Система эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда

Изобретение относится к схемам зарядки батарей, а именно к системам или способам эксплуатации литий-ионных аккумуляторных батарей, и представляет собой систему эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда. Система эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда, включающая зарядное устройство, подключенное к нагрузке, литий-ионную аккумуляторную батарею, подключенную к нагрузке через силовой коммутатор и силовой полупроводниковый элемент, причем силовой полупроводниковый элемент и силовой коммутатор включены параллельно, систему управления силовым коммутатором. 1 ил., 2 табл.

 

Техническое решение относится к схемам зарядки батарей, а именно к системам или способам эксплуатации литий-ионных аккумуляторных батарей, и представляет собой систему эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда.

Из существующего уровня техники широко известны незапатентованные традиционные системы для эксплуатации какой-либо аккумуляторной батареи в режиме поддерживающего заряда, включающие в себя: зарядное устройство, подключенное к нагрузке, аккумуляторную батарею, подключенную к нагрузке параллельно зарядному устройству.

Общими признаками заявляемого решения и приведённой традиционной системы являются:

- зарядное устройство, подключенное к нагрузке;

- аккумуляторная батарея, подключенная к нагрузке параллельно зарядному устройству.

Отличительными признаками заявляемого решения от приведённой традиционной системы являются:

- силовой коммутатор, подключенный к выходу литий-ионной аккумуляторной батареи;

- силовой полупроводниковый элемент, подключенный к выходу литий-ионной аккумуляторной батареи параллельно силовому коммутатору;

- система управления, управляющая силовым коммутатором.

Из существующего уровня техники известен патент РФ на изобретение № 2496189 «Способ эксплуатации литий-ионной аккумуляторной батареи». В указанном изобретении описан способ эксплуатации литий-ионной аккумуляторной батареи, заключающийся в контроле напряжения аккумуляторов, проведении зарядов, разрядов, периодической балансировке аккумуляторов по напряжению, проведении подзаряда и хранения в подзаряженном состоянии.

Общими признаками заявляемого решения и приведённой системы являются:

- зарядное устройство, подключенное к нагрузке;

- литий-ионная аккумуляторная батарея, подключенная к нагрузке;

- система управления, которая контролирует состояние батареи.

Отличительными признаками заявляемого решения от приведённой системы являются:

- силовой коммутатор, подключенный к выходу литий-ионной аккумуляторной батареи;

- силовой полупроводниковый элемент, подключенный к выходу литий-ионной аккумуляторной батареи параллельно силовому коммутатору;

- зарядное устройство, подключенное к нагрузке постоянно (режим поддерживающего заряда).

Из существующего уровня техники известен патентный документ США US5493197A «Усовершенствованная система аккумуляторных батарей», которая включает: литий-ионную аккумуляторную батарею, зарядное устройство для зарядки системы аккумуляторных батарей, нагрузку, систему управления, которая контролирует состояние аккумуляторной батареи и ограничивает ток заряда, посредством подключения к аккумулятору дополнительного шунтирующего резистора. Система работает таким образом, что при заряде аккумуляторной батареи до определенной степени заряда зарядное устройство просто отключается.

Общими признаками заявляемого решения и приведённой системы являются:

- литий-ионная аккумуляторная батарея,

- зарядное устройство для зарядки системы аккумуляторных батарей,

- нагрузка,

- система управления.

Отличающимися признаками предлагаемого технического решения и предлагаемого способа являются:

- силовой коммутатор, подключенный к выходу литий-ионной аккумуляторной батареи;

- силовой полупроводниковый элемент, подключенный к выходу литий-ионной аккумуляторной батареи параллельно силовому коммутатору;

- зарядное устройство, подключенное к нагрузке постоянно (режим поддерживающего заряда).

Технический результат предлагаемой системы эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда заключается в обеспечении максимальных сроков эксплуатации литий-ионной аккумуляторной батареи. Увеличение сроков эксплуатации литий-ионной аккумуляторной батареи в заявляемом техническом решении происходит за счет ограничения ее степени заряда.

Технический результат достигается за счет того, что система эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда включает в себя зарядное устройство, подключенное к нагрузке, литий-ионную аккумуляторную батарею, подключенную к нагрузке через силовой коммутатор и силовой полупроводниковый элемент, причем силовой полупроводниковый элемент и силовой коммутатор включены параллельно, систему управления силовым коммутатором.

