Электролизер для производства алюминия

Изобретение относится к электролизеру для производства алюминия с биполярными электродами. Электролизер содержит корпус с боковой и подовой футеровкой, концевые аноды и катоды, размещенные на противоположных сторонах корпуса электролизера, и вертикально установленные между ними нерасходуемые биполярные электроды, при этом нерасходуемые биполярные электроды, образующие модули электролиза, установлены вдоль оси электролизера рядами, между которыми расположены модули питания глиноземом и сбора алюминия. Боковая и подовая футеровка электролизера выполнена из глиноземсодержащего материала и покрыта слоем глубокопрокаленного глинозема, а модуль питания глиноземом отделен от модуля сбора алюминия плитой из огнеупорного, неэлектропроводного материала, например карбида кремния или нитрида алюминия. Биполярные электроды могут быть установлены под углом к вертикали не более 10°. Торцевые грани биполярных электродов со стороны модуля питания глиноземом защищены покрытием из огнеупорного, неэлектропроводного материала, например, карбида кремния или нитрида алюминия. Обеспечивается улучшение снабжения глиноземом биполярных электродов, снижение скорости растворения анодной части электродов и трудовых затрат на обслуживание электролизера, обеспечение устойчивой и продолжительной эксплуатации биполярных электродов и производство алюминия коммерческой чистоты (не менее 99,5% Al). 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к конструкции электролизера для производства алюминия с биполярными электродами.

Известна конструкция электролизера для производства алюминия, авторское свидетельство СССР №199781, в котором углеродистые биполярные электроды подвешены вертикально инертными к электролиту пластинами к электрически изолированным от корпуса электролизера деталям.

Недостатком этой конструкции электролизера является то, что выделяющийся при электролизе глинозема кислород взаимодействует с углеродом анодной поверхности биполярного электрода с образованием парниковых газов. Расход углерода составляет около 500 кг/т алюминия, а выделение парниковых газов около 1,5 т на тонну алюминия. Вследствие сгорания угольного анода межэлектродное расстояние увеличивается и его необходимо периодически регулировать, а при полном сгорании анодной поверхности электрода требуется замена электрода.

Наиболее близким к заявленному изобретению является конструкция электролизера для производства алюминия, содержащая концевые анод и катод, расположенные на противоположных сторонах электролизера и вертикально установленные между ними нерасходуемые биполярные электроды, анодная и катодная части которых соединены вверху и внизу рамой из огнеупорного неэлектропроводного материала, а с боковых сторон - затвердевшим электролитом (настылью) ванны (US Pat. 3930967). Эта конструкция электролизера принята за прототип.

Известная конструкция электролизера позволяет увеличить рабочий ток и производительность электролизера по сравнению с существующими монополярными электролизерами Эру - Холла, сократить электрические потери во внешней цепи. Однако вследствие того, что в этой конструкции биполярные электроды перекрывают все сечение ванны, между электродами образуется серия закрытых, технологически не связанных друг с другом ячеек. В каждой ячейке одновременно протекают процессы электролиза, растворения глинозема и накопления алюминия, требующие выполнения соответствующих технологических операций (питание глиноземом, выливку алюминия, удаление глиноземных осадков и др), что сопряжено с большими затратами труда. Более того, при расстоянии 3-5 см между электродами практически невозможно обеспечить поступление необходимого для электролиза количества глинозема и его однородное распределение в каждой ячейке в отдельности. Недостача глинозема и неоднородное его распределение приведет к ускоренному растворению анодной части биполярных электродов в ячейках с низкой концентрацией глинозема («катастрофической коррозии»), к загрязнению алюминия примесями и к выходу электролизера из строя. С другой стороны, избыток глинозема в ячейках между электродами приводит к появлению глиноземных осадков, нарушающих распределение тока и вызывающих МГД-возмущения (колебания) поверхности жидкого алюминия в ячейках между электродами. Нарушение распределения тока и колебания поверхности алюминия приведет к перегрузкам отдельных электродов и выходу их из строя, а наличие жидкого алюминия в ячейках приведет к локальным утечкам тока мимо биполярных электродов и потерям электрической мощности. По этим причинам известная конструкция электролизера, несмотря на все преимущества применения биполярных электродов по сравнению с монополярными, не нашла практического использования до настоящего времени.

