Способ определения высотного профиля электронной концентрации неоднородной ионосферы

Изобретение относится к радиотехнике и геофизике, а именно к средствам мониторинга состояния ионосферы и измерения ее параметров с использованием космических аппаратов спутниковых радионавигационных систем. Достигаемый технический результат - обеспечение возможности одновременного определения высотных профилей средней электронной концентрации и среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации в неоднородной ионосфере. Сущность изобретения: по принятым радиосигналам от навигационных спутников на двух когерентных частотах ƒ1 и ƒ2 определяется полное электронное содержание NT в неоднородной ионосфере, вычисляется его среднее значение и определяется высотный профиль средней электронной концентрации ионосферы путем применения итерационной процедуры решения обратной задачи, потом вычисляется среднеквадратическое отклонение мелкомасштабных флуктуаций полного электронного содержания и интенсивность неоднородностей βи ионосферы, и затем определяется высотный профиль среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации в неоднородностях ионосферы. 2 ил.

 

Изобретение относится к радиотехнике и геофизике, а именно к средствам мониторинга состояния ионосферы и измерения ее параметров с использованием двухчастотного приемника спутниковых навигационных систем. Подобные средства мониторинга и определения параметров ионосферы могут использоваться, например, для планирования сеансов коротковолновой радиосвязи на оптимальной рабочей частоте, а также для прогнозирования показателей качества систем спутниковой связи и навигации в условиях ионосферных возмущений.

Известен способ определения параметров ионосферы и устройство для его осуществления (Патент РФ №2421753 - [1]). Последовательность действий этого способа представлена на фиг. 1 и включает в себя:

1) прием радиосигналов от навигационных спутников на двух когерентных частотах ƒ1 и ƒ2;

2) определение псевдодальностей до навигационного спутника Р1 и Р2, измеренных на частотах ƒ1 и ƒ2, и соответствующих значений фаз ϕ1 и ϕ2 принятых радиосигналов;

3) определение разности псевдодальностей ΔР1,2 по комбинации выполненных измерений псевдодальностей до навигационного спутника Р1 и Р2 и соответствующих значений фаз ϕ1 и ϕ2 принятых радиосигналов;

4) определение полного электронного содержания ионосферы NT вдоль трассы «спутник-наземный пункт»;

5) определение высотного профиля электронной концентрации ионосферы N(z) путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы. На фиг. 1 представлена последовательность действий известного способа [1].

Недостатком известного способа [1] являются его ограничения при определении высотного профиля электронной концентрации N(z) в условиях возмущений ионосферы, сопровождаемых образованием мелкомасштабных неоднородностей электронной концентрации ΔN(z). В этом случае высотный профиль электронной концентрации ионосферы N(z) становится случайной величиной, описываемой суммой регулярной и флуктуационной составляющих . Следовательно, полное электронное содержание ионосферы NT при ее возмущениях также будет представлять собой сумму его среднего значения и мелкомасштабных флуктуаций ΔNT~ΔN(z). Последние характеризуются величиной среднеквадратического отклонения мелкомасштабных флуктуаций полного электронного содержания ионосферы , которая определяется высотным профилем среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации σΔN(z) в неоднородной ионосфере.

Изменения во времени мелкомасштабных флуктуаций полного электронного содержания ионосферы ΔNT~ΔN(z) описываются характерным (средним) периодом флуктуаций , который может составлять от сотых долей до единиц секунд. Он намного меньше периода флуктуаций среднего значения полного электронного содержания ионосферы , обусловленных ее суточными вариациями или крупномасштабными неоднородностями электронной концентрации (величина обычно составляет несколько часов).

Очевидно, что реализованный в способе [1] алгоритм определения высотного профиля электронной концентрации ионосферы N(z) применим только при условии tф>>tp, когда период tф изменений ее полного электронного содержания во времени превосходит время решения tp обратной задачи определения высотного профиля электронной концентрации ионосферы N(z). При