижения их погрешности. Устройство контроля параметров атмосферы, содержащее корпус, дисплей, модуль сбора и обработки информации, содержащий базу предельных значений концентрации опасных газов, модуль измерения газового состава с датчиками опасных газов, звуковую и световую сигнализацию. Корпус выполнен во взрывозащитном исполнении, и устройство дополнительно содержит модуль передачи информации, модуль измерения температуры, давления, влажности, а модуль измерения газового состава снабжен пробоотборным насосом, измерительной камерой и датчиком расхода газовой смеси, передающим сигналы на модуль сбора и обработки информации и контролирующим работу пробоотборного насоса, датчики опасных газов встроены в измерительную камеру. Второй вариант устройства содержит выносной измерительный блок с модулем измерения газового состава и модулем измерения температуры, давления, влажности и работает без пробоотборного насоса. 2 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к метрологии, в частности к средствам контроля газа. Устройство содержит узел передатчика и узел датчика. Узел передатчика содержит дисплей, элемент памяти, процессор, схему расширения, интерфейс источника питания, схему контроля, схему для программирования и тестирования передатчика, схему искрозащиты на базе диода Зенера, интерфейс PCB. Датчик содержит схему памяти, процессор, чувствительные элементы датчика, схему нормирования сигналов. Также устройство содержит схему регулирования питания, снабженную двумя потенциометрами, предназначенными для регулирования высокого и низкого напряжения соответственно. Процессор передатчика выполнен с возможностью сравнения напряжения на датчике с эталонным напряжением для определения необходимости регулирования напряжения на датчике. Также устройство включает усилитель, связанный с датчиком для создания установок усиления, используемых для оптимизации разрешения датчика изменением значения усиления для датчика. Это обеспечивает использование одного датчика для множества различных диапазонов концентрации. Технический результат - обеспечение увеличенного диапазона изменения чувствительности. 3 н. и 7 з.п. ф-лы, 21 ил.

Изобретение относится к устройству для определения концентрации газа: оксида серы (SOX), содержащегося в выхлопных газах из двигателя внутреннего сгорания. Устройство определения концентрации газа включает в себя элемент определения концентрации газа и электронный блок управления. Элемент определения концентрации газа включает в себя первый электрохимический элемент и второй электрохимический элемент. Электронный блок управления выполнен с возможностью определения концентрации оксида серы, содержащегося в исследуемом газе, на основании полученного первого определенного значения, согласованного с током, текущим через первый электрохимический элемент, когда первое удаляющее напряжение подано на второй электрохимический элемент, и измерительное напряжение подано на первый электрохимический элемент. Изобретение обеспечивает возможность концентрации газа - оксида серы, содержащегося в выхлопных газах, с наивысшей степенью точности, возможной при использовании газоанализатора предельного тока. 11 з.п. ф-лы, 6 ил.

Группа изобретений относится к области газового анализа. Мультисенсорный газоаналитический чип (МГЧ) включает диэлектрическую подложку со сформированным набором компланарных полосковых электродов, поверх которых нанесен матричный слой из вискеров титаната калия общей химической формулы КхН2-хTinO2n+1, где х=0-2, n=4-8. При этом каждая пара электродов образует сенсорный сегмент матричного слоя вискеров титаната калия, плотность которого различна для разных сегментов и сопротивление которого изменяется под воздействием горючих газов при комнатной температуре. Согласно способу изготовления мультисенсорного газоаналитического чипа на основе вискеров титаната калия диэлектрическую подложку промывают в органическом растворителе и дистиллированной воде, сушат под вакуумом при температуре 60-100°С, наносят на поверхность подложки набор компланарных полосковых электродов из благородного металла толщиной 0,1-1 мкм и шириной 50-200 мкм с зазором между электродами 10-100 мкм методом катодного и/или магнетронного напыления, поверх электродов наносят суспензию из диспергированного в дистиллированной воде порошка вискеров титаната калия концентрацией 0,01-5 мас.% и сушат полученную структуру при комнатной температуре в течение 24 часов. Технический результат заявляемой группы изобретений заключается в создании МГЧ на основе слоя вискеров титаната калия (ВТК), позволяющего проводить анализ вида газовой среды при комнатной температуре, что ведет к существенному снижению энергопотребления такого вида устройств и расширению области его технического применения. 2 н. и 3 з.п. ф-лы, 9 ил.

Использование: для осуществления детектирования и анализа газов и многокомпонентных газовых смесей. Сущность изобретения заключается в том, что способ осуществляют методом электрохимического осаждения в емкости, оборудованной электродом сравнения и противоэлектродом и заполненной раствором, содержащим нитрат-анионы и катионы олова из солей SnCl2 с концентрацией 0,05-0,15 моль/л и NaNO3 с концентрацией 0,1-0,3 моль/л, слой оксида олова в виде нанокристаллов осаждают с помощью циклической вольтамперометрии на диэлектрическую подложку, оборудованную полосковыми сенсорными электродами, выполняющими роль рабочего электрода, в растворе, величина pH которого составляет 1,45±0,02, путем изменения потенциала, подаваемого на сенсорные электроды, от 0 В в отрицательную сторону относительно потенциала электрода сравнения, до величин не менее -1,7 В со скоростью развертки потенциала в диапазоне 0,02-0,25 В/с, затем осуществляют увеличение потенциала до величины не выше +2,0 В и обратное снижение до 0 В с той же скоростью развертки, при этом описанную циклическую последовательность изменения потенциалов применяют многократно до исчезновения пика на кривой циклической вольтамперометрии. Технический результат: обеспечение возможности получения газочувствительного слоя оксида олова непосредственно на подложке без примеси металлического олова. 5 з.п. ф-лы, 9 ил.

