Способ измерения формы прочного корпуса подводной лодки, закрытого конструкциями легкого корпуса

Изобретение относится к измерительной технике и может быть использовано при измерении отклонений от круговой формы корпусов крупногабаритных тел вращения, например, в сечениях шпангоутов цилиндрических корпусов или конических вставок, преимущественно, подводных лодок (ПЛ), а также судов различного назначения. Способ измерения формы прочного корпуса подводной лодки, закрытого конструкциями легкого корпуса, предусматривает разметку исходных контрольных точек на наружной поверхности прочного корпуса и определение их координат с использованием трехмерного средства измерения типа тахеометр или трекер, которое устанавливают снаружи легкого корпуса. При этом в каждой исходной контрольной точке поочередно устанавливают по нормали к прочному корпусу лазерный дальномер и определяют расстояние до противолежащей точки на внутренней поверхности легкого корпуса и маркируют ее, затем в эту точку устанавливают преобразователь ультразвукового дефектоскопа и в режиме теневого метода контроля наносят на наружную поверхность легкого корпуса соответствующую внешнюю контрольную точку, после чего на эту точку устанавливают отражатель и определяют трехмерным средством измерения ее координаты в корабельной системе координат, далее координаты внешней точки преобразуют в координаты виртуальной точки, лежащей на радиусе-векторе, проходящем через исходную точку. Затем определяют истинные координаты каждой исходной контрольной точки прочного корпуса, перенося в направлении прочного корпуса расположение виртуальной точки вдоль радиуса-вектора на определенное расстояние. После этого полученные значения координат вводят в ЭВМ, которая по найденным данным определяет отклонение формы прочного корпуса ПЛ от круговой в разных сечениях. Технический результат заключается в повышении достоверности измерений отклонений корпуса от круговой формы и снижении трудоемкости измерительного процесса. 5 ил.

 

Изобретение относится к измерительной технике и может быть использовано при измерении отклонений от круговой формы корпусов крупногабаритных тел вращения, например, в сечениях шпангоутов цилиндрических корпусов или конических вставок, преимущественно подводных лодок (ПЛ), а также судов различного назначения.

Процесс ремонта или модернизации ПЛ связан со значительным объемом сварочных работ на прочном и легком корпусах. В результате этих работ могут появиться существенные деформации прочного корпуса, влияющие на его работоспособность, поэтому в соответствии с действующей нормативной технической документацией необходимо проводить контроль отклонений от круговой формы шпангоутов.

Известен координатный метод контроля формы судовых корпусных конструкций с помощью трехмерного средства измерения типа тахеометр или трекер, принятый за прототип (1).

Применение этого метода после ремонта или модернизации ПЛ, в отличие от постройки нового корабля, осложняется тем, что внутренняя поверхность прочного корпуса ремонтируемой ПЛ закрыта различным оборудованием, а внешняя - легким корпусом, что затрудняет доступ средства измерения к исходным контрольным точкам прочного корпуса и требует вскрытия технологических вырезов в легком корпусе с последующей их заделкой.

Задачей заявляемого изобретения является создание практичного и надежного способа для точного определения координат исходных контрольных точек после модернизации или ремонта ПЛ для измерения отклонений от круговой формы ее корпуса.

Технический результат, достигаемый в процессе решения поставленной задачи, заключается в повышении достоверности измерений отклонений корпуса от круговой формы и снижении трудоемкости измерительного процесса.

Указанный технический результат достигается в заявленном способе измерения формы прочного корпуса ПЛ, закрытого конструкциями легкого корпуса. Этот способ предусматривает, как и в прототипе, разметку исходных контрольных точек на наружной поверхности прочного корпуса и определение их координат с применением трехмерного средства измерения, например, тахеометра или трекера, которое устанавливают снаружи легкого корпуса. Однако в отличие от прототипа в каждой исходной контрольной точке поочередно устанавливают по нормали к прочному корпусу лазерный дальномер и определяют расстояние до противолежащей точки на внутренней поверхности легкого корпуса и маркируют ее.

