Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Группа изобретений относится к ракетно-космической технике. Способ спуска отработанной части (ОЧ) ступени РКН на жидких компонентах ракетного топлива в заданный район падения основан на стабилизации и ориентации ОЧ за счет энергетики невыработанных остатков жидких компонентов ракетного топлива на основе их газификации и подачи в сопла сброса газореактивной системы. Продукты газификации используют для их ввода в погранслой. Координаты точки, направление ввода и массовый секундный расход продуктов газификации через систему ввода в погранслой определяют из условия формирования максимального суммарного управляющего воздействия, реализуемого управляющими соплами газореактивной системы и соплами системы ввода газа в погранслой ОЧ. В устройстве для осуществления способа в отделяющуюся часть ступени введены сопла газореактивной системы и сопла ввода продуктов газификации в погранслой для каждого бака, соединенные магистралями с регулируемыми клапанами. Техническим результатом группы изобретений является повышение эффективности при спуске ОЧ ступени РКН. 2 н.п. ф-лы, 2 ил.

 

Изобретения относятся к ракетно-космической технике, в частности к ракетам космического назначения (РКН) на жидких компонентах ракетного топлива (КРТ), а именно к отделяющимся частям (ОЧ) ступеней РКН при их движении по траектории спуска, включающим в свой состав внеатмосферный и атмосферный участки.

Известно техническое решение по способу управления полетом ЛА на атмосферном участке траектории по патенту РФ №2383469 В64С 21/04, где используют отбор газа от источника газа и последующий подвод отобранного газа к проницаемым пористым вставкам на поверхностях ЛА с температурой, отличной от температуры набегающего воздушного потока. Однако использование этого решения возможно только на атмосферном участке траектории полета ЛА с достаточно большой плотностью набегающего воздушного потока. При управлении ОЧ на траектории спуска, которая может находиться вне атмосферы или в слоях атмосферы с малой плотностью, этот способ не эффективен.

Наиболее близким по технической сущности к предлагаемому решению является патент РФ №2414391 B64G 1/26, В64С 15/14 «Способ спуска отделяющейся части ступени РКН и устройство для его осуществления», в котором спуск ОЧ ступени РКН на жидких КРТ в заданный район падения основан на стабилизации ОЧ положением двигательной установкой вперед, ориентации и управляемом движении ОЧ, после отделения ОЧ маневр спуска в заданный район падения осуществляют за счет энергетики, заключенной в невыработанных остатках КРТ на основе их газификации и подачи в газовую ракетную двигательную установку (ГзРДУ), а управление движением центра масс и вокруг центра масс ОЧ осуществляют отклонениями камер ГзРДУ, установленных в одностепенные приводы.

К недостаткам этого технического решения относится использование принципа реактивного движения для управления ОЧ - создание управляющего момента за счет отброса массы газа из сопла камеры ГзРДУ. Как известно, тяга реактивного сопла на атмосферном участке зависит от давления внешней среды, а с другой стороны, возможно дополнительное использование, например, продуктов газификации невыработанных остатков КРТ для изменения аэродинамических характеристик ОЧ путем подачи газа в погранслой (ПС) для формирования управляющих воздействий.

Целью предлагаемого технического решения является повышение эффективности способа спуска ОЧ, которое достигается тем, что в известном способе спуска ОЧ ступени РКН на жидких КРТ в заданный район падения, основанном на стабилизации и ориентации ОЧ за счет энергетики, заключенной в невыработанных остатках жидких КРТ на основе их газификации и подачи в ГзРДУ, дополнительно продукты газификации используют для их ввода в ПС, координаты точки, направление ввода и массовый секундный расход продуктов газификации через систему ввода в ПС определяют из условия формирования максимального суммарного управляющего воздействия:

при условии:

где:

Мгрс - реактивный управляющий момент, например, в канале тангажа, реализуемый камерами ГзРДУ, определяемый по формуле:

, wa, pa, pн, Fa - массовый секундных расход продуктов сгорания через сопло ГзРДУ, скорость истечения продуктов из сопел, давление в камере сгорания, внешнее атмосферное давление и площадь среза сопла ГРС соответственно,

хгрс, хцм - координаты точек приложения тяги камеры ГзРДУ (камера установлена перпендикулярно продольной оси ОЧ) и центра масс ОЧ на продольной оси ОЧ,