Группа изобретений относится к области измерительной техники и может быть использована для измерения таких параметров режима работы, как температура и/или влажность. Крышка (1) для канального датчика содержит: наружную огибающую поверхность (3), соединяющуюся с уплотнением (4), которое выступает от наружной огибающей поверхности (3) и окружает ее по периметру; канал (2) со стенками (8, 9) и с боковыми стенками, проходящий через крышку (1); переднюю поверхность, соединяющуюся с наружной огибающей поверхностью (3) и со стенками (8, 9) канала (2). При этом канал (2) содержит направляющую опору, проходящую вдоль его боковой стенки, а крышка (1) содержит отверстие в передней поверхности, которое обеспечивает вход для схемной платы в канал (2). Направляющая опора и отверстие в передней поверхности выполнены с возможностью, по существу, предотвращать люфт схемной платы, проходящей через канал (2). Уплотнение (4) содержит закраину (5), причем уплотнение (4), закраина (5), наружная огибающая поверхность (3) и крышка (1) образуют моноблок. Группа изобретений относится также к канальному датчику, содержащему трубчатый кожух, схемную плату и указанную крышку (1), установленную внутри кожуха. Группа изобретений обеспечивает непроницаемость канального датчика для текучих сред, его долговечность и возможность измерения влажности в широком диапазоне. 2 н. и 13 з.п. ф-лы, 4 ил.

В заявке описан датчик (10) для определения по меньшей мере одного свойства анализируемого газа в заполненном им пространстве. Такой датчик (10), имеющий корпус (12) с отверстием (14), через которое из корпуса (12) выведен по меньшей мере один соединительный провод (18), и по меньшей мере один уплотнительный элемент (20), прежде всего проходную втулку, который по меньшей мере частично окружает соединительный провод (18) и имеет по меньшей мере один первый участок (28) и по меньшей мере один второй участок (30), из которых первый участок (28) обладает большей деформируемостью, чем второй участок (30), отличающийся тем, что уплотнительный элемент (20) выполнен из по меньшей мере одного полимерного материала, содержащего по меньшей мере один пластификатор, при этом первый участок (28) и второй участок (30) содержат пластификатор в полимерном материале в разном количестве. Техническим результатом является надежное уплотнение на граничных поверхностях между уплотнительным элементом и корпусом, а также между уплотнительным элементом и соединительным проводом. 11 з.п. ф-лы, 6 ил.

Использование: для создание системы управления двигателя внутреннего сгорания. Сущность изобретения заключается в том, что система управления для двигателя внутреннего сгорания содержит датчик на основе предельного тока, система управления содержит электронный блок управления, выполненный с возможностью: выполнения процесса сканирования с постепенным снижением приложенного к датчику напряжения от первого (V1) напряжения до второго (V2) напряжения; получения критического значения (Ip) выходного тока датчика во время выполнения процесса сканирования из выходных токов датчика, в то время когда к датчику приложено напряжение, входящее в определенный диапазон, причем критическое значение прогнозируется на основе выходного сигнала; и определение концентрации SOx в выхлопных газах на основе этого критического значения и базового значения, это базовое значение является значением предельного тока датчика, при этом значение предельного тока датчика соответствует концентрации кислорода, имеющей постоянное значение. Технический результат: обеспечение возможности с точностью определять концентрацию оксидов серы в выхлопных газах двигателя. 2 н. и 3 з.п. ф-лы, 11 ил.

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к способам изготовления устройств распознавания и детектирования компонентов газовых смесей. Способ изготовления мультиэлектродного газоаналитического чипа на основе мембраны нанотрубок диоксида титана включает формирование массива упорядоченных нанотрубок TiO2 из титана методом электрохимического анодирования во фторидном электролите с последующим растворением титанового субстрата в метиловом спирте с добавкой брома, промывкой полученной мембраны в спиртах и вытягивания ее из раствора на поверхность подложки чипа, на которой формируются (или сформированы ранее) полосковые электроды для возможности проведения электрических измерений сопротивлений участков мембраны. При функционировании чип подвергают воздействию газовой среды, записывают изменение сопротивления сегментов мембраны нанотрубок диоксида титана, размещенных между каждой парой полосковых электродов, и обрабатывают векторный сигнал от всего набора сегментов методами распознавания образов для определения вида газовой смеси. Результатом является изготовление высокочувствительного и газоселективного мультиэлектродного газоаналитического чипа достаточно простым способом с низкой себестоимостью. 4 з.п. ф-лы, 9 ил.
Наверх