Сегментный способ определения прочности ограждающих конструкций

Изобретение относится к испытательной технике и может быть использовано в строительстве при расчете ограждающих конструкций зданий. Способ заключается в том, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру ложковой стороны наружного ряда кирпичей, второй керн отбирают так, чтобы слой раствора находился в центре керна. Каждый из полученных кернов разрезают на цилиндры, каждый из цилиндров испытывают на прочность ударно-импульсным методом, при этом для цилиндров первого керна удары производят только по поверхности кирпича, а для цилиндров второго керна удары производят только по поверхности раствора. После проведения испытаний цилиндры с помощью раствора укладывают в места их отбора в ограждающей конструкции. По измеренным значениям прочности рассчитывают сопротивление сжатию кирпичной кладки в каждом слое конструкции, соответствующем расположению цилиндров. Достигается повышение точности расчета прочностных характеристик ограждающей конструкции из кирпичной кладки путем обеспечения возможности определения прочности во всех ее слоях по всему сечению конструкции за счет измерения прочности образцов, взятых на всю глубину кладки, и без потери прочности конструкции. 1 табл., 1 ил.

 

Изобретение относится к испытательной технике и может быть использовано в строительстве при определении расчетных прочностных характеристик ограждающих конструкций зданий.

Прочность несущей ограждающей конструкции является основной характеристикой при новом строительстве и реконструкции зданий. Кирпичные ограждающие конструкции занимают значительное место в зданиях, построенных более полувека назад - в то время это был основной строительный материал. Многие из построенных кирпичных зданий представляют собой исторически ценные здания, другие используются для проведения ремонта или реконструкции с возможным увеличением этажности. В этих условиях определение прочностных характеристик несущих стен здания требует максимальной точности и надежности полученных результатов.

В настоящее время действуют два основных стандарта, регламентирующих проведение испытаний каменной кладки на прочность при сжатии (ГОСТ 32047-2012 «Кладка каменная. Метод испытания на сжатие». - М.: Стандартинформ, 2014[1]; ГОСТ 8462-85 «Материалы стеновые. Методы определения прочности при сжатии и изгибе». - М.: ИПК Издательство стандартов, 2001 [2]). Действующие стандарты в основном направлены на определение прочности кирпича при выпуске партии на заводе. Кроме того, что данные методы не позволяют исследовать прочность ограждающей конструкции по сечению, проводить испытания этими методами для контроля прочности кладки при обследовании построенных строений затруднительно по следующим причинам:

- подготовка образцов представляет собой длительный процесс, не менее 3-х суток, и требует громоздкого оборудования в виде пресса;

- количество необходимых для испытания кирпичей достаточно велико: если в [2] требовалось два кирпича для одной партии, а количество образцов стандартом не регламентировалось, то [1] требует минимум трех образцов с использованием минимум 10 кирпичей стандартного размера в каждом образце, что не может быть выбрано из несущей стены здания без ее ослабления, а для исторических зданий, имеющих охранные требования, вообще невозможно.

Для решения первого вопроса, представляющего собой методику проведения эксперимента, возможно использовать методы неразрушающего контроля. Так, например, стандарт контроля прочности бетона допускает применение таких методов при условии построения градуировочной кривой на соответствие данного метода неразрушающего контроля основному (ГОСТ 10060-2012 «Бетоны. Методы определения морозостойкости». - М.: Стандартинформ, 2014 [3]).

ВСП 13-102-2003 «Правила обследования несущих строительных конструкций зданий и сооружений» (Госстрой России). - М.: Госстрой России, ГУП ЦПП, 2004 [4] говорится о целесообразности предварительно любым оперативным (экспертным) методом (молотком Фидзеля, ультразвуковым поверхностным прозвучиванием и пр.) обследовать бетон по его поверхности в расчетных сечениях конструкций и их элементов с целью выявления возможного наличия зон с различающейся прочностью бетона.

