Волоконно-оптический кабель для измерения температурного распределения в паронагнетательных скважинах

Изобретение относится к области нефтедобычи и может быть использовано при добыче вязкой нефти, при воздействии на призабойную зону скважин паром при высоких температуре и давлении в устройствах для проведения измерений температурного распределения по скважине. Волоконно-оптический кабель для измерения температурного распределения в паронагнетательных скважинах включает оптическое волокно с защитным покрытием, свободно уложенное в модульной металлической трубке, которая размещена внутри внешней металлической трубки. При этом внутри внешней металлической трубки размещены две одинаковые защитные металлические трубки, отношение внутреннего диаметра которых к внешнему диаметру модульной металлической трубки больше чем 3/2, а модульная металлическая трубка с оптическим волокном размещена внутри одной из защитных металлических трубок. Технический результат - расширение области применения. 1 ил.

 

Изобретение относится к области нефтедобычи и может быть использовано при добыче вязкой нефти при воздействии на призабойную зону скважин паром при высоких температуре и давлении в устройствах для проведения измерений температурного распределения по скважине.

Известен волоконно-оптический кабель для проведения измерений в скважинах, включающий размещенное в герметичной металлической трубке покрытое защитной оболочкой оптическое волокно [1]. Известны конструкции оптических кабелей, предназначенных для прокладки в трубах, в том числе и способом пневмопрокладки [2]. Также известен волоконно-оптический кабель, включающий покрытое защитной оболочкой оптическое волокно, размещенное в герметичной металлической трубке, заполненной наполнителем [3]. Однако эти оптические кабели [1-4] не предназначены для использования в скважинах (тем более паронагнетательных) при высоких температуре и давлении.

Известен волоконно-оптический кабель [5] для измерения температурного распределения в паронагнетательных скважинах, включающий размещенное в герметичной металлической трубке, заполненной наполнителем, покрытое защитной оболочкой оптическое волокно, при этом защитная оболочка представляет собой слой металлизации, прилегающий к оптическому волокну, и охватывающую его оплетку из стеклонити, а в качестве наполнителя применен инертный газ. Слой металлизации может быть выполнен из меди и его толщина составляет несколько десятков микрометров. В качестве инертного газа использован аргон, который находится под давлением примерно 1 атм. Заполнение кабеля газом под давлением увеличивает как стоимость самого изделия, так и стоимость его эксплуатации.

Волоконно-оптический кабель [6] для применения в паронагнетательных скважинах включает оптическое волокно с защитным покрытием, свободно уложенное в модульной металлической трубке, которая размещена внутри внешней металлической трубки, при этом модульная стальная трубка плотно вложена во внешнюю стальную трубку, так что вместе они образуют двухслойную оболочку. Недостаток данного кабеля - его низкая ремонтопригодность. В условиях высоких температур и давления велика вероятность повреждения оптического волокна. Повреждение волокна требует полной замены кабеля, а это, в свою очередь, остановки технологического процесса. Теоретически возможна замена волокна в данной конструкции. Однако для этого необходим доступ к обоим концам кабеля, что требует его подъема на поверхность. При замене волокна с помощью заготовки доступ к обоим концам кабеля необходим для ввода заготовки. При замене оптического волокна методом пневмопрокладки доступ к обоим концам кабеля необходим для сводного прохождения воздуха на дальнем конце создаваемого воздушного канала для подачи сжатого воздуха. Поскольку стоимость остановки технологического процесса с подъемом оборудования на поверхность высока, к кабелю предъявляются повышенные требования к эксплуатационной надежности, что увеличивает его стоимость и ограничивает область возможного применения.

Сущностью предлагаемого изобретения является расширение области применения.