Мсвг - аэродинамический управляющий момент, например, в канале тангажа, реализуемый за счет сопел вдува продуктов газификации (СВГ) в ПС на поверхность ОЧ, определяемый по формуле:

- скоростной напор,

mz, S, V, ρ, L - коэффициент аэродинамического момента, площадь миделева сечения, скорость движения ОЧ и плотность атмосферы и длина корпуса ОЧ соответственно,

- массовый секундный расход продуктов газификации через систему ввода в погранслой ОЧ и массовый секундный расход газа, поступающий из системы газификации ОЧ.

Прототипом устройства для реализации предлагаемого технического решения является устройство по патенту РФ №2414391, включающее в свой состав систему управления и навигации, систему газификации, на верхнем днище топливного отсека установлены четыре камеры, каждая из которых оснащена приводом, а система газификации имеет автономный газогенератор с мембранной системой подачи компонентов топлива, возбудители акустических колебаний, размещенные на штуцерах ввода теплоносителя в топливные баки.

К недостаткам этого технического решения относится использование ГзРД для управления ориентацией и стабилизацией ОЧ, что увеличивает массу исполнительных органов системы управления ОЧ (приводы), кроме того, возникают проблемы компоновки внутри конструкции ОЧ при развороте камер на большие углы (до 90°) для формирования максимального управляющего момента.

Целями предлагаемого технического решения являются снижение массы исполнительных органов системы ориентации и стабилизации и повышение эффективности управляющих органов ОЧ при управлении ориентацией и стабилизацией ОЧ соответственно, повышение точности падения ОЧ, расширения возможности по смещению точек падения ОЧ.

Поставленная цель достигается за счет того, что в известном устройстве дополнительно вводят сопла газореактивной системы (ГРС) и сопла ввода продуктов газификации в ПС для каждого бака, соединенные магистралями с регулируемыми клапанами.

Предлагаемый способ и устройство поясняется фиг. 1-2 на примере управления в канале тангажа.

Фиг. 1 - установка сопел ГРС, СВГ на ОЧ ступени.

На фиг. 2 показано изменение управляющих моментов Мгрс (3) и Маэр (4) в зависимости от плотности (высоты) полета и скорости набегающего потока атмосферного воздуха.

Реализация способа

При движении по траектории спуска управляемые ЛА традиционно используют для ориентации и стабилизации сопла ГРС. В соответствии с [1] (кн. Основы теории и расчета жидкостных ракетных двигателей. В 2 кн. Кн. 1 Учеб. для авиац. спец. вузов / А.П. Васильев, В.М. Кудрявцев и др. - 4-е изд., переаб. и доп. - М.: Высш. шк., 1993 - 383 с.,), стр. 77, формула (3.10) расчет реактивной тяги при осуществлении сброса газа через сопло в окружающую среду осуществляется по формуле:

Как следует из этой формулы, имеется «высотная» добавка:

которая приводит к тому, что при повышении давления окружающей среды рн реактивная тяга (5) и, соответственно, управляющий момент (3) уменьшаются по величине.

При движении в атмосфере Земли при различных углах атаки может реализоваться ситуация, когда давление окружающей среды:

где:

pст, pдин, - статическая и динамическая составляющие давления,

ρ, V - плотность и скорость набегающего потока, g=9,8l м/c2,

рст - определяется количеством молекул в воздухе,

существенно изменяется за счет динамической составляющей.

Для рассматриваемого случая давление продуктов газификации в топливных баках ОЧ не превышает максимально допустимого из условий прочности (порядка 4-5 атм), соответственно, давление в камере сгорания (сопле сброса) не будет превышать этих величин.

Реализация способа и устройства поясняется на фиг. 1, 2.