Литий-ионная аккумуляторная батарея – аккумуляторная батарея, состоящая из нескольких последовательно соединенных литий-ионных аккумуляторов.

Режим поддерживающего заряда (буферный режим) – режим заряда, при котором батарея постоянно подключена к зарядному устройству и к нагрузке. Если в электрической сети есть напряжение, то нагрузку питает зарядное устройство, одновременно оно компенсирует ток саморазряда аккумуляторной батареи. В случае отключения напряжения в электрической сети, батарея разряжается на подключенную к ней нагрузку без какого-либо перерыва в электроснабжении.

Силовой коммутатор – коммутационное устройство, предназначенное для подключения электрической нагрузки.

Силовой полупроводниковый элемент – устройство, обеспечивающее передачу электрической энергии только в одном направлении.

Система управления – система, обеспечивающая работу аккумуляторной батареи и силового коммутатора в соответствии с заданными алгоритмами.

Система управления в заявленном техническом решении отключает силовой коммутатор в соответствии с заданным алгоритмом, тем самым прерывая заряд аккумуляторной батареи, при этом аккумуляторная батарея остается подключенной к нагрузке в любой момент времени.

Режим хранения аккумуляторной батареи – режим, при котором она не заряжается и не разряжается.

Токовая пауза – перерыв в электроснабжении нагрузки.

Аварийный режим – режим разряда аккумуляторной батареи на нагрузку в отсутствие напряжения на выходе зарядного устройства.

Такая система позволяет использовать литий-ионные аккумуляторные батареи в источниках бесперебойного питания (в том числе on-line ИБП) и в системах оперативного постоянного тока (СОПТ), призванных обеспечить бесперебойным (без токовой паузы в случае исчезновения напряжения сети электроснабжения) питанием критически важных потребителей. При этом аккумуляторная батарея эксплуатируется в так называемом режиме поддерживающего заряда (буферном режиме), при котором питание потребителей осуществляется от зарядных устройств, а аккумуляторная батарея всегда подключена к нагрузке параллельно с зарядным устройством. Зарядное устройство (ЗУ) при этом компенсирует токи саморазряда батареи.

От аккумуляторной батареи требуются длительные сроки ее эксплуатации – от 15 лет и выше. Последнее требование является определяющим при выборе оборудования, используемого на подстанциях или электростанциях. Для обеспечения требуемых сроков эксплуатации литий-ионных аккумуляторных батарей, недопустимо длительное нахождение их в полностью заряженном состоянии. Литий-ионные аккумуляторы, в отличие от свинцово-кислотных или никель-кадмиевых, недопустимо эксплуатировать в состоянии 100% степени заряда. При эксплуатации литий-ионных аккумуляторных батарей в таком состоянии происходит их ускоренная деградация, обусловленная запуском паразитных электрохимических реакций. Заявляемое техническое решение обеспечивает длительную эксплуатацию литий-ионной аккумуляторной батареи в режиме поддерживающего заряда, обеспечивая нужный заряд батареи не выше 95 %, при этом оставляя батарею постоянно подключенной к нагрузке (следовательно, к выходу зарядного устройства) без какого-либо отключения, как это предполагают традиционные способы ограничения заряда, при которых отключают ЗУ, и батарея отключается также и от нагрузки.

Схема системы эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда представлена на фигуре, где:

1 – зарядное устройство;

2 – нагрузка;

3 – литий-ионная аккумуляторная батарея;

4 – силовой коммутатор;

5 – силовой полупроводниковый элемент;

6 – система управления.