Эта сущность достигается тем, что волоконно-оптический кабель для измерения температурного распределения в паронагнетательных скважинах включает оптическое волокно с защитным покрытием, свободно уложенное в модульной металлической трубке, которая размещена внутри внешней металлической трубки, при этом внутри внешней металлической трубки размещены две одинаковые защитные металлические трубки, отношение внутреннего диаметра которых к внешнему диаметру модульной металлической трубки больше чем 3/2, а модульная металлическая трубка с оптическим волокном размещена внутри одной из защитных металлических трубок.

На фиг. 1 представлен поперечный разрез волоконно-оптического кабеля. Кабель включает оптическое волокно с защитным покрытием 1, уложенное в модульную металлическую трубку 2, которая размещена в одной из двух одинаковых защитных металлических трубок 3, которые размещены внутри внешней металлической трубки 4. Отношение внутреннего диаметра защитных металлических трубок к внешнему диаметру модульной металлической трубки больше чем 3/2. Защитное покрытие оптического волокна изготавливается из термостойких материалов, например в виде слоя металлизации и оплетки из стеклонитей или полимерного компаунда с наполнением из порошка тригидраталюминия и т.п. Металлические трубки 2, 3 и 4 могут быть выполнены из нержавеющей стали. Кабель в процессе изготовления наматывается на транспортный барабан либо на барабан подъемника. Спуск кабеля в скважину и его расположение в ней осуществляются известным образом. Измерение температурного распределения в скважине осуществляется с помощью известной аппаратуры известным методом.

По сравнению с прототипом предлагаемый волоконно-оптический кабель при повреждении оптического волокна может быть отремонтирован путем замены модульной металлической трубки с оптическим волокном в защитном покрытии без подъема кабеля и, соответственно, оборудования на поверхность. При установке на спускаемом конце оптического кабеля переходника между защитными металлическими трубками образуется обратный воздушный канал. Это позволяет после извлечения модульной металлической трубки с поврежденным оптическим волокном проложить в одной из защитных металлических трубок другую модульную металлическую трубку с исправным оптическим волокном методом пневмопрокладки, не поднимая оптический кабель на поверхность. Возможность ремонта волоконно-оптического кабеля без извлечения его из скважины расширяет область его применения и, кроме того, позволяет снизить требования к его стойкости к воздействию высоких температуры и давления, тем самым дополнительно расширяя область его применения.

ЛИТЕРАТУРА

1. Патент US 6148925А.

2. Грифьен В. Прокладка оптических кабелей в трубках. - Plumettaz SA, 1993. - 138 с.

3. Патент RU 2017246 С1.

4. Свидетельство на полезную модель RU 57022 U1.

5. Патент RU 2238578 С1.

6. Патент CN 2788212 Y.

Волоконно-оптический кабель для измерения температурного распределения в паронагнетательных скважинах включает оптическое волокно с защитным покрытием, свободно уложенное в модульной металлической трубке, которая размещена внутри внешней металлической трубки, отличающийся тем, что внутри внешней металлической трубки размещены две одинаковые защитные металлические трубки, отношение внутреннего диаметра которых к внешнему диаметру модульной металлической трубки больше чем 3/2, а модульная металлическая трубка с оптическим волокном размещена внутри одной из защитных металлических трубок.



 

Похожие патенты:

Изобретение относится к телекоммуникационным коробкам, в частности, включающим сплайс-пластины для оптоволоконных кабелей. Телекоммуникационное устройство (100) включает в себя коробку (103), имеющую основание (101) и крышку (102), которые соединяются между собой по герметичной линии стыка.

Изобретение относится к связующему волокну для волоконно-оптического элемента. Связующее волокно для волоконно-оптического элемента содержит плоское цветное композитное волокно типа острова в море, которое включает компонент моря плоского цветного композитного волокна типа "острова в море", которое имеет температуру начала плавления 100°C или выше и пик температуры плавления от 120 до 150°C.

Изобретение относится к телекоммуникационным органайзерам, содержащим лотки для волоконно-оптических кабелей, в частности к лоточному устройству. Лоточное устройство (10) для волоконно-оптического кабеля включает в себя пластину (20) с пазами и множество лотков (40), установленных на этой пластине (20) с возможностью поворота относительно нее между первым (46) и вторым (48) положениями.