На фиг. 1 приведена отделяющаяся часть с расположением сопел ГРС и СВГ со сбросом продуктов газификации из баков горючего и окислителя. После отделения ОЧ 1 от РКН остатки КРТ 2, 3 в топливных баках горючего 4 и окислителя 5 находятся в виде газожидкостной смеси в неопределенном положении. Газогенераторы 6, 7 подают горячие газы в баки горючего 4 и окислителя 5. После достижения заданного давления в каждом баке прорываются пиромембраны 8, 9 для подачи продуктов газификации из каждого бака в соответствующие сопла ГРС для каждого бака. В состав продуктов газификации из каждого бака входят испарившийся КРТ, газ наддува и соответствующий теплоноситель. Для формирования управляющего воздействия с использованием продуктов из бака горючего используют сопла ГРС 10, 11, а из бака окислителя 5 используются сопла ГРС 12, 13, а также сопла СВГ для канала тангажа 14, 15 из бака горючего 4, соответственно, из бака окислителя 16, 17. Регулирование расходов продуктов газификации, подаваемых из каждого бака 4, 5 между соплами ГРС 10-13 и соплами СВГ 14-17 осуществляется с помощью регулируемых клапанов 18-21 для бака горючего и 22-25 для бака окислителя.

На фиг. 2 показаны изменения Мгрс и Мсвг (3), (4) при изменении угла атаки. Расчеты величин динамического давления рдин (необходимого для расчета Мгрс по формулам (7), (3)) и момента Мсвг получены с использованием программного комплекса ANSYS-FLUENT.

Использование предлагаемых технических решений позволяет повысить эффективность способа спуска ОЧ с траекторий выведения за счет более эффективного использования продуктов газификации при формировании управляющих воздействий. Это увеличение достигается за счет использования изменения параметров погранслоя при введении в него продуктов газификации.

1. Способ спуска отработанной части ступени ракеты космического назначения на жидких компонентах ракетного топлива в заданный район падения, основанный на стабилизации и ориентации отделяющейся части за счет энергетики, заключенной в невыработанных остатках жидких компонентов ракетного топлива на основе их газификации и подачи в сопла сброса газореактивной системы, отличающийся тем, что продукты газификации используют для их ввода в погранслой, координаты точки, направление ввода и массовый секундный расход продуктов газификации через систему ввода в погранслой определяют из условия формирования максимального суммарного управляющего воздействия:

при условии:

где:

Мгрс - реактивный управляющий момент, например, в канале тангажа, реализуемый газореактивной системой, определяемый по формуле:

- массовый секундных расход продуктов сгорания через сопло газореактивной системы, скорость истечения продуктов из сопла, давление в камере сгорания, внешнее атмосферное давление и площадь среза сопла соответственно,

хгрс, хцм - координаты точек приложения тяги газореактивной системы и центра масс отработанной части,

Мсвг - аэродинамический управляющий момент, например, в канале тангажа, реализуемый за счет вдува продуктов газификации в погранслой на поверхность отделяющейся части, определяемый по формуле:

- скоростной напор,

mz, S, V, ρ, L - коэффициент аэродинамического момента, площадь миделева сечения, скорость движения отделяющейся части и плотность атмосферы и длина корпуса отделяющейся части соответственно,

- массовый секундный расход продуктов газификации через сопла газореактивной системы, система ввода газа в погранслой отделяющейся части и массовый секундный расход газа, поступающий из системы газификации.

2. Отделяющаяся часть ступени, содержащая систему управления и навигации, систему газификации, систему газификации с автономным газогенератором с мембранной системой подачи компонентов топлива, возбудители акустических колебаний, размещенные на штуцерах ввода теплоносителя в топливные баки, отличающаяся тем, что дополнительно введены сопла газореактивной системы и сопла ввода продуктов газификации в погранслой для каждого бака, соединенные магистралями с регулируемыми клапанами.



 

Похожие патенты:

Изобретение относится к межорбитальным маневрам космических аппаратов (КА). Способ включает выведение КА на переходную орбиту с высотой апогея больше высоты геостационарной орбиты (ГСО) и высотой перигея ниже ГСО.

Изобретение относится к управлению работой транспортного космического корабля (ТКК), совершающего рейсы между орбитальной космической станцией (ОКС), находящейся вблизи планеты с атмосферой, и базовой станцией, расположенной, например на Луне.

Группа изобретений относится к управлению движением нежёсткого летательного аппарата (1) с помощью двигателя (2). Пилотирование осуществляется системой управления с измерительным средством (3А), расположенным вблизи заднего конца (1R) аппарата.