В основу изобретения положена задача, заключающаяся в создании конструкции электролизера для производства алюминия, исключающей недостатки прототипа и обеспечивающей устойчивую и продолжительную эксплуатацию электролизера с биполярными электродами.

Техническим результатом является улучшение снабжения глиноземом биполярных электродов, обеспечивающего снижение скорости растворения анодной части электродов, сокращение трудовых затрат на обслуживание электролизера и исключающее отрицательное влияние глиноземных осадков и жидкого алюминия на процесс электролиза.

Достижение вышеуказанного технического результата обеспечивается тем, что в конструкции электролизера для производства алюминия, снабженной боковой и подовой футеровкой, содержащей концевые аноды и катоды, размещенные на противоположных сторонах электролизера и вертикально установленные между ними нерасходуемые биполярные электроды, нерасходуемые биполярные электроды, образующие модули электролиза, установлены вдоль оси электролизера рядами, между которыми расположены модули питания ячеек глиноземом и сбора алюминия.

Изобретение дополняют частные отличительные признаки, направленные на достижение поставленной цели.

Боковая и подовая футеровка электролизера выполнена из глиноземсодержащего материала и покрыта слоем глубокопрокаленного глинозема, а модуль питания глиноземом расположен над модулем сбора алюминия и отделен от него плитой из огнеупорного, неэлектропроводного материала, например карбида кремния или нитрида алюминия. Биполярные электроды могут быть установлены с наклоном не более 10° к вертикали с опорой в углублениях бортовой и подовой футеровки.

Со стороны модуля питания глиноземом биполярные электроды защищены покрытием из огнеупорного, неэлектропроводного материала.

Расположение нерасходуемых биполярных электродов рядами вдоль оси электролизера позволяет выделить в нем три модуля, в каждом из которых протекает только один процесс: в ячейках между электродами - электролиз глинозема, между рядами электродов над плитой перекрытия - растворение и подача (питание) глинозема в ячейки электролиза, между рядами под перекрытием - сбор и накопление алюминия. Расположение модуля питания глиноземом между рядами электродов создает оптимальные условия для его растворения до концентрации насыщения электролита (температура на 10-15 град выше, чем возле бортов), и его доставки одновременно на оба ряда электродов, во все ячейки электролизера известными установками непрерывного питания глиноземом. При этом загрузка глинозема в количестве, большем, чем требуется для насыщения, в том числе с образованием осадков на плите перекрытия, не повлияет на распределение тока в электродах, так как осадки выделяются в модуле питания глиноземом, через который ток не проходит. Расположение модуля сбора алюминия под модулем питания глиноземом сделает электролизер более компактным и исключит возникновение МГД - воздействия на жидкий алюминий и утечки тока, так как через модуль сбора алюминия ток электролиза тоже не проходит. Выполнение футеровки из глиноземсодержащего материала обеспечит однородность распределения глинозема во всех ячейках электролизера, а поддержание концентрации насыщения электролита глиноземом снизит скорость растворения (расход) анодной части биполярных электродов и обеспечит устойчивую и продолжительную их эксплуатацию и чистоту производимого алюминия. При этом, поскольку осадки глинозема не выделяются в ячейках между электродами, исключается необходимость их чистки от осадков.

Установка биполярных электродов с наклоном не более 10° к вертикали обеспечивает максимально допустимый угол наклона поверхности электрода, обеспечивающий высокую скорость схода газовых пузырьков и исключающий прямой контакт пузырьков кислорода с анода и капель жидкого алюминия с катода соседнего электрода при расстоянии между электродами меньше 5 см.