Изобретение относится к волоконно-оптическим кабелям. Волоконно-оптический ленточный кабель включает в себя кожух (320) кабеля, при этом кожух имеет полость, обозначенную в нем, оптический элемент, включающий в себя оптическое волокно и протянутый в полости кожуха, и сухой блокирующий воду элемент (340), продолжающийся вдоль оптического элемента в полости.

Заявленная группа изобретений предназначена для соединения кабеля с элементом для разгрузки натяжения кабеля. Устройство для зажима кабеля, оптическое коммутационное устройство и комплект для закрепления кабелей к оптическому коммутационному устройству включает в себя корпус, имеющий удерживающий элемент, выступающий из него.

Изобретение относится к волоконно-оптическим кабелям с электрическими проводниками. Кабель включает в себя оптическое волокно, оболочку, окружающую оптическое волокно, и упрочняющий слой, расположенный между оптическим волокном и оболочкой.

Изобретение относится к основанию (1) системы для группирования оптоволокна с установочным средством (7), включающим в себя шарнир для шарнирной установки множества лотков (2), каждый из которых выполнен с возможностью хранения оптоволокна (17) и/или оптического соединения, причем указанное основание (1) содержит фиксирующее средство (9, 10, 11) для крепления оптического соединителя (3), причем выемка (22) расположена в основании (1), в котором расположено фиксирующее средство (9,10,11), и образует пространство для приема по меньшей мере части соединителя (3), причем имеется крышка (6,40) для закрывания выемки (22), а фиксирующее средство (9,10,11) расположено с противоположной стороны основания (1) относительно установочного средства (7).

Изобретение относится к механическим конструкциям для обеспечения прочности и внешней защиты волокон, а именно к оптоволоконной ленте. Оптоволоконная лента 1 включает в себя три или более параллельно расположенных оптических волокна 2 и соединительные участки 3, каждый из которых соединяет между собой два соседних оптических волокна 2.

Изобретение относится к механическим конструкциям для обеспечения прочности на разрыв и внешней защиты волокон, а именно к кабелю (1) с извлекаемыми микромодулями (6), проходящему в продольном направлении (X), содержащему внутренний продольный профиль (3) разделения на отсеки и наружную оболочку (2), при этом внутренний продольный профиль (3) разделения на отсеки ограничивает посредством соединения вместе с наружной оболочкой (2), по меньшей мере, два отсека (4.1, 4.2, 4.3, 4.4), при этом, по меньшей мере, в одном из отсеков (4.1, 4.2, 4.3, 4.4) находится, по меньшей мере, один из микромодулей (6), причем наружная оболочка (2) образует одну из стенок этого отсека.

Настоящее изобретение относится к устройству для размещения отрезков оптических волокон. Это устройство можно использовать, например, при монтаже сетей с оптическим доступом.

Изобретение относится к кассетам для сращивания оптических волокон. Заявленная кассета содержит, по меньшей мере, одно средство хранения волокон, первую опору для поддержки средств хранения, при этом средства хранения соединены с возможностью поворота с первой опорой, вторую опору, по меньшей мере, с одним средством удерживания ввода кабеля для крепления входящего или выходящего кабеля, имеющего, по меньшей мере, одно оптическое волокно, при этом первая опора соединена с возможностью поворота со второй опорой. Технический результат - обеспечение более высокой гибкости. 14 з.п. ф-лы, 14 ил.