Изобретение относится к области управления движением космических аппаратов (КА) с помощью многосопловой реактивной двигательной установки (ДУ). Способ позволяет проводить коррекцию орбиты КА путем приложения результирующего вектора тяги ДУ к его корпусу и включает определение коэффициентов дросселирования для расчета тяги каждого из трех и более сопел двигателя.

Изобретение относится к перелётам транспортного космического корабля (ТКК) между двумя орбитальными станциями (ОС), одна из которых находится на орбите планеты с атмосферой, а другая - либо на орбите другого небесного тела (напр., Луны), либо вблизи точек либрации (напр., L1 или L2 системы Земля - Луна).

Изобретение относится к ракетным двигательным средствам для орбитальных маневров и/или спуска космических аппаратов (КА) на Землю. Предлагаемое устройство в значительной степени автономно и соединяется с КА перед его запуском.

Изобретение относится к области двигательных установок на криогенном топливе, и в частности к криогенной двигательной установке (1), содержащей по меньшей мере один маршевый двигатель (6) многократного запуска, первый криогенный бак (2), соединенный с маршевым двигателем (6) для его питания первым компонентом топлива, первый газовый бак (4), по меньшей мере один осаждающий топливо двигатель (7, 8) и первый питающий контур (16) для питания первого газового бака (4).

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными наземными пунктами и отвечающей требованиям светотеневой обстановки на орбите КА и в этих пунктах.

Изобретение относится к межорбитальному маневрированию космического аппарата (КА). Способ включает выведение КА на переходную орбиту с нулевым наклонением двигателями большой тяги.

Изобретение относится к ракетно-космической технике и может быть использовано при спуске отделяющейся части ступени ракеты космического назначения (ОЧ РКН). ОЧ РКН содержит систему управления и навигации, топливный отсек, систему газификации жидких остатков топлива, 2 противоположно установленных друг другу сопла сброса, пиромембраны.

Изобретение относится к ракетно-космической технике и касается отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) при их движении по траектории спуска. Спуск ОЧ РН на жидких компонентах топлива в заданный район падения основан на стабилизации ОЧ, ориентации и управляемом движении ОЧ за счет энергетики, заключенной в невыработанных остатках компонентов жидкого топлива на основе их газификации и подачи в двигательную установку. При этом после входа в атмосферу рассчитывают величину балансировочного угла атаки, его ориентацию, обеспечивающую переход на попадающую траекторию спуска в заданную точку прицеливания. Рассчитывают параметры спиральной траектории («Спираль»), по которой осуществляют полет с балансировочными углами атаки относительно попадающей траектории спуска. Причем переход ОЧ на «Спираль» осуществляется с достижения значений величин аэродинамического момента, обеспечивающего возможность маневра перехода ОЧ на «Спираль» с траектории неуправляемого спуска ОЧ, а нижний конец «Спирали» касается начала траектории тормозного участка, на котором осуществляют отработку тормозного импульса. Движение ОЧ по «Спирали» осуществляют путем разворота ОЧ с угловой скоростью, определяемой из условия попадания ОЧ в начало тормозного участка с минимальной скоростью движения центра масс ОЧ. Достигается снижение массы конструкции, увеличение точности посадки ОЧ, снижение нагрузки на корпус ОЧ. 1 ил.

Группа изобретений относится к средствам и методам выведения, работы на орбите и увода с орбиты автоматических полезных нагрузок (ПН) с помощью беспилотного ракетно-космического комплекса (РКК). В состав РКК входит разгонный блок (РБ) с устройствами управления ракетой-носителем, которые при отделении ПН от РБ дистанционно управляют служебными системами ПН, запасом топлива для увода ПН, системой стыковки с ПН на рабочей орбите и манипулятором для технического обслуживания и установки ПН на РБ. ПН может быть выполнена и неотделяемой от РБ. Для дистанционного управления ПН, после её отделения, РБ перемещают в заданное место орбиты. Электропитание ПН осуществляют с использованием оборудования, доставляемого РБ, или от штатных бортовых систем РБ. Увод ПН осуществляют с помощью РБ, после его сближения и стыковки с ней. Техническим результатом являются минимизация состава управляющих и энергетических систем РКК, упрощение процесса выведения на орбиту, возможность полной последующей утилизации компонентов РКК. 2 н.п. ф-лы, 4 ил.
Наверх