Далее в эту точку устанавливают преобразователь ультразвукового дефектоскопа и с помощью известного режима теневого метода контроля наносят на наружную поверхность легкого корпуса соответствующую внешнюю контрольную точку, после чего на эту точку устанавливают отражатель и определяют трехмерным средством измерения ее координаты в корабельной системе координат.

Затем координаты полученной внешней точки преобразуют в координаты виртуальной точки, лежащей на радиусе-векторе, проходящем через исходную точку, по формулам: X2=X1+(I+h)Sinα, Y2=Y1, ZZ=Z1, где X1, Y1, Z1 - координаты внешней контрольной точки, Х2, Y2, Z2 - координаты полученной виртуальной точки, I - расстояние, измеренное с помощью дальномера, α - угол наклона прочного корпуса к центральной оси, h - толщина обшивки легкого корпуса.

После этого определяют истинные координаты каждой исходной контрольной точки прочного корпуса, перенося в направлении к нему расположение виртуальной точки вдоль радиуса-вектора на расстояние (I+h)Cosα, а затем полученные значения координат вводят в ЭВМ, которая по полученным данным определяет отклонение формы прочного корпуса ПЛ от круговой в разных сечениях.

Повышение достоверности измерений круговой формы корпуса достигается за счет получения точных значений координат внешней контрольной точки на наружной поверхности легкого корпуса, соразмерной соответствующей исходной точке.

Снижение трудоемкости процесса измерения достигается за счет отмены вскрытия в корпусе проходных отверстий для лазерного луча с последующей их заваркой.

Заявляемый способ поясняется чертежом фиг. 1, на котором показан в разрезе участок корпуса конической формы с разметкой контрольных точек и схемой их измерений, где обозначены следующие позиции: 1 - прочный корпус; 2 - центральная ось прочного корпуса; 5 - контрольная точка наружной поверхности прочного корпуса; 6 - легкий корпус; 7 - держатель «под керно» для установки лазерного дальномера по нормали к поверхности прочного корпуса; 8 - лазерный дальномер; 9 - противолежащая контрольная точка внутренней поверхности легкого корпуса; 10 - преобразователь ультразвукового дефектоскопа, установленный изнутри легкого корпуса; 11 - преобразователь ультразвукового дефектоскопа, установленный снаружи легкого корпуса; 12 - ультразвуковой дефектоскоп; 13 - противолежащая контрольная точка наружной поверхности легкого корпуса; 14 - отражатель для тахеометра (трекера); 15 - тахеометр (трекер); 16 - отражатель локальной опорной сети; 17 - радиус-вектор, проходящий через контрольные точки прочного корпуса; 18 - шпангоут; 19 - корабельная система координат; 20 - виртуальная контрольная точка, полученная проекцией точки (13) на радиус (17); I - высота межбортного пространства в направлении нормали к прочному корпусу, определяемая с помощью дальномера; h - толщина обшивки легкого корпуса; Δ - расстояние между контрольными точками: исходной и виртуальной, т.о.: Δ=(I+h)Cosα; n - расстояние между контрольными точками: вынесенной на внешнюю сторону легкого корпуса и ее проекцией (20) на радиус-вектор, проходящий через исходную контрольную точку, n=(I+h)Sinα.

Частным вариантом схемы измерений, представленной на фиг. 1 для корпуса неопределенной конической формы, является схема, данная на фиг. 2, соответствующая наиболее распространенной форме прочного корпуса ПЛ - цилиндрической, при которой угол α равен нулю. На фиг. 2 показаны контуры участков сечений прочного и легкого корпусов ПЛ с разметкой контрольных точек и схемой их измерений. При этом приняты обозначения, идентичные фиг. 1, а также приняты обозначения: 3 - след диаметральной плоскости, 4 - след основной плоскости. При использовании предлагаемого способа для измерения круговой формы цилиндрического прочного корпуса ПЛ вынесенная на внешнюю поверхность легкого корпуса контрольная точка лежит непосредственно на радиусе-векторе (17) исходной точки, как это видно на фиг. 2.