Заявленная группа изобретений относится к области, раскрывающей оптоволоконные кабели. Оптоволоконная лента и кабель, снабженный оптоволоконной лентой, содержат множество сердцевин оптических волокон, расположенных параллельно и на расстоянии друг от друга; и лентообразующий элемент имеет участки покрытия, закрывающие наружную окружность сердцевин оптических волокон. При этом соединительный участок оптоволоконной ленты выполнен за одно целое с участками покрытия и прерывисто соединяет соседние сердцевины оптических волокон, кроме того, участки покрытия имеют открытые участки для раскрытия части поверхностей сердцевин оптических волокон, причем по меньшей мере часть участков покрытия является непрерывной в продольном направлении сердцевин оптических волокон. Технический результат – облегчение удаления лентообразующего элемента после отделения одной сердцевины. 2 н. и 13 з.п. ф-лы, 9 ил.

Заявленное изобретение относится к области технологий передачи данных и, в частности, к устройству подводки оптоволокна в дом. Заявленное устройство подводки оптоволокна в дом содержит шасси сращивания и модуль разделения света. При этом на шасси сращивания в области сращивания развернуты ввод оптического кабеля, вывод оптического кабеля, точка сращивания и адаптер. Модуль разделения света включает в себя точку доступа, разделитель и N выходных портов, где N - положительное целое число, не меньше двух; модуль разделения света установлен над областью сращивания путем подключения внешнего порта точки доступа к внешнему порту адаптера. При установке устройства подводки волокна в дом оптический кабель последовательно пропускается через ввод оптического кабеля и вывод оптического кабеля, и оптический кабель пересекает область сращивания, а затем первое волокно оптического кабеля отделяется от части оптического кабеля между входным отверстием оптического кабеля и выходным отверстием оптического кабеля; причем первое волокно сращивается с первым концом второго волокна для подвода в дом, используя точку сращивания; а второй конец второго волокна соединен с внутренним портом адаптера. Внутренний порт точки доступа соединен с первым концом третьего волокна для подвода в дом; первый конец разделителя соединен со вторым концом третьего волокна; второй конец разделителя соединен с первым концом каждого из четвертых волокон для подвода в дом. Каждый из выходных портов соединен со вторым концом каждого из четвертых волокон. Технический результат – упрощение процесса подводки оптического волокна в дом и улучшение скорости предоставления услуги по оптическому волокну для пользователей. 7 з.п. ф-лы, 9 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в модуле оптического кабеля вдоль длины кабеля. В заявленном способе измерения распределения избыточной длины оптического волокна в модуле оптического кабеля предварительно измеряют характеристики обратного рассеяния оптического волокна на двух длинах волн. По данным характеристикам определяют распределения коэффициентов затухания оптического волокна вдоль кабеля α(z, λ), где z - расстояние от ближнего конца по длине кабеля, λ - длина волны, на которой была измерена характеристика обратного рассеяния оптического волокна, затем в каждой точке z по длине кабеля рассчитывают разность между коэффициентами затухания оптического волокна, измеренными на разных длинах волн Δα(z). После чего рассчитывают оценки радиусов изгиба оптического волокна в модуле оптического кабеля вдоль длины кабеля по формуле: R(z)=R0-Δαij(z)/η(λi) (1), где R0 и η(λ) - параметры оптического кабеля, и по распределению радиусов изгиба оптического волокна в модуле оптического кабеля определяют распределение избыточной длины волокна в модуле оптического кабеля вдоль длины кабеля. При этом измерения характеристик обратного рассеяния оптического волокна выполняют при низкой отрицательной температуре после того, как оптический кабель находился при данной температуре некоторый заданный интервал времени, по распределению радиусов изгиба оптического волокна в модуле оптического кабеля определяют распределение избыточной длины оптического волокна в модуле оптического кабеля вдоль длины кабеля EFL(z, Tm) при температуре, при которой были выполнены измерения, после чего определяют распределение избыточной длины оптического волокна в модуле оптического кабеля вдоль длины кабеля при заданной температуре Τ по формуле: EFL(z, T)=EFL(z, Tm)-(T-Tm)⋅ ΔεT (2), где ΔεT - разность коэффициентов линейного расширения материала модуля и кварцевого стекла. Технический результат – снижение погрешности измерений коэффициентов затухания оптического волокна на изгибах и, как следствие, уменьшение погрешности измерений избыточной длины оптического волокна в модуле оптического кабеля по сравнению с прототипом. 1 ил.