Биполярные электроды погружены тремя гранями в углубления в глиноземсодержащей футеровке и в засыпку (сверху), а со стороны модуля питания глинозема торцы электродов защищены покрытием из огнеупорного, неэлектропроводного материала. Защита торцевых граней биполярных электродов засыпкой глинозема сверху и глиноземсодержащей футеровкой снизу и сбоку электрода исключает необходимость дополнительной электрической изоляции торцевых граней электрода специальной рамой с целью уменьшения утечек тока и разрушения граней электрода. Ячейки между биполярными электродами открыты для поступления глинозема из модуля питания и не требуют дополнительных трудозатрат на технологическое обслуживание каждой ячейки в отдельности.

Сущность изобретения поясняется эскизом электролизера для производства алюминия (Фиг. 1). Электролизер для производства алюминия содержит концевые аноды 1 и катоды 2, подключенные к токоподводящим шинам 3, два ряда биполярных электродов 4,образующих модули электролиза глинозема. Между рядами биполярных электродов расположен модуль питания глинозема 5, отделенный плитой перекрытия 6 от модуля сбора алюминия 7. Биполярные электроды 4 установлены вертикально в вырезы (пазы) фланцевого листа бортовой футеровки изолированно от металлоконструкций электролизера и частично погружены в углубления глиноземной футеровки катода 8. Глинозем загружается в расплав установкой питания глинозема 9, растворяется и подается в ячейки 10 между биполярными электродами. Наличие глинозема 11 в виде осадков в расплаве модуля питания на плите перекрытия гарантирует устойчивое поддержание концентрации насыщения электролита глиноземом и однородное его распределение в ячейках между биполярными электродами.

Пуск и эксплуатация электролизера осуществляется следующим образом. После установки и закрепления биполярных электродов (верхнюю часть в паз фланцевого листа, изолированно от металлоконструкций катодного кожуха, низ и боковую часть в углубления глиноземной футеровки катода), монтажа питателя глинозема, подину, бортовую футеровку и биполярные электроды нагревают газовыми/мазутными горелками до температуры 750-850°С. После достижения этой температуры в электролизер заливают жидкий электролит известного состава, используемого в промышленных монополярных электролизерах Эру-Холла с известными добавками для снижения температуры ликвидуса и увеличения растворимости глинозема, загружают на поверхность расплава глинозем и включают электролизер под нагрузку. После установления стабильного рабочего напряжения 3,8-4,1 В включают систему питания глиноземом. Управление питанием глинозема осуществляют по времени его потребления, исходя из расчета по фактической силе тока и выходу по току 95-100%. Дополнительно контролируют наличие осадка на плите перекрытия. Выделяющийся на катодной поверхности электрода алюминий стекает по наклонным желобкам между биполярными электродами в модуль сбора алюминия, из которого его выливают вакуумным ковшом. Укрытие верха электролизера криолит-глиноземной шихтой и поддержание уровня и состава расплава осуществляют известным способом для технологии Эру - Холла.

Предлагаемая конструкция электролизера для производства алюминия обеспечит за счет выделения модулей электролиза, питания глиноземом и сбора алюминия устойчивый электролиз с минимальными трудовыми и энергетическими затратами, исключающий отрицательное влияние глиноземных осадков и жидкого алюминия. Увеличится продолжительность эксплуатации электролизера с биполярными электродами и чистота алюминия (не менее 99,5% Al), а также будут получены все преимущества промышленного использования биполярных электродов: исключение расхода углерода и выбросов парниковых газов, увеличение единичной мощности и производительности электролизера по сравнению с монополярной конструкцией. Экономический эффект для завода производительностью 500 тыс. т алюминия в год составит более 100 млн долл. США без учета экономии затрат за счет полного исключения выбросов парниковых газов.