На фиг. 3, 4 и 5 изображены: общий вид дальномера, общий вид держателя, схема применения дефектоскопа.

Заявляемый способ осуществляется следующим образом на примере технологии процесса измерения отклонений от круговой формы корпуса ПЛ.

В затесненном межбортном пространстве ПЛ (см. фиг. 1, 2) обеспечивается доступ одного или двух операторов к размеченной кернением контрольной точке (5) прочного корпуса (1) для выбранного шпангоута (18). В распоряжении операторов должен находиться специальный держатель (7) с закрепленным на нем стандартным лазерным дальномером (8) (рекомендуется тип Leica Disto D8) в закрытом футляре для защиты от повреждений при переноске в затесненных условиях. Держатель (7) предназначен для обеспечения прохождения лазерного луча дальномера по нормали к поверхности прочного корпуса. Внешний вид и конструкция указанного держателя, не являющегося предметом изобретения, представлены на фигурах 3 и 4.

С помощью игольчатого щупа держателя, наблюдаемого через смотровое отверстие в его основании при подсветке фонариком, оператор должен установить держатель над кернением контрольной точки, плотно прижав четыре ножки к поверхности прочного корпуса. При этом ось симметрии держателя, проходящая между опорными ножками через след кернения измеряемой контрольной точки, визуально должна быть направлена вдоль образующей корпуса в направлении соседней контрольной точки, обозначенной на образующей с помощью кернения.

Включается лазерный дальномер, на экране которого регистрируется дистанция в мм до светового пятна, проявившегося на внутренней поверхности легкого корпуса (6). Этим световым пятном обозначается точка (9), противолежащая по нормали к исходной контрольной точке (5) на поверхности прочного корпуса. Истинное расстояние (I+h) между этими точками складывается из показаний дальномера, которые должны быть записаны оператором, и величины отстояния опорной поверхности корпуса дальномера от прочного корпуса, определяемого высотой держателя (7).

Центр светового пятна должен быть обозначен видимой точкой, проставляемой маркером. В обозначенной маркером точке поверхность легкого корпуса должна быть зачищена наждачной бумагой и протерта ветошью для последующей установки излучателя (10) ультразвукового дефектоскопа (12). Зачищенная поверхность смазывается кистью контактной жидкостью - клейстером. Оператор должен прижать излучатель к этой поверхности.

Оператор ультразвукового дефектоскопа, находящийся снаружи легкого корпуса, с помощью сканирующего приемного преобразователя (11) по максимуму сигнала на экране дефектоскопа при концентричном расположении излучателя и приемника должен обнаружить местоположение вынесенной контрольной точки (13) и обозначить его маркером или кернением. Соединительный кабель излучателя к дефектоскопу может достигать нескольких десятков метров и пропускается через штатные горловины в легком корпусе вблизи места измерений. Для локализации области сканирования может быть использована предварительная корпусная разметка или метод «простукивания». Изложенная ультразвуковая технологическая операция, не являющаяся предметом изобретения, поясняется на фигуре 5.

По описанной выше методике производится вынос на поверхность легкого корпуса всех внешних контрольных точек прочного корпуса для сечения выбранного шпангоута (18).

Измерение координат вынесенных контрольных точек производится (см. фиг. 1, 2) с помощью тахеометра или трекера (15) с использованием ряда стоянок средства измерения, объединенных в общей локальной опорной сети (16), в корабельной системе координат (19).