Система эксплуатации литий-ионных аккумуляторных батарей в режиме поддерживающего заряда, в составе систем оперативного постоянного тока или он-лайн источника бесперебойного питания (ИБП), реализована таким образом, что литий-ионная аккумуляторная батарея - 3 подключена к выходу зарядного устройства - 1 через силовой коммутатор - 4, обеспечивающий прерывание цепи заряда по команде системы управления - 6, в случае заряда литий-ионной аккумуляторной батареи - 3 до некоторой величины (как правило, не более 95%). Заряд батареи - 3 вычисляется либо через подсчет зарядного тока (определение кулоновского интеграла), либо через определение принимаемого тока при подаче на батарею - 3 определенного напряжения, либо иным другим известным способом. Таким образом, аккумуляторная батарея - 3 в нужный момент времени отключается от выхода зарядного устройства - 1 и дальше не заряжается. И при этом литий-ионная аккумуляторная батарея – 3 остается подключенной к нагрузке - 2 через силовой полупроводниковый элемент – 5 (например, силовой диод), включенный параллельно силовому коммутатору - 4, таким образом, что он не дает заряжаться литий-ионной аккумуляторной батарее - 3, но позволяет литий-ионной аккумуляторной батарее – 3 питать нагрузку – 2, в случае исчезновения питания на выходе зарядного устройства - 1 без токовой паузы, в результате чего аккумуляторная батарея - 3 не заряжается выше установленной величины и, тем самым, обеспечиваются длительные сроки ее эксплуатации, а компенсация разряда батареи происходит благодаря системе управления - 6, которая по специальному алгоритму, обеспечивает включение силового коммутатора – 4 в нужный момент, поддерживая тем самым заряд батареи - 3 на нужном уровне.

Система управления - 6 включает силовой коммутатор – 4, обеспечивая питание батареи - 3 от зарядного устройства - 1 в следующих случаях:

- после исчезновения переменного напряжения на входе зарядного устройства - 1 на установленную величину времени и последующего его (напряжения) восстановления (как правило, принята величина 10 минут);

- при разряде батареи - 3 на установленную величину заряда, определенную через измерение напряжения на батарее - 3 или иным способом;

- периодически один раз в установленный промежуток времени (например, один раз в месяц) - для компенсации тока саморазряда батареи - 3;

- в любом другом случае по команде системы управления - 6, согласно заданной программе.

Данный режим обеспечивает работу аккумуляторной батареи – 3, при котором она:

- не заряжается выше определенной величины;

- не разряжается ниже установленной величины;

- готова питать нагрузку без токовой паузы в любой момент времени без токовой паузы из-за включения силового коммутатора - 4;

- фактически эксплуатируется в режиме хранения – наиболее щадящем режиме для аккумуляторов.

Ниже описаны основные состояния системы эксплуатации литий-ионной аккумуляторной батареи в режиме, поддерживающем заряд.

В режиме заряда:

Силовой коммутатор – 4 включен, напряжение на выходе зарядного устройства - 1 соответствует установленному напряжению заряда для данного типа аккумуляторной батареи - 3, батарея - 3 заряжается в обычном режиме, как правило, в режиме «постоянная величина тока»/«постоянная величина напряжения».

В режиме поддерживающего заряда:

Силовой коммутатор – 4 отключен, напряжение на выходе зарядного устройства – 1 не меняется, заряд батареи – 3 не происходит, так как аккумуляторная батарея - 3 подключена к выходу зарядного устройства - 1 через закрытый переход силового полупроводникового элемента - 5. В случае перехода в аварийный режим напряжение на выходе зарядного устройства – 1 понижается (или исчезает вовсе), и батарея - 3 через открытый переход силового полупроводникового элемента - 5 начинает питать нагрузку - 2 без токовой паузы. При этом в случае отсутствия напряжения сети электроснабжения в течение установленного времени происходит включение силового коммутатора - 4, и нагрузка - 2 питается от батареи – 3 напрямую, минуя силовой полупроводниковый элемент - 5. В данном режиме происходит медленный разряд батареи – 3 вследствие токов саморазряда и питания ее элементов системы управления - 6. При этом потребляемый от батареи – 3 ток составляет от единиц до десятков миллиампер.

В режиме аварийного разряда заряда (при исчезновении переменного напряжения собственных нужд):

Силовой коммутатор - 4 включен, батарея - 3 питает нагрузку - 2.

Данные логические состояния описаны в таблице 1.

Таблица 1

Режим батареи - 3 Положение силового коммутатора - 4 Статус батареи – 3. Ток, А
Заряд ON Батарея – 3 заряжается. Ток определяется уставкой зарядного устройства
Поддерживающий заряд OFF Батарея - 3 разряжается током саморазряда. Ток ~ 10-50 мА.
Аварийный разряд ON Батарея - 3 разряжается. Ток определяется величиной нагрузки - 2

Условие включения системой управления – 6 силового коммутатора - 4:

1. Исчезло напряжение сети электроснабжения на 10 секунд и более (параметр настраиваемый). Сигнал на включение силового коммутатора – 4 подает система управления – 6;

2. Система управления – 6 зафиксировала снижение степени заряда батареи - 3 на величину более 10% (снижение уровня напряжения батареи - 3). Сигнал на включение силового коммутатора – 4 дает система управления батареи – 3;

3. Системы управления – 6 дает сигнал на включение силового коммутатора – 4 согласно заданной программе.