Вопрос ослабления несущей способности ограждающей конструкции при изъятии из нее значительного количества кирпичей (причем целых, как предписывают [1, 2]) решается по-разному. В [4] рекомендуется «отбор кирпича, камней и раствора из стен и фундаментов производить из ненесущих (под окнами, в проемах) или слабонагруженных элементов или конструкций, подлежащих разборке и демонтажу». Хотя в том же пункте говорится, что «прочность определяют испытанием образцов и проб, взятых непосредственно из тела обследуемой конструкции или близлежащих участков, если имеются доказательства идентичности применяемых на этих участках материалов». Идентичные нагруженные и разгруженные участки в конструкции несущей стены обнаружить достаточно сложно. Подоконные участки, которые обычно используются для отбора кирпичей, находятся в другом температурно-влажностном режиме, так как обычно за ними установлены батареи, а следовательно, идентичными материалу простенка признаны быть не могут.

В 1988 году ЦНИИСК им. Кучеренко разработал Рекомендации (Рекомендации по обследованию и оценке технического состояния крупнопанельных и каменных зданий. М.: ЦНИИСК им В.А. Кучеренко, 1988. 36 с. [5], в которых допускалось (п.3.12) «прочность (марка) природных камней правильной и неправильной формы, а также мелких и крупных блоков из тяжелого, силикатного, ячеистого бетонов и бетонов на пористых заполнителях определять путем испытания на сжатие образцов-кубов или цилиндров, выпиленных или высверленных из камней, целых изделий или монолита». Предел прочности природных камней и мелких и крупных блоков из указанных бетонов вычисляется умножением результатов испытаний образцов-кубов или цилиндров на масштабные коэффициенты. При этом отдельно отмечалось, что коэффициенты могут использоваться и при определении предела прочности обыкновенного глиняного и силикатного кирпича по данным испытаний кубиков и цилиндров с высотой ребра или диаметром 40-80 мм. Данный способ определения прочности строительных изделий принят за прототип изобретения.

Недостатком данного способа является то, что он не позволяет определить и учесть прочность кирпичной кладки во всех ее слоях по сечению кладки.

Исследования показали, что прочность старой кирпичной кладки по ее сечению неоднородна. Наличие зоны максимального увлажнения кладки в зоне отрицательных температур, а также разное число циклов замораживания - оттаивания внутри ограждающей конструкции и на ее поверхности приводит к неравномерному снижению прочности наружной ограждающей конструкции по сечению. Встает вопрос о необходимости определения и учета прочности по сечению при обследовании и проектировании реконструируемых зданий.

Целью изобретения является разработка способа исследования прочности несущей ограждающей конструкции, который позволяет уточнить прочностные характеристики ограждающей конструкции за счет определения ее прочности с достаточной точностью в любом месте несущей стены по всему ее сечению без потери прочности конструкции.

Цель изобретения решается способом определения прочности ограждающей конструкции из кирпичной кладки, заключающимся в том, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру ложковой стороны наружного ряда кирпичей, второй керн отбирают так, чтобы слой раствора находился в центре керна, каждый из полученных кернов разрезают на цилиндры, каждый из цилиндров испытывают на прочность ударно-импульсным методом, при этом для цилиндров первого керна удары производят только по поверхности кирпича, а для цилиндров второго керна удары производят только по поверхности раствора, измеряют прочность кирпича и раствора в цилиндрах, после проведения испытаний соединяют цилиндры с помощью раствора и укладывают полученные керны в места их отбора в ограждающей конструкции, а по измеренным значениям прочности рассчитывают сопротивление сжатию кирпичной кладки в каждом слое конструкции, соответствующем расположению цилиндров.

Технический результат, достигаемый предложенным способом, заключается в повышении точности определения прочностных характеристик ограждающей конструкции из кирпичной кладки путем обеспечения возможности определения прочности во всех ее слоях по всему сечению конструкции за счет измерения прочности образцов, взятых на всю глубину кладки, и без потери прочности конструкции за счет того, что взятые образцы скрепляются раствором и устанавливаются после испытаний на прежнее место.