Настоящее изобретение относится к волоконно-оптическому кабелю, содержащему композицию наполнителя кабеля, которая содержит: (i) базовое масло, полученное синтезом Фишера-Тропша; и (ii) загущающую систему, которая содержит по меньшей мере один блочный сополимер. Композиция наполнителя кабеля настоящего изобретения обеспечивает усовершенствования реологических характеристик, улучшение свойств при низкой температуре и цветовой устойчивости, а также минимизируется содержание присадок, таких как антиоксиданты и депрессанты температуры текучести, которые необходимо использовать. 9 з.п. ф-лы, 1 ил., 4 табл

Изобретение относится к корпусам для коммуникаций, а более конкретно, к корпусам для телекоммуникаций, включающим в себя зажимы для волоконно-оптических кабелей. Заявленный корпус (10) для телекоммуникаций содержит кабели (46), крышку (20), внутренний каркас (30), каркас (30), удерживающий телекоммуникационное оборудование (32), и уплотнительный блок (40), уплотняющий закрытую крышку (20) по отношению к одному или более кабелям (46), входящим в корпус (10). Каркас (30) ограничивает множество держателей (36) зажимных устройств. Выполнено множество зажимных устройств (60, 160, 260), причем каждое зажимное устройство (60, 160, 260) предназначено для удерживания кабеля, включающего в себя оболочку (48), внутренние оптические волокна (52) и по меньшей мере один внутренний усиливающий элемент (50). Каждое зажимное устройство (60, 160, 260) для кабеля включает в себя зажимное устройство (64, 164, 264) для оболочки, выполненное с возможностью перемещения по отношению к каркасу, включающее в себя хомут (68), выполненный с возможностью крепления вокруг оболочки, и зажимное устройство (80, 180, 280) для усиливающего элемента, выполненное с возможностью перемещения по отношению к каркасу. Хомут (68) проходит вокруг оболочки (48) и выполнен регулируемым для соответствия различным диаметрам оболочки. Зажимное устройство (80, 180, 280) для усиливающего элемента выполнено с возможностью установки в различные положения по отношению к зажимному устройству (64, 164, 264) для оболочки для учета изменений относительного положения усиливающего элемента (50) по отношению к зажимному устройству для оболочки. Зажимное устройство (60, 160, 260) выполнено с возможностью перемещения по отношению к каркасу (30), при этом кабель (46) выполнен с возможностью перемещения в требуемое положение по отношению к уплотнительному блоку (40) так, чтобы снизить вероятность протечки при центральном расположении относительно отверстия для кабеля через уплотнительный блок. Технический результат – упрощение конструкции, за счет чего обеспечивается возможность зажимания оболочек различных размеров и/или усиливающих элементов. 8 н. и 18 з.п. ф-лы, 61 ил.

Изобретение относится к области электротехники. Согласно способу увеличения срока службы оптического кабеля строительную длину оптического кабеля подвергают воздействию температурных циклов, для чего барабан со строительной длиной оптического кабеля помещают в климатическую камеру, в которой после этого выполняют несколько температурных циклов, причем сначала в начале каждого цикла в климатической камере устанавливают заданную положительную температуру, затем в течение цикла последовательно понижают температуру в климатической камере до заданных отрицательных значений, затем последовательно повышают температуру в климатической камере до заданных положительных значений, после чего завершают цикл, при этом переход от одного заданного значения температуры к другому осуществляют в течение заданного интервала времени и каждое заданное значение температуры устанавливают в климатической камере на заданный интервал времени. Изобретение обеспечивает увеличение срока службы оптического кабеля модульной конструкции. 2 ил.