Таблица 2. Диаграмма состояний силового коммутатора - 4

Сигнал системы управления - 6 Положение силового коммутатора - 4 Приоритет выполнения системой управления - 6
Напряжение сети электроснабжения исчезло на установленное время (настраиваемый параметр) ON 1
Снижение степени заряда батареи - 3 на 10% (настраиваемый параметр) ON 3
Согласно заданной программе системы управления - 6 ON 4
Снижение тока заряда батареи – 3 при заряде фиксированным напряжением на выходе зарядного устройства – 1 (настраиваемый параметр) OFF 2

Нужно отметить, что для реализации заявленного технического решения не предъявляется дополнительных требований к зарядному устройству, что позволяет без существенных доработок использовать штатное оборудование, использующееся для эксплуатации свинцово-кислотных аккумуляторных батарей.

Использование предлагаемого изобретения с совокупностью всех существенных признаков позволяет реализовать систему эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда, обеспечивающую максимальные сроки эксплуатации батареи.

Система эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда, включающая зарядное устройство, подключенное к нагрузке, литий-ионную аккумуляторную батарею, подключенную к нагрузке через силовой коммутатор и силовой полупроводниковый элемент, причем силовой полупроводниковый элемент и силовой коммутатор включены параллельно, систему управления силовым коммутатором.



 

Похожие патенты:

Использование – в области электротехники. Технический результат - обеспечение бесперебойным электропитанием потребителей группы А первой категории, с учетом фиксации момента аварийного включения резерва.

Использование: в области электротехники. Технический результат – повышение надежности системы электропитания (СЭП), обеспечение живучести и длительной эксплуатации космического аппарата (КА).

Изобретение относится к области преобразовательной техники, в частности к бортовым системам электропитания космических аппаратов, и может быть использовано при проектировании и создании систем электропитания автоматических космических аппаратов на основе солнечных и аккумуляторных батарей.

Устройство электропитания нагрузки с переменным потреблением электроэнергии, в частности печатной платы, способной переходить в состояние ожидания, содержит только два электронных прерывателя (Q1, Q3), управляемых нагрузкой (С) с учетом необходимого потребления электроэнергии.

Изобретение относится к электротехнике, а именно к автономным системам электропитания (СЭП) космических аппаратов (КА), использующим в качестве первичных источников энергии батареи фотоэлектрические (БФ), а в качестве накопителей энергии - аккумуляторные батареи (АБ).

Использование: в области электротехники. Технический результат - повышение надежности бесперебойного электроснабжения потребителей постоянным током и безопасности работы системы.

Использование: в области электротехники. Технический результат - обеспечение надежной зарядки и разрядки элемента накопления энергии.

Изобретение относится к электротехнике, а именно к системам электроснабжения космических аппаратов с использованием в качестве первичных источников энергии солнечных батарей, а в качестве накопителей энергии - аккумуляторных батарей.

Изобретение относится к области космической энергетики, конкретнее к бортовым системам электропитания (СЭП) космических аппаратов (КА). Технический результат - увеличение надежности.

Изобретение относится к области космической энергетики, конкретнее к бортовым системам электропитания (СЭП) космических аппаратов (КА). Предлагается способ электропитания космического аппарата от солнечной батареи, подключенной своими плюсовой и минусовой шинами к стабилизатору напряжения, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входу разрядного и выходу зарядного устройств, причем стабилизатор напряжения солнечной батареи и разрядное устройство аккумуляторной батареи выполнены в виде мостовых инверторов с общим трансформатором с n выходными обмотками, где n≥2, а вход зарядного устройства соединен с одной из выходных обмоток трансформатора, к другим же (n-1) выходным обмоткам трансформатора подключены переходные устройства связи с нагрузками со своими номиналами выходного напряжения.