На фиг. 1 приведена схема отбора кернов из кирпичной кладки.

Предложенный способ определения прочности ограждающей конструкции осуществляли следующим образом.

В каждом назначенном для контроля прочности месте несущей стены 1 на всю глубину кирпичной кладки с помощью дрели 2 с керноотборником 3 отбирали два керна 4 и 5. Рекомендуется использовать керноотборники 3 с диаметром керна 50 или 80 мм. Один керн 4 отбирали по центру ложковой стороны наружного ряда кирпичей, второй керн 5 отбирали таким образом, чтобы слой раствора приходился на центр керна 5. Первый керн 4 использовался для определения прочности кирпича, второй керн 5 - для определения прочности раствора.

При невозможности отбора керна с одой стороны (при большой толщине наружной стены) методика отбора кернов следующая: для центровки отбора кернов, вначале сверлом диаметром 12-20 мм стена просверливается насквозь с образованием сквозного направляющего отверстия 6. Далее на дрель 2 с керноотборником 3 крепится направляющая в виде арматуры AI или AIII длиной в 1,5 раза больше толщины стены и диаметром 10-12 мм. Использование направляющего прута 7 позволяет с высокой точностью выполнить отбор кернов 4 и 5 навстречу друг другу.

Полученные керны разрезали на цилиндры высотой 50 мм. Каждый цилиндр с двух плоских поверхностей проверяли на прочность неразрушающим ударно-импульсным методом с количеством ударов не менее 5. Плоскости первого и последнего цилиндров, представляющие собой наружную и внутреннюю поверхности исследуемой ограждающей конструкции, контролировали 10 ударами. При определении прочности плоскостей цилиндров первого керна удары производили только по поверхности кирпича, для второго керна удары производили только по поверхности раствора. Таким образом прочность сечения через каждые 50 мм представляла среднее арифметическое из 10 ударов. Другая статистическая обработка проводится при необходимости.

Для проверки цилиндров на прочность ударно-импульсным методом использовали измеритель прочности Интерприбор ОНИКС-2.5 (http://www.geobrand.ru/nerazrush-control/proch/interpribor/oniks.html#tabCertificates), Руководство пользователя (инструкция) на измеритель прочности Интерприбор ОНИКС-2.5 (http://www.geobrand.ru/images/pnk/beton%20hammers/manual-interpribor-Oniks-25.pdf). Могут быть использованы и другие известные методики определения прочности неразрушающими методами.

После проведения исследования готовили раствор марки не ниже максимальной прочности кирпича, полученной при исследовании, и керны укладывали в стену на прежнее место. При этом наружная стена здания не теряет своей прочности и сохраняет внешний вид.

Расчет прочностных характеристик кирпичной стены в целом при проведении обследования по разработанной методике проводили в соответствии с СНиПП-22-81* «Каменные и армокаменные конструкции» (Госстрой России). - М.: ФГУП ЦПП, 2004 [6]. Зная прочность кирпича и раствора в каждом сечении кладки, определяли расчетные сопротивления R сжатию кладки по таблицам 2-9.

Таким образом определяли прочность кладки в каждом отдельном слое многослойной стены.

При расчете прочностных характеристик ограждающую конструкцию рассматривают как многослойную стену с жесткими связями, в которой жесткие связи обеспечивают распределение нагрузки между конструктивными слоями. При расчете многослойных стен различную прочность и упругие свойства слоев, а также неполное использование их прочности при совместной работе в стене следует учитывать путем приведения площади сечения к материалу основного несущего слоя (слоя с максимальной прочностью). При этом за основной несущий слой при решении нашей задачи следует принимать слой с наибольшей прочностью. Эксцентриситеты всех усилий должны определяться по отношению к оси приведенного сечения.