Координаты вынесенной внешней контрольной точки (см. фиг. 1) преобразуют в координаты виртуальной точки, лежащей на радиусе-векторе, проходящем через исходную точку, по формулам: X2=X1+(I+h)Sinα (т.к. для цилиндрического корпуса Sinα=0, то и X2=X1), Y2=Y1, Z2=Z1, где Х1, Y1, Z1 - координаты внешней контрольной точки, Х2, Y2, Z2 - координаты полученной виртуальной точки (20), I - расстояние, измеренное с помощью дальномера, α - угол наклона прочного корпуса к центральной оси, h - толщина обшивки легкого корпуса, и затем определяют истинные координаты каждой исходной контрольной точки прочного корпуса, перенося в направлении к нему расположение виртуальной точки вдоль радиус-вектора на расстояние (I+h)Cosα (для цилиндрического корпуса Cosα=1, поэтому расстояние будет равным I+h).

После определения трехмерным средством измерения координат внешней точки в корабельной системе координат преобразование ее в виртуальную точку, а также определение истинных координат для каждой исходной контрольной точки производят, например, с применением ПО трехмерного средства измерения или компьютера.

После определения истинных координат исходных точек каждого проверяемого сечения их значения вводят в ЭВМ, которая по полученным данным определяет отклонение формы прочного корпуса ПЛ от круговой в каждом сечении.

Источник информации: Корнев А.В. «Опыт использования комплекта компьютеризированных оптоэлектронных измерительных систем в судостроении», Судостроение, 2011, №5, с. 40-44.

Способ измерения формы прочного корпуса подводной лодки, закрытого конструкциями легкого корпуса, предусматривающий разметку исходных контрольных точек на наружной поверхности прочного корпуса и определение их координат с использованием трехмерного средства измерения типа тахеометр или трекер, которое устанавливают снаружи легкого корпуса, отличающийся тем, что в каждой исходной контрольной точке поочередно устанавливают по нормали к прочному корпусу лазерный дальномер и определяют расстояние до противолежащей точки на внутренней поверхности легкого корпуса и маркируют ее, затем в эту точку устанавливают преобразователь ультразвукового дефектоскопа и в режиме теневого метода контроля наносят на наружную поверхность легкого корпуса соответствующую внешнюю контрольную точку, после чего на эту точку устанавливают отражатель и определяют трехмерным средством измерения ее координаты в корабельной системе координат, далее координаты внешней точки преобразуют в координаты виртуальной точки, лежащей на радиусе-векторе, проходящем через исходную точку, по формулам:

X2=X1+(l+h)Sinα, Y2=Y1; Z2=Z1,

где X1, Y1, Z1 - координаты внешней контрольной точки;

X2, Y2, Z2 - координаты полученной виртуальной точки;

l - расстояние, измеренное с помощью дальномера;

α - угол наклона прочного корпуса к центральной оси;

h - толщина обшивки легкого корпуса,

и определяют истинные координаты каждой исходной контрольной точки прочного корпуса, перенося в направлении прочного корпуса расположение виртуальной точки вдоль радиуса-вектора на расстояние, равное: (l+h)Cosα, после этого полученные значения координат вводят в ЭВМ, которая по найденным данным определяет отклонение формы прочного корпуса подводной лодки от круговой в разных сечениях.



 

Похожие патенты:

Заявленная группа изобретений относится к контролю качества изделия. Согласно изобретению эта система содержит защищенную камеру, содержащую входной порт, через который контролируемое изделие заходит в указанную камеру, и, по меньшей мере, один выходной порт.

Изобретение относится к оптико-электронным методам измерения плоскостности готового проката и может быть использовано на предприятиях по производству листового проката, в частности автолиста.

Изобретение относится к способам измерения геометрической и оптической структуры оптического компонента. Способ включает этапы (S1) измерения первого сигнала (MS1), возникающего из первого преобразования указанной первой поверхностью (10) первого сигнала (PS1) от датчика; (S2) измерения второго сигнала (MS2), возникающего из второго преобразования по меньшей мере указанной второй поверхностью (20) второго сигнала (PS2) от датчика; (S3) определения третьего преобразования, обеспечивающего возможность преобразования от первого набора координат (R1), связанных с измерением первого сигнала (MS1), ко второму набору координат (R2), связанных с измерением второго сигнала (MS2); (S10) оценки указанной первой поверхности (10), осуществляемой на основании первого сигнала (MS1), указанного первого моделирования и первого показателя (VI) качества, определяющего расхождение между первой оценкой (ES1) и первым сигналом (MS1); и (S20) оценки указанной второй поверхности (20), осуществляемой на основании второго сигнала (MS2), указанного второго моделирования, указанного третьего преобразования и второго показателя (V2) качества, определяющего расхождение между оценкой (ES2) и вторым сигналом (MS2).