Использование – в области электротехники. Технический результат – повышение эффективности зарядки. Согласно изобретению зарядное устройство содержит: цепь заряда, цепь накопления энергии и управляемый ключ, причем цепь заряда сконфигурирована для зарядки заряжаемого объекта, цепь накопления энергии сконфигурирована для накопления энергии, когда цепь заряда заряжает заряжаемый объект, и зарядки заряжаемого объекта, когда цепь заряда выключена, и управляемый ключ сконфигурирован так, чтобы поочередно включать и выключать цепь заряда согласно управляющим командам, принимаемым периодически, выключать цепь накопления энергии, когда цепь заряда включена, и включать цепь накопления энергии, когда цепь заряда выключена. Кроме того, описывается способ зарядки упомянутым выше зарядным устройством. 2 н. и 1 з.п. ф-лы, 9 ил.

Использование: в области электротехники. Технический результат - повышение удельных энергетических характеристик и надежности эксплуатации системы электропитания (СЭП) космических аппаратов (КА). Согласно способу электропитания космического аппарата от солнечной батареи, солнечная батарея подключена через устройство поворотное с токосъемниками к входным плюсовой и минусовой шинам стабилизированного преобразователя напряжения, аккумуляторная батарея подключена своими плюсовой и минусовой шинами к входу разрядного и выходу зарядного устройств, причем стабилизатор напряжения солнечной батареи выполнен в виде мостового инвертора с трансформатором с n выходными обмотками, где n≥2, а вход зарядного устройства соединен с одной из выходных обмоток трансформатора, к другим же (n-1) выходным обмоткам трансформатора подключены переходные устройства связи с нагрузками со своими номиналами выходного напряжения. При этом солнечную батарею выбирают с максимальным начальным выходным током, исходя из конструктивных возможностей используемых токосъемников поворотного устройства космического аппарата, а выходное напряжение в рабочей точке в конце ресурса выбирают исходя из соотношения: UСБ≥Рн/(IСБ, kпр), где Рн - максимальная мощность нагрузки с учетом мощности для заряда аккумуляторной батареи, Вт; UСБ - выходное напряжение солнечной батареи в рабочей точке в конце ресурса, B; IСБ - выходной ток солнечной батареи в рабочей точке в конце ресурса, A; kпр – коэффициент, учитывающий потери на преобразование напряжения, а число фотопреобразователей в одной последовательной цепи солнечной батареи выбирают исходя из соотношения: , где Uэл - напряжение одного фотопреобразователя в рабочей точке в конце ресурса солнечной батареи, B. 1 ил.

Изобретение относится к области электротехники и может быть использовано при разработке и создании систем электропитания космических аппаратов с использованием солнечных (СБ) и аккумуляторных (АБ) батарей. Согласно изобретению система электропитания космического аппарата с регулированием мощности солнечной батареи инверторно-трансформаторным преобразователем содержит солнечную батарею, датчик тока, систему управления с экстремальным шаговым регулятором мощности СБ, регулятор напряжения, выполненный в виде мостового инвертора с входным L-фильтром, трансформатор с первичной и вторичной обмотками, выпрямитель, зарядное устройство, устройство контроля степени заряженности АБ, аккумуляторную батарею, разрядное устройство и нагрузку. Техническим результатом изобретения является исключение возможности возникновения электростатических разрядов между цепочками фотодиодов солнечной батареи и элементами токосъема при условии обеспечения простоты согласования уровней напряжения источников энергии (солнечной и аккумуляторной батарей) и нагрузки с учетом реализации режима экстремального регулирования мощности СБ, а также обеспечение уменьшения габаритной мощности силовых элементов. 4 ил.

Изобретение относится к области преобразовательной техники, в частности к бортовым системам электропитания космических аппаратов, и может быть использовано при проектировании и создании систем электропитания автоматических космических аппаратов на основе солнечных и аккумуляторных батарей (СБ и АБ). Согласно изобретению система электропитания космического аппарата содержит солнечную батарею, аккумуляторную батарею, регулятор напряжения и разрядное устройство, выполненные в виде мостовых инверторов напряжения с входными емкостными С1- и С2-фильтрами, активный выпрямитель с выходным емкостным С3-фильтром, два трансформатора, резонансный параллельно-последовательный контур, систему управления, датчик тока и нагрузку. Отличительной особенностью системы является способ подключения вторичных обмоток трансформаторов с параллельно-последовательным парциальным резонансным контуром, образованным двумя парциальными контурами, последовательным и параллельным, каждый из которых состоит из дросселя и конденсатора. При этом параллельно-последовательный парциальный резонансный контур обеспечивает согласование солнечной батареи, являющейся источником тока, и аккумуляторной батареи, являющейся источником напряжения. В системе реализовано частотное и широтно-импульсное регулирование напряжения инверторов. Техническим результатом изобретения является повышение энергетической эффективности высоковольтной системы электропитания космического аппарата за счет реализации «мягкой» коммутации транзисторов в резонансном режиме работы преобразователей и исключение возможности возникновения электростатических разрядов между цепочками фотодиодов СБ за счет работы преобразователя на токовой ветви ВАХ СБ. 7 ил.