Изобретение относится к области электротехники. Согласно способу увеличения срока службы оптического кабеля строительную длину оптического кабеля подвергают воздействию температурных циклов, для чего барабан со строительной длиной оптического кабеля помещают в климатическую камеру, в которой после этого выполняют несколько температурных циклов, причем сначала в начале каждого цикла в климатической камере устанавливают заданную положительную температуру, затем в течение цикла последовательно понижают температуру в климатической камере до заданных отрицательных значений, затем последовательно повышают температуру в климатической камере до заданных положительных значений, после чего завершают цикл, при этом переход от одного заданного значения температуры к другому осуществляют в течение заданного интервала времени и каждое заданное значение температуры устанавливают в климатической камере на заданный интервал времени. Изобретение обеспечивает увеличение срока службы оптического кабеля модульной конструкции. 2 ил.

Настоящее изобретение относится к производству волоконно-оптических кабелей для внутреннего и наружного применения. Способ скручивания арамидной нити вокруг непрерывного сердечника, в котором сердечник подают на стадию скручивания в устройство скручивания, которое содержит, по меньшей мере, одну бобину нити, где в процессе работы бобина вращается вокруг собственной оси, и бобина вращается вокруг сердечника, и разматывание нити с бобины вокруг сердечника происходит с обеспечением сердечника, окруженного нитью, где нить представляет собой непрерывную арамидную нить, снабженную 0,05-0,95 мас.% по отношению к массе арамида отделки, содержащей фосфорорганическое соединение, где фосфорорганическим соединением является соединение формулы Х1Х2Х3Р=О, в которой Х1, Х2 и Х3 независимо выбраны из Y1-, Y1-O- и М-О, где Y1 представляет собой разветвленный или неразветвленный С1-С20 алкил, арил или алкенил с М, выбранным из Li, Na, K или аммония, при условии, что, по меньшей мере, один из Х1, Х2 или Х3 выбран из Y1- или Y1-O-, где различные типы Y1 могут быть одинаковыми или различными. В одном варианте непрерывная арамидная нить обеспечивается 0,10-0,50 мас.% отделки. Было установлено, что использование относительно незначительного количества отделки, содержащей отдельное фосфорорганическое соединение, дает в результате улучшенную стабильность упаковки на вращающемся сервере со скручиванием отобранной нити. Техническим результатом изобретения является обеспечение высокоскоростного скручивания арамидной нити вокруг непрерывного сердечника. 13 з.п. ф-лы, 2 ил., 9 табл., 5 пр.

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в оптическом модуле оптического кабеля. Согласно способу измерения избыточной длины оптического волокна в модульной трубке оптического кабеля характеристики обратного релеевского рассеяния оптического волокна оптического кабеля модульной конструкции измеряют по крайней мере при двух значениях температуры среды, окружающей кабель, в том числе, при низкой отрицательной температуре. По данным характеристикам определяют оценки избыточной длины оптического волокна в модульной трубке оптического кабеля на регулярных участках при низкой отрицательной температуре, при этом характеристики обратного релеевского рассеяния оптического волокна оптического кабеля модульной конструкции измеряют при положительной и при низкой отрицательной температуре среды, окружающей кабель, а значение избыточной длины оптического волокна в модульной трубке оптического кабеля на регулярном участке при низкой отрицательной температуре, при которой были выполнены измерения, рассчитывают по формуле: ,где α(Т0) - коэффициент затухания оптического волокна, определенный для регулярного участка по характеристике обратного релеевского рассеяния, измеренной при положительной температуре; α(Ti) - коэффициент затухания оптического волокна, определенный для регулярного участка по характеристике обратного релеевского рассеяния, измеренной при i-й низкой отрицательной температуре; В - параметр, постоянный для заданной конструкции кабеля на длине волны, на которой были выполнены измерения. Технический результат - расширение области применения и уменьшение погрешности измерения избыточной длины оптического волокна в модульной трубке оптического кабеля. 1 ил.
Наверх