Использование: для измерении отклонений округлости формы крупногабаритных тел вращения, главным образом сечений шпангоутов корпусов цилиндрических или конических вставок судов и подводных лодок.

Изобретение относится к области измерительной техники и касается способа и устройства определения топографии поверхности подложки с покрывающим слоем. Способ включает в себя измерение высоты поверхности покрывающего слоя на подложке по координатам x-y с использованием хроматического измерения белого света, измерение толщины указанного слоя по координатам x-y с использованием ультрафиолетовой интерферометрии и определение высоты поверхности подложки в координатах x-y по результатам измерений высоты поверхности и толщины слоя.

Изобретение относится к области измерительной техники, а именно к способам измерения малых перемещений поверхностей объектов контроля оптическими лазерными датчиками, основанными на использовании интерференционных методов.

Группа изобретений относится к способам изготовления сегмента бетонной башни ветроэнергетической установки, а также измерительному устройству для измерения сегмента башни.

Изобретение относится к области микробиологии. Способ обнаружения кластера микроорганизмов на поверхности предусматривает этапы, на которых: а) определяют топографическое представление упомянутой поверхности; b) обнаруживают на топографическом представлении, по меньшей мере, один контур, ограничивающий область, которая может соответствовать скоплению биологических частиц.

Изобретение относится к измерению центричности токопроводящей жилы в изоляционной оболочке. Кабель (28), образованный токопроводящей жилой с ее изоляционной оболочкой, перемещают в направлении (14) подачи.

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических, предназначенных для хранения и проведения торговых операций с нефтью, нефтепродуктами и прочими жидкостями.

Заявленное изобретение относится к устройствам для распознавания пользователя методом 3D сканирования и может быть использовано для обеспечения пропуска пользователя в область доступа или выхода из области доступа. Заявленное бесконтактное биометрическое устройство идентификации пользователя по чертам лица содержит корпус, устанавливаемый перед входом/выходом из области доступа на высоте среднего роста пользователя от уровня пола; кронштейн, жестко закрепленный в корпусе и предназначенный для крепления камеры для 3D сканирования; и камеру для 3D сканирования лица пользователя, установленную в корпусе на кронштейне так, что оптическая ось камеры образует с перпендикуляром к вертикальной плоскости угол α в пределах от 0 до 40 град. в направлении вверх или вниз от горизонтали. При этом угол β зрения камеры ограничен и составляет от 45 до 75 град. Также устройство содержит базу данных изображений лиц пользователей, имеющих право входа в область доступа; и установленные в корпусе: блок формирования изображения, электрически связанный с камерой для 3D сканирования; проекционную систему, работающую по методу структурной подсветки, установленную на кронштейне в непосредственной близости с камерой так, что оптическая ось проектора перпендикулярна плоскости кронштейна; дисплей для отображения лица пользователя, размещенный на передней панели корпуса и связанный с блоком формирования изображения; блок регистрации отсканированного изображения, связанный с камерой и с блоком вычислений; блок сравнения 3D изображений лиц пользователей с изображениями, сохраненными в базе данных, связанный с базой данных изображений лиц пользователей; средство управления механизмом открывания запорного устройства, установленного на входе/выходе области доступа. Причем средство управления связано с выходом блока сравнения 3D изображений лиц пользователей с изображениями, сохраненными в базе данных, для обеспечения доступа пользователя в область доступа. 2 н. и 21 з.п. ф-лы, 12 ил.