Изобретение относится к электротехнике, а именно к схемам питания при параллельной работе в сетях с использованием как электрических аккумуляторов, так и других источников постоянного тока, и может быть использовано в агрегатах резервного или бесперебойного питания сети постоянного тока, преимущественно работающей от нестабильных источников электропитания, мощность которых меняется в широких пределах. Система автономного электроснабжения содержит две аккумуляторные батареи, каждая из которых через соответствующий ключ подключена к шине постоянного тока. Аккумуляторные батареи соединены между собой через третий ключ, который подключен к зарядному устройству. Первый линейный датчик тока установлен на линии, соединяющей первую ветряную электроустановку с первым выпрямителем, причем первый линейный датчик тока подключен к первому контроллеру, который соединен с первым выпрямителем. Выход дизельной генераторной установки соединен с входом второго выпрямителя. Вторая ветряная электроустановка соединена с третьим выпрямителем, причем на соединяющей их линии установлен второй линейный датчик тока, который подключен ко второму контроллеру, который соединен с третьим выпрямителем. Электроприемники подключены к автономному инвертору. Балластная нагрузка соединена с регулятором балластной нагрузки. Зарядное устройство, первый, второй и третий выпрямители, автономный инвертор, регулятор балластной нагрузки подключены к шине постоянного тока. Технический результат: упрощение конструкции, повышение срока службы аккумуляторных батарей. 1 ил.

Использование – в области электротехники. Технический результат – оптимизация управления гибридной системой аккумулирования энергии. Согласно изобретению устройство управления и соответствующий способ управления используют фильтрование для отдельного модуля в ряде контроллеров распределения мощности, чтобы получить командный сигнал распределения мощности для соответствующего модуля из множества различных модулей аккумулирования энергии в гибридной системе аккумулирования энергии. Гибридная система аккумулирования энергии включает в себя два или более типов модулей аккумулирования энергии, при этом командный сигнал распределения мощности для каждого из модулей аккумулирования энергии получают путем фильтрования входного сигнала, используя фильтр, имеющий характеристику фильтра, которая адаптирована к характеристикам аккумулирования энергии модуля аккумулирования энергии. Входной сигнал отражает изменения нагрузки на электрическую сеть и может генерироваться локально или обеспечиваться удаленным узлом. Несмотря на то что контуры регулирования распределения мощности, используемые для каждого модуля аккумулирования энергии, предпочтительно могут быть одинаковыми в смысле архитектуры и реализации, каждый такой контур использует адаптированное индивидуальное фильтрование и, возможно, индивидуализированные значения одного или более других параметров управления, так что каждый модуль аккумулирования энергии управляется таким образом, что дополняются его характеристики аккумулирования энергии. 2 н. и 16 з.п. ф-лы, 11 ил.

Использование – в области электротехники. Технический результат – оптимизация управления гибридной системой аккумулирования энергии. Согласно изобретению устройство управления и соответствующий способ управления используют фильтрование для отдельного модуля в ряде контроллеров распределения мощности, чтобы получить командный сигнал распределения мощности для соответствующего модуля из множества различных модулей аккумулирования энергии в гибридной системе аккумулирования энергии. Гибридная система аккумулирования энергии включает в себя два или более типов модулей аккумулирования энергии, при этом командный сигнал распределения мощности для каждого из модулей аккумулирования энергии получают путем фильтрования входного сигнала, используя фильтр, имеющий характеристику фильтра, которая адаптирована к характеристикам аккумулирования энергии модуля аккумулирования энергии. Входной сигнал отражает изменения нагрузки на электрическую сеть и может генерироваться локально или обеспечиваться удаленным узлом. Несмотря на то что контуры регулирования распределения мощности, используемые для каждого модуля аккумулирования энергии, предпочтительно могут быть одинаковыми в смысле архитектуры и реализации, каждый такой контур использует адаптированное индивидуальное фильтрование и, возможно, индивидуализированные значения одного или более других параметров управления, так что каждый модуль аккумулирования энергии управляется таким образом, что дополняются его характеристики аккумулирования энергии. 2 н. и 16 з.п. ф-лы, 11 ил.