1. Электролизер для производства алюминия, содержащий корпус с боковой и подовой футеровкой, концевые аноды и катоды, размещенные на противоположных сторонах корпуса электролизера, нерасходуемые биполярные электроды, образующие модули, вертикально установленные между ними, и модули питания глиноземом и модуль сбора алюминия, отличающийся тем, что нерасходуемые биполярные электроды установлены вдоль оси электролизера рядами, между которыми расположены модули питания глиноземом и сбора алюминия.

2. Электролизер по п. 1, отличающийся тем, что боковая и подовая футеровка корпуса электролизера выполнена из глиноземсодержащего материала и покрыта слоем глубокопрокаленного глинозема, а модуль питания глиноземом отделен от модуля сбора алюминия плитой из огнеупорного, неэлектропроводного материала, например карбида кремния или нитрида алюминия.

3. Электролизер по п. 1, отличающийся тем, что биполярные электроды установлены под углом к вертикали не более 10°.

4. Электролизер по п. 1, отличающийся тем, что торцевые грани биполярных электродов со стороны модуля питания глиноземом защищены покрытием из огнеупорного, неэлектропроводного материала, например карбида кремния или нитрида алюминия.



 

Похожие патенты:

Изобретение относится к способу оптимизации токоподвода к аноду электролизера при электролитическом получении алюминия в электролизерах с самообжигающимся анодом и верхним токоподводом.

Изобретение относится к электролитическому производству алюминия, а именно к способу формирования самообжигающегося анода алюминиевого электролизера с верхним токоподводом.

Изобретение относится к конструкции анодного штыря электролизеров с самообжигающимся анодом и верхним токоподводом при электролитическом производстве алюминия.

Изобретение относится к области цветной металлургии, а именно к электролитическому получению алюминия с применением инертных анодов из литых композиционных материалов с коррозионно-стойким покрытием анода.

Изобретение относится к способу изготовления анодной массы для анодов алюминиевых электролизеров. Способ включает приготовление анодной массы смешением зерновых фракций углеродного наполнителя в виде кокса с предварительно подготовленной связующей матрицей (СМ) на основе пылевой фракции кокса и пека в качестве связующего и регулировании гранулометрического состава (СМ) относительно заданного значения логарифма вязкости связующей матрицы корректировкой соотношения пылевых фракций при определении вязкости связующей матрицы в автоматическом режиме.

Изобретение относится к производству алюминия электролитическим способом на электролизерах с угольными и малорасходуемыми анодами. Способ снижения анодного перенапряжения включает подачу на анод импульсов тока высокой частоты с использованием генератора высокочастотных импульсов переменного тока и варьированием частоты импульсов тока от 104 до 108 Гц.

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия. Технический результат - повышение точности контроля токораспределения.

Изобретение относится к аноду для электролитического получения алюминия электролизом фторидных расплавов при температуре менее 930°C. Анод содержит основу, выполненную из сплава, содержащего в мас.%: железо 65-96, медь до 35, никель до 20 и одну или несколько добавок молибдена, марганца, титана, тантала, вольфрама, ванадия, циркония, ниобия, хрома, алюминия (до 1), кобальта, церия, иттрия, кремния и углерода в сумме до 5, и защитный оксидный слой, состоящий главным образом из оксидов железа и комплексных оксидов железа, меди и никеля.

Изобретение относится к анодному блоку из углерода для предварительно обожженного анода электролизера по производству алюминия. Анодный блок имеет верхнюю сторону, нижнюю сторону, размещаемую напротив верхней стороны катода, четыре боковые стороны и по меньшей мере одну канавку, выходящую на по меньшей мере одну из боковых сторон, на которой упомянутая канавка имеет максимальную длину Lmax в плоскости, параллельной нижней стороне, при этом упомянутая канавка не выходит на упомянутые нижнюю или верхнюю стороны или выходит на упомянутые верхнюю или нижнюю стороны на длину L0, меньшую половины максимальной длины Lmax.