Изобретение относится к аппарату и способу для определения внутренних профилей полых устройств. Техническим результатом является повышение точности определения внутреннего профиля конструктивного элемента. Аппарат включает корпус, имеющий первую ось, измерительное средство, выполненное с возможностью испускания светового луча вдоль второй оси, смещенной на расстояние (а) относительно первой оси, отклоняющее средство, выполненное с возможностью наведения испускаемого светового луча на внутреннюю поверхность конструктивного элемента, и приводное средство, выполненное с возможностью вращения измерительного средства вокруг первой оси. 2 н. и 16 з.п. ф-лы, 6 ил.

Изобретение относится к токоприемникам транспортных средств. Система для определения состояния токосъемника транспортного средства содержит устройство с видеокамерами для цифровой съемки изображений токосъемника и устройство для оценки записанных изображений на основе технологии сбора, передачи и обработки данных. Токосъемник содержит оптически распознаваемые маркировки (MP, MF, MS, MC, MB), позиция, и/или форма, и/или содержание поверхности, и/или цвет которых автоматически определяется устройством оценки изображений. Контактная накладка токосъемника содержит протирающуюся в направлении (V) износа маркировку (MP, MF, MS, MC), позиция, и/или форма, и/или содержимое поверхности, и/или цвет которой изменяются с возрастанием износа. Технический результат заключается в более быстром и надежном распознании фактического состояния токоприемника. 5 з.п. ф-лы, 7 ил.

Средство формирования изображения содержит источник света и покрывающую крышку, чтобы покрывать область поверхности объекта. Часть внутренней поверхности крышки, соответствующая заданному угловому диапазону от направления нормали к поверхности объекта, лежащая прямо напротив заданной области, зачернена. Другая часть внутренней поверхности покрывающей крышки, соответствующая другому угловому диапазону, выполнена рассеивающей и испускающей на поверхность объекта свет, который испущен источником света. Технический результат заключается в обеспечении формирования контрастного изображения зеркальной поверхности, которая содержит выпуклые и вогнутые элементы. 2 н. и 8 з.п. ф-лы, 11 ил.

Изобретение относится к неразрушающему контролю заготовок. Способ контроля заготовки включает сохранение данных модели, связанных с заготовкой, в систему контроля и определение относительного положения измерителя удаленности по отношению к заготовке. Также способ включает калибровку точки обзора для системы контроля по отношению к модели на основании положения измерителя удаленности по отношению к заготовке и измерение данных о фактическом расстоянии удаленности одного элемента отображения измерителя удаленности по отношению к заготовке. На основании данных о фактическом расстоянии удаленности определяют, удовлетворяет ли заготовка предварительно установленным критериям контроля. Повышается точность и надежность контроля. 2 н. и 13 з.п. ф-лы, 3 ил.

Изобретение относится к области контрольно-измерительной техники и может использоваться для определения комплекса геометрических параметров поперечного сечения тел квазицилиндрической формы. Способ определения геометрических параметров сечения тела заключается в том, что измеряют расстояния от базовой точки, расположенной на фиксированной дистанции от центральной точки, находящейся в пределах контролируемого поперечного сечения тела, до соответствующих контрольных точек на контуре сечения тела по направлению к этой центральной точке при вращении контролируемого поперечного сечения тела вокруг оси, проходящей через центральную точку перпендикулярно плоскости сечения, начиная от начального углового положения через каждые одинаковые угловые интервалы в пределах одного оборота, и определяют длины отрезков между центральной и контрольными точками путем вычитания измеренных расстояний из расстояния между базовой и центральной точками. Затем определяют координаты всех полученных контрольных точек и геометрические параметры поперечного сечения тела: длину контура, площадь, максимальный и минимальный ортогональные размеры и их отношение - индекс формы. Технический результат - снижение трудоемкости определения комплекса геометрических параметров поперечного сечения тела. 2 з.п. ф-лы, 1 ил., 1 табл.
Наверх