В соответствии с [6] при приведении сечения стены к одному материалу толщина слоев должна приниматься фактической, а ширина слоев (по длине стены) изменяться пропорционально отношению расчетных сопротивлений и коэффициентов использования прочности слоев по формуле

где bred - приведенная ширина слоя, м;

b - фактическая ширина слоя, м;

R, m - расчетное сопротивление сжатию, кгс/см2 и коэффициент использования прочности слоя, к которому приводится сечение (максимальное значение);

Ri; mi - расчетное сопротивление сжатию, кгс/см2 и коэффициент использования прочности любого другого слоя стены.

Коэффициенты использования прочности слоев m и mi, в связи с тем, что рассматриваемая нами многослойная конструкция состоит из одного материала целесообразно принимать равными 1.

В таблице представлены результаты измерений прочности цилиндров и расчета их прочностных характеристик: сопротивление сжатию кладки в сечении Ri, приведенная ширина слоя bred, приведенная площадь слоя Fi.

Предложенный сегментный способ исследования прочности ограждающей конструкции позволяет определить прочность несущей стены здания по сечению в любой точке конструкции и не нарушить при этом прочность и исторический внешний вид здания.

Сегментный способ определения прочности ограждающей конструкции из кирпичной кладки, отличающийся тем, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру ложковой стороны наружного ряда кирпичей, второй керн отбирают так, чтобы слой раствора находился в центре керна, каждый из полученных кернов разрезают на цилиндры, каждый из цилиндров испытывают на прочность ударно-импульсным методом, при этом для цилиндров первого керна удары производят только по поверхности кирпича, а для цилиндров второго керна удары производят только по поверхности раствора, после проведения испытаний цилиндры с помощью раствора укладывают в места их отбора в ограждающей конструкции, по измеренным значениям прочности рассчитывают сопротивление сжатию кирпичной кладки в каждом слое конструкции, соответствующем расположению цилиндров.



 

Похожие патенты:

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, установленные на нем разгонное устройство, включающее вал с приводом вращения, маховик, установленный на валу, штанги по количеству точек нагружения образца с ударниками для взаимодействия с образцом, установленные с возможностью изменения положения по длине вала, приспособления для создания фрикционного взаимодействия штанг с маховиком, приспособления для возврата штанг в исходное положение и устройство для размещения образца, выполненное с обеспечением взаимодействия образца с ударниками.

Изобретение относится к испытательной технике, а именно к устройствам для усталостных испытаний образцов материалов на ударный изгиб и изгиб с кручением при сложном цикле нагружения, и может быть применено в заводской и исследовательской лабораториях.

Изобретение относится к испытательной технике и применяется при исследованиях влияния массовых сил на энергообмен при деформировании и разрушении материалов и изделий.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит раму с направляющей, жестко связанный с рамой пассивный захват образца, соосный ему активный захват, расположенные на раме ведущий и ведомый барабаны, привод вращения ведущего барабана, замкнутый гибкий элемент, охватывающий барабаны, груз для взаимодействия с активным захватом, установленный на направляющей рамы, два фиксатора для соединения груза с соответствующими ветвями замкнутого гибкого элемента.

Изобретение относится к способу и оборудованию для ударно-динамических испытаний режущей проволоки на разрыв при условиях, максимально приближенных к условиям использования режущей проволоки по назначению.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит основание, установленные на нем захваты образца и механизм нагружения, предназначенный для размещения внутри образца.

Изобретение относится к области неразрушающего контроля при проведении экспертизы индустриальной безопасности промышленного оборудования. Устройство содержит источник ударного воздействия, выполненный в виде молотка со встроенным зонным экраном Френеля, акселерометр со шпилькой, персональный компьютер.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит основание, установленные на нем захваты образца, толкатель, связанный с одним из захватов, привод возвратно-поступательного перемещения толкателя и упругий элемент, одним концом соединенный со вторым захватом, а вторым концом связанный с основанием через подвижную траверсу.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит основание, установленные на нем платформу с приводом вращения, кольцевую направляющую, установленную соосно платформе, колесо, установленное на платформе с возможностью взаимодействия с направляющей, кулачок, установленный на колесе, и два захвата для образца, расположенные на платформе.

