Способ резки хрупких материалов

Изобретение относится к способам резки (термораскалывания) хрупких материалов, таких как пластины из любого типа стекла, всех типов керамики, а также полупроводниковых материалов, и может использоваться в автомобилестроении для изготовления стекол и зеркал, в электронной промышленности, а также в других областях техники. Способ включает нагрев поверхности материала по линии реза с помощью лазерного пучка, создание несквозного надреза материала по линии реза, дополнительное воздействие на поверхность материала в зоне нанесения надреза упругими волнами, охлаждение зоны нагрева поверхности материала с помощью хладагента, при этом упругими волнами воздействуют на поверхность материала в зоне действия хладагента. Дополнительное воздействие на поверхность материала осуществляют не менее чем двумя источниками упругих волн, которые располагают с противоположных боковых сторон материала поперек линии реза, при этом получают упругие волны, амплитуду и частоту которых выбирают из условия формирования в материале зоны стоячей упругой волны с периодическим изменением механических напряжений, совмещенной с зоной нагрева, для углубления надреза на заданную глубину или сквозной резки. Зону нагрева формируют импульсным лазерным пучком, а зоны стоячей упругой волны совмещают со сформированной зоной нагрева, причем максимальную интенсивность излучения лазера совмещают с временем максимального разряжения механических напряжений. Дополнительно можно сформировать несколько зон нагрева импульсным лазерным пучком для создания дополнительных линий реза. Технический результат заключается в повышении скорости резки материалов и увеличении толщины разрезаемого материала. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к способам резки (термораскалывания) хрупких материалов (в дальнейшем - материал, пластина), таких как любой тип стекла, различные монокристаллы, все типы керамики, а также полупроводниковые материалы и может быть использованно в автомобилестроении, в электронной промышленности и в других областях техники для высокоточной и высокопроизводительной резки широкого класса материалов.

Известен способ резки хрупких неметаллических материалов (патент РФ №2024441, МПК C03B 33/02, дата приоритета 02.04.1992 г., дата публикации 15.12.1994), включающий нагрев материала на линии реза пучком лазера, создание в зоне нагрева локального напряжения в обрабатываемом материале, совместное перемещение зоны нагрева и напряжения с образованием в материале несквозной разделяющей трещины. При резке материалов этим способом необходима дополнительная операция механического скрайбирования алмазной пирамидкой для создания первоначального микродефекта. Недостатками способа являются малые глубина и скорость резки, необходимость дополнительной операции скрайбирования.

Наиболее близким по технической сущности к предлагаемому изобретению является способ резки неметаллических хрупких материалов (патент РФ №2238918, МПК С03B 33/09, дата приоритета 07.06.2002 г., дата публикации 27.10.2004 г.), который принят в качестве прототипа. Способ включает в себя нагрев поверхности материала по линии реза с помощью лазерного пучка, создание несквозного надреза материала по линии реза трещины, дополнительное воздействие на поверхность материала, которое осуществляют в зоне нанесения надреза, по крайней мере, одним источником упругих волн, в качестве которого используют импульсное лазерное излучение, для которого материал непрозрачен, при этом амплитуду и частоту упругих волн выбирают из условия углубления надреза на заданную глубину или сквозной резки и охлаждения зоны нагрева поверхности материала с помощью хладагента, при этом упругие волны воздействуют в зоне воздействия хладагента. Одновременно на противоположную поверхность материала воздействуют упругой волной в зоне, расположенной между зонами воздействия двух других упругих волн, направленных со стороны воздействия лазерного пучка.

Недостатками этого способа являются малые толщина разрезаемых материалов, низкая скорость их резки, а также возможность отклонения направления линии реза от заданной траектории, особенно на начальных и конечных участках поверхности разрезаемого материала, что приводит к появлению брака. Эти недостатки являются следствием топологии локализации зон упругих напряжений в разрезаемом материале. При воздействии лазерного импульсного излучения на материал, непрозрачный для его длины волны, возникают акустические (упругие) волны соизмеримые с площадью взаимодействия. Обычно диаметр пучка импульсного лазера составляет единицы миллиметра, причем возникающие упругие волны имеют сферический фронт при распространении. При использовании двух лазерных источников, учитывая их поперечное распределение, амплитуду и частоту которых подберут для образования максимальных напряжений в зоне разреза, эта зона будет составлять доли миллиметра как по протяженности, так и по площади, что ограничит скорость реза и толщину разрезаемого материала. При этом на краях зоны созданных упругих напряжений возникает расширение зоны локализации этих напряжений и снижение их амплитуды, что связано с характером интерференции упругих волн, взаимодействующих не ортогонально и имеющих градиент поперечного распределения, что может приводить к отклонению направления линии реза от заданной траектории.