Предложен способ и устройство для зарядки конденсатора большой емкости, способного сохранять энергию, применяемого, например, для приведения в действие электромагнитов в скважинных инструментах. Электрический генератор, который могут приводить в действие течением бурового раствора, вырабатывает выпрямленное напряжение, пропорциональное частоте его вращения. Выпрямленное напряжение подают на несимметричный преобразователь постоянного напряжения на катушках индуктивности, который, в свою очередь, заряжает конденсатор большой емкости, когда напряжение на конденсаторе большой емкости падает до значения, которое находится между предварительно заданными верхним и нижним значениями. При разряде конденсатора большой емкости, например вследствие приведения в действие электромагнитных клапанов для создания импульсов давления бурового раствора, логическая схема управления также инициирует прекращение зарядки преобразователем конденсатора большой емкости в целях повышения эффективности и производительности схемы. Аккумуляторная батарея также может обеспечивать зарядку конденсатора большой емкости через ограничитель тока, а схема отключения предотвращает зарядку аккумуляторной батареей конденсатора большой емкости, когда генератор заряжает конденсатор большой емкости через преобразователь. 4 н. и 27 з.п. ф-лы, 7 ил.

Предложен способ и устройство для зарядки конденсатора большой емкости, способного сохранять энергию, применяемого, например, для приведения в действие электромагнитов в скважинных инструментах. Электрический генератор, который могут приводить в действие течением бурового раствора, вырабатывает выпрямленное напряжение, пропорциональное частоте его вращения. Выпрямленное напряжение подают на несимметричный преобразователь постоянного напряжения на катушках индуктивности, который, в свою очередь, заряжает конденсатор большой емкости, когда напряжение на конденсаторе большой емкости падает до значения, которое находится между предварительно заданными верхним и нижним значениями. При разряде конденсатора большой емкости, например вследствие приведения в действие электромагнитных клапанов для создания импульсов давления бурового раствора, логическая схема управления также инициирует прекращение зарядки преобразователем конденсатора большой емкости в целях повышения эффективности и производительности схемы. Аккумуляторная батарея также может обеспечивать зарядку конденсатора большой емкости через ограничитель тока, а схема отключения предотвращает зарядку аккумуляторной батареей конденсатора большой емкости, когда генератор заряжает конденсатор большой емкости через преобразователь. 4 н. и 27 з.п. ф-лы, 7 ил.

Использование: в области электротехники в автономных системах электропитания (СЭП) космических аппаратов (КА). Технический результат - повышение надежности эксплуатации КА путем ограничения величины кратковременного понижения выходного напряжения системы электропитания при отказе элементов, находящихся в «горячем» резерве. Согласно способу питания нагрузки постоянным током в автономной системе электропитания космического аппарата, содержащей солнечную батарею, подключенную к нагрузке, из «n» единичных нагрузок, включенных параллельно, через стабилизированный преобразователь напряжения и выходной фильтр, аккумуляторные батареи, подключенные через разрядные преобразователи к входу выходного фильтра, зарядные преобразователи, силовые цепи между выходом выходного фильтра и единичными нагрузками проектируют с сопротивлениями исходя из соотношения:ρ⋅l⋅j/Iн≥R≥Uн / Iкз.макс, где Uн - напряжение на выходе автономной системы электропитания, В; Iн - номинальный ток единичной нагрузки, А; ρ - удельное сопротивление, Ом⋅мм2/м; l - длина силовой цепи между выходом выходного фильтра и единичной нагрузкой, м; j - выбранная плотность тока, А/мм2; Iкз.макс - допустимый максимальный кратковременный ток короткого замыкания в цепи единичной нагрузки, А. Кроме того, выходные фильтры автономной системы электропитания рассчитывают с учетом допустимого кратковременного тока короткого замыкания. 1 з.п. ф-лы, 1 ил.
Наверх