Изобретение относится к электролизеру с обожженными анодами для производства алюминия. Электролизер содержит угольные аноды с вертикальными отверстиями и катодное устройство со слоем жидкого алюминия на подине, при этом внутренняя поверхность каждого отверстия анода защищена корундовой трубкой, высота которой превышает высоту анода, отношение этих высот удовлетворяет условию h:H=(1,05÷l,15):1, где: h - высота корундовой трубки; H - высота анода и количество отверстий в аноде составляет не менее одного.

Изобретение относится к способу замены анодов при электролизе расплава алюминия в алюминиевом электролизере с предварительно обожженными анодами с регенерацией тепла за счет предварительного подогрева анода. Способ включает подогрев новых анодов перед установкой его в электролизер, которые перед заменой предварительно устанавливают под укрытие электролизера, в непосредственной близи рабочих анодов в послепусковой период работы электролизера. Новые аноды выдерживают под укрытием в течение 8-48 ч, извлекают анодный остаток рабочего анода, подогретый анод устанавливают в электролизер, а на место подогретого анода устанавливают новый анод. Обеспечивается улучшение технологии электролиза. 3 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к анодному блоку электролизера с обожженными анодами для производства алюминия. Анодный блок содержит на нижней рабочей поверхности пазы и вертикальные газоотводящие трубки. Высота пазов равна 0,15-0,2 высоты анодного блока, высота вертикальных газоотводящих трубок равна 0,9-1,0 высоты анодного блока, трубки установлены с шагом, равным 0,1-0,2 длины анодного блока при продольном размещении пазов, или с шагом, равным 0,15-0,3 ширины анодного блока при поперечном размещении пазов, при этом нижние концы газоотводящих трубок совмещены с верхней гранью пазов. Обеспечивается сокращение удельного потребления электрической энергии и повышение энергетической эффективности электролизного производства за счет снижения объема газоэлектролитного слоя и уменьшения потерь напряжения на преодоление его сопротивления в течение всего срока службы анода. 2 ил.

Изобретение относится к способу и системе для определения дозировки связующего вещества для объединения с дисперсным материалом с получением электрода. Способ включает получение от необожженного электрода партии N двух показателей, а именно, смоделированную плотность в обожженном состоянии и характеристику изображения. Эти показатели и данные партии N и N-1 используют для определения дозировки связующего вещества для партии N+1. Обеспечивается повышение качества обожженного анода. 3 н. и 26 з.п. ф-лы, 9 ил.

Изобретение относится к ошиновке алюминиевого электролизера большой мощности при поперечном расположении электролизеров в корпусе электролиза. Ошиновка содержит сборные и обводные катодные шины и спуски, установленные вдоль входной и выходной сторон катодного кожуха предыдущего электролизера, в которой анодная ошиновка последующего электролизера соединена с катодными шинами предыдущего электролизера посредством стояков, при этом каждый из пакетов катодных шин, огибающих торцы электролизера, передает 35-50% тока входной стороны. Ошиновка содержит ферромагнитный экран, выполненный в виде утолщенной продольной стенки катодного кожуха, размещенной между анодными стояками входной стороны электролизера и расплавом в электролизере, при этом ферромагнитный экран выполнен по высоте и длине больше проекции расплава на экран. Обеспечивается снижение негативного воздействия магнитного поля на расплав в электролизере. 3 з.п. ф-лы, 1 ил.

Изобретение относится к способу производства углеродных электродов в виде анодов для производства алюминия. Способ включает смешивание высокоплавкого пека с температурой размягчения по Меттлеру (SPM) выше 150°C с углеродистыми твердыми веществами при температуре на 50-120°С выше SPM пека, прессование или уплотнение посредством вибрации или экструзии без преднамеренного охлаждения при температуре, близкой к температуре смешивания, передачу сырых электродов в печь для карбонизации без преднамеренного охлаждения, карбонизацию сырых электродов. Обеспечивается снижение общего потребления энергии и времени пребывания на последующей стадии карбонизации. 7 з.п. ф-лы, 2 ил., 3 табл., 2 пр.
Наверх