Решается задача увеличения толщины разрезаемого материала, повышения скорости и качества резки материала.

Поставленная задача решается тем, что в способе резки хрупких материалов включающем нагрев поверхности материала по линии реза с помощью лазерного пучка, осуществление надреза материала по линии реза, дополнительное воздействие на материал источниками упругих волн с выбором значений амплитуды и частоты этих потоков, дополнительно осуществляется перемещение материала относительно зоны нагрева, кроме этого не менее двух источников упругих волн располагаются с противоположных боковых сторон разрезаемого материала поперек линии реза, причем этими источниками создают две упругие волны, движущиеся навстречу друг другу, и формируют в материале зону стоячей упругой волны, совмещая максимальную амплитуду механических напряжений с зоной нагрева.

Кроме того, решение задачи обеспечивается тем, что дополнительно формируют несколько зон нагрева лазерным пучком для создания дополнительных линий реза, изменяют значения параметров частоты и амплитуды источников упругих волн и формируют дополнительно одну или несколько неподвижных зон с периодическими изменениями механических напряжений, по количеству равными числу зон нагрева, и совмещают их с сформированными зонами нагрева лазерным пучком.

Также решение задачи обеспечивается тем, что с противоположных сторон материала вдоль линии реза дополнительно вводят один или несколько источников упругих волн и располагают их линейно на каждой из боковых сторон плоскости материала.

Особенность предлагаемого способа заключается в следующем.

1) Для повышения глубины трещины и, соответственно, толщины разрезаемых материалов и качества резки, в данном изобретении предлагается, помимо зоны нагрева, создать зону с периодическими изменениями механических напряжений на основе эффекта стоячей волны, образующейся в результате взаимодействия движущихся навстречу друг другу потоков упругих волн. Эффект стоячей волны характерен появлением чередующихся т.н. узлов и пучностей, т.е. зон с нулевой и максимальной амплитудой механических напряжений: в виде сжатия-разрежения (в материале).

Эти две зоны пространственно совмещают с зоной нагрева, что увеличивает уровень локальных суммарных напряжений в материале, что в итоге и позволяет повысить глубину трещины и сделать ее единственной, повысив качество резки, одновременно приводя к повышению глубины и скорости резки.

Формирование двух и более зон механических напряжений, совмещенных с зонами нагрева разрезаемого материала, позволяет также осуществлять качественную резку по двум и более линиям реза, т.е. «в несколько полос». Это дает возможность повысить производительность резки материалов.

Сущность способа поясняется чертежом, где на фиг. представлена схема реализации предлагаемого способа. На поверхности разрезаемого материала 1 лазерным излучением 2 создается зона нагрева, в которую подается хладагент 3. У боковых поверхностей разрезаемого материала 1 находятся источники упругих волн 4, распространяющихся в материале 1 навстречу друг другу. В результате взаимодействия этих волн, имеющих одинаковую частоту, возникает стоячая волна. Предварительные расчеты частотных и пространственных параметров, определяющих работу устройства на фиг. показывают следующее. При скорости движения упругих волн в стекле v≈5000 м/с и резе посередине исходной стеклянной заготовки шириной ≈40 мм с шириной получаемых полос ≈20 мм значение частоты излучения возбуждаемых упругих волн составит f=250 кГц, что легко реализуемо промышленно выпускаемыми ультразвуковыми источниками упругих волн. В случае резки материала на две и более полос создаются с помощью лазерного излучения две и более зон нагрева, а частота упругих волн выбирается такой, чтобы при распространении их навстречу друг другу образовывались две или более зоны стоячей волны, совмещенные в материале с зонами нагрева. При использовании в качестве источника нагрева импульсного частотного лазера предлагается совместить время воздействия максимальной интенсивности излучения с временем фазы механического разряжения в зоне стоячей волны. Это увеличит производительность (или потенциальную толщину разрезаемого материала) резки материала при заданных величинах энергетических воздействий на материал (световых и акустических).