Изобретение относится к испытательной технике, к испытаниям на прочность. Центробежная установка для испытания длинномерных образцов содержит корпус, установленную на нем платформу, привод вращения платформы, радиально установленную на платформе направляющую, установленные на направляющей захваты образца, и электромагнитные фиксаторы захватов.

Изобретение относится к экспрессному контролю объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией.

Изобретение относится к методам испытаний строительных материалов в условиях лабораторий заводов - изготовителей. Способ заключается в погружении образцов строительных материалов в слабоагрессивную среду.

Изобретение относится к устройству, системе и способу для измерения влажности в конструкциях зданий. Трубчатый корпус (100) может быть внедрен в материал во время его отливки.

Изобретение относится к производству строительных материалов. Способ включает подготовку пресс-порошка, прессование образца, фиксацию изменений деформаций при сжатии, построение компрессионных кривых и проведение испытания, причем прессование осуществляют одностадийно и непрерывно, с переменными значениями давления прессования и формовочной влажности пресс-порошка, при этом требуемое оптимальное соотношение влажности и давления прессования определяют положением оптимальной точки на компрессионной кривой, лежащей на ее пересечении с отрезком, перпендикулярным хорде, соединяющей начальное и конечное значения интервала давления прессования на кривой, и проходящим через точку пересечения касательных к кривой в области заданного интервала давления прессования.

Изобретение относится к изготовлению или получению изделий из стекла или стеклокерамики. Изобретение основано на том, чтобы обеспечить получение изделий из стекла или стеклокерамики, имеющих точно охарактеризованные термомеханические свойства.

Изобретение относится к литейному производству и может быть использовано для изготовления образцов из дорожно-строительных материалов. Форма содержит корпус, расположенный на подставках, и верхние и нижние вкладыши.

Группа изобретений относится к области строительной индустрии и предназначена для испытания гипсового вяжущего в заводских, строительных и научно-исследовательских лабораториях для оценки эффективности применения этого вяжущего в рецептурах штукатурных смесей.

Группа изобретений относится к области строительной индустрии и предназначена для испытания гипсового вяжущего для оценки эффективности применения этого вяжущего в рецептурах сухих строительных смесей, а именно напольных.

Группа изобретений относится к области строительства, в частности к испытаниям бетона монолитных вертикальных строительных конструкций методом отрыва со скалыванием.

Изобретение относится к способу лабораторного анализа характеристик строительных материалов, а именно к определению энергии напряжения и линейного расширения бетона, приготовленного на основе расширяющегося цемента.

Изобретение относится к области испытания конструкции на воздействие подводной ударной волны и может быть использовано для регистрации сотрясений на элементах подводного аппарата при воздействии подводной ударной волны.

Изобретение относится к испытательной технике и может быть использовано в строительстве при расчете ограждающих конструкций зданий. Способ заключается в том, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру ложковой стороны наружного ряда кирпичей, второй керн отбирают так, чтобы слой раствора находился в центре керна. Каждый из полученных кернов разрезают на цилиндры, каждый из цилиндров испытывают на прочность ударно-импульсным методом, при этом для цилиндров первого керна удары производят только по поверхности кирпича, а для цилиндров второго керна удары производят только по поверхности раствора. После проведения испытаний цилиндры с помощью раствора укладывают в места их отбора в ограждающей конструкции. По измеренным значениям прочности рассчитывают сопротивление сжатию кирпичной кладки в каждом слое конструкции, соответствующем расположению цилиндров. Достигается повышение точности расчета прочностных характеристик ограждающей конструкции из кирпичной кладки путем обеспечения возможности определения прочности во всех ее слоях по всему сечению конструкции за счет измерения прочности образцов, взятых на всю глубину кладки, и без потери прочности конструкции. 1 табл., 1 ил.

Наверх