Ниже приведен конкретный пример выполнения предлагаемого способа. В качестве материала для резки использовалась пластина из стекла марки К8 толщиной 7 мм. Ортогонально к линии реза по краям пластины располагались ультразвуковые щелевые источники упругих волн марки ПЗ11Щ производства ООО «АЛТЕС» (Новосибирск). Мощность упругих волн в стекле составляла 1,5 Вт при частоте 250 кГц. Ширина пластины 40 мм, длина 300 мм. Для создания несквозного реза и зоны нагрева использовался инфракрасный импульсный лазер с длиной волны 10,6 мкм, средней мощности 100 Вт и частотой следования импульсов 10 кГц. Излучение лазера с помощью цилиндрической линзы из селенида цинка фокусировалось на поверхность разрезаемой пластины в пятно в виде эллипса с осями 1и 5 мм. В зону реза подавался хладагент. Разрезка пластины проводилась со скоростью 340 мм в секунду. Качество реза получалось хорошим, при этом не отмечалось случаев ухода от прямого реза на начальном и конечном участках разрезаемого материала.

Предлагаемое изобретение позволяет повысить скорость резки материалов и увеличить возможную толщину разрезаемого материала. При этом исключаются искривления, отклонение от заданной траектории реза и образование дефектов на начальных и конечных участках и, тем самым, повышается качество резки и уменьшается объем брака.

1. Способ резки хрупких материалов, включающий нагрев поверхности материала по линии реза с помощью лазерного пучка, создание несквозного надреза материала по линии реза, дополнительное воздействие на поверхность материала в зоне нанесения надреза упругими волнами, охлаждение зоны нагрева поверхности материала с помощью хладагента, при этом упругими волнами воздействуют на поверхность материала в зоне действия хладагента, отличающийся тем, что дополнительное воздействие на поверхность материала осуществляют не менее чем двумя источниками упругих волн, которые располагают с противоположных боковых сторон материала поперек линии реза, при этом получают упругие волны, амплитуду и частоту которых выбирают из условия формирования в материале зоны стоячей упругой волны с периодическим изменением механических напряжений, совмещенной с зоной нагрева, для углубления надреза на заданную глубину или сквозной резки.

2. Способ по п. 1, отличающийся тем, что зону нагрева формируют импульсным лазерным пучком, а зоны стоячей упругой волны совмещают со сформированными лазерным пучком зоной нагрева, причем максимальную интенсивность излучения лазера совмещают с временем максимального разряжения механических напряжений.

3. Способ по п. 1, отличающийся тем, что дополнительно формируют несколько зон нагрева импульсным лазерным пучком для создания дополнительных линий реза, а зоны стоячей упругой волны совмещают со сформированными лазерными пучками зонами нагрева.



 

Похожие патенты:

Изобретение предназначено для разделения стекла и образования на нём скосов. При разделении стекла с помощью лазерного излучения на заготовки, изготовленные из стекла, сфокусированный лазерный луч (1) направляют на стекло, подлежащее разделению, и при образовании по меньшей мере двух заготовок стекло разделяется, при этом в области разреза расположены боковые поверхности (15).

Изобретение относится к способам резки хрупких неметаллических материалов, в частности сапфировых пластин импульсным лазерным излучением с длиной волны 1064 нм. Изобретение может быть использовано в различных областях техники и технологий для безотходной и высокоточной резки (термораскалывания) сапфировых пластин.

Изобретение относится к способу лазерной резки хрупких прозрачных неметаллических материалов, например стекла, и может быть использовано в стекольной, авиационной, автомобильной и других отраслях промышленности.

Изобретение относится к способам обработки стеклоизделий, в частности к способам притупления острых кромок стеклоизделий. Способ включает обработку кромки стекла сфокусированным лазерным лучом при относительном перемещении стеклоизделия и/или луча.

Группа изобретений касается структурного блока, имеющего в качестве линии инициирования разлома лазерный трек, который состоит из углублений, полученных от лазерного луча, для подготовки последующего разделения этого структурного блока на отдельные конструктивные элементы.

Изобретение относится к способам резки хрупких неметаллических материалов, в частности кварцевого стекла и других хрупких термостойких материалов. Техническим результатом настоящего изобретения является расширение возможностей способа резки хрупких неметаллических материалов за счет осуществления резки кварцевого стекла и других хрупких термостойких материалов методом ЛУТ.

Изобретение относится к способу лазерного термораскалывания хрупких неметаллических материалов, преимущественно стекла. .

Изобретение относится к способам лазерного термораскалывания кристаллического кварца. .

Изобретение относится к способу индуцированного лазером термического разделения хрупкого материала. .

Изобретение относится к способам обработки материала, в частности к способам притупления острых кромок изделий из стекла и других хрупких неметаллических материалов.

Изобретение относится к области лучевой сварки и может быть использовано в производстве панельных стрингерных конструкций. Способ включает установку стрингера на бурт, выполненный на обшивке по месту расположения стрингера, и его прихватку, позиционирование и прижим стрингера в зоне сварки посредством головки с направляющими роликами, сварку стрингера с буртом обшивки одновременно двумя лучами, направленными с двух противоположных сторон стрингера и перемещаемыми вдоль сварного стыка стрингера.

Изобретение относится к электронно-лучевой пушке, которая содержит охлаждаемый анодный узел со втулкой, охлаждаемый катодный узел со вставкой для ввода высокого напряжения, штуцер подачи водорода, фокусирующую электромагнитную линзу, отклоняющую систему.

Изобретение относится к области изготовления ротора турбины газотурбинного двигателя, состоящего из двух и более деталей, изготовленных преимущественно из никелевого жаропрочного сплава с применением электронно-лучевой сварки.

Изобретение относится к области машиностроения, в частности к способу электронно-лучевой сварки немагнитных металлов и сплавов в вакууме. Способ включает несквозное проплавление стыка (3) свариваемых деталей (4) электронным лучом (2) и создание постоянного магнитного поля внутри свариваемых деталей, величина которого максимальна в зоне корня шва.

Способ изготовления зубца (18) вил для погрузочно-транспортных устройств с, по существу, горизонтальной в рабочем положении лопастью (5) вил и прилегающей к ней через изгиб вил, по существу, вертикальной спинкой (20) вил, которая снабжена присоединительными элементами (2, 3) для транспортных устройств, причем зубец вил состоит из нескольких соединенных друг с другом частей, заключается в том, что, по крайней мере, некоторое количество частей сваривается друг с другом.

Изобретение относится к способу изготовления узла, полученного путем соединения первого конструктивного компонента (1) со вторым конструктивным компонентом. Подготавливают первый конструктивный компонент (1) путем формирования группы удлиненных выступов (3) на его соединительной поверхности (2).

Способ электронно-лучевой сварки разнородных металлов или сплавов предназначен для изготовления сварных конструкций больших толщин. Способ включает направление электронного пучка на свариваемый стык с лицевой его стороны.

Изобретение относится к области корпусного судостроения и может быть применено при соединении сваркой деталей большой толщины. Способ формирования стыка соединяемых деталей большой толщины из титановых сплавов при электронно-лучевой сварке включает образование подкладки из припуска одной из деталей.
Изобретение относится к области электронно-лучевой сварки и может найти применение для сварки стыковых соединений толстолистовых конструкций в различных отраслях машиностроения.

Изобретение относится к способу электроннолучевой сварки и позволяет улучшить качество сварных соединений. Способ включает приложение к плоскости стыка свариваемых деталей локального магнитного поля, направление электронного луча на стык с образованием канала проплавления и электроннолучевую сварку деталей в нижнем положении с несквозным проплавлением.

Изобретение относится к способу электронно-лучевой сварки плиты с оребренной поверхностью и может быть использовано в различных отраслях машиностроения. Сварку осуществляют со стороны плиты. Предварительно на внешнюю поверхность плиты наносят места сварки, совпадающие с местами сварки на оребренной поверхности. В местах сварки выполняют сквозные одноступенчатые отверстия с уменьшением диаметра по глубине плиты. Совмещают свариваемые детали. В отверстия, выполненные в плите, устанавливают штифты до контакта с ребром. Высота штифта превышает глубину внутреннего отверстия в плите. После чего производят точечную сварку в местах установки штифтов. Высота выступания штифта в наружное отверстие составляет не менее половины его глубины. Плита и оребренная поверхность могут быть выполнены из тонколистового титанового сплава. Изобретение обеспечивает минимальные значения послесварочных деформаций, высокую точность сборки свариваемых деталей, исключающую их взаимное смещение, и возможность получения качественных сварных соединений в различных пространственных положениях. 2 з.п. ф-лы, 1ил., 1 пр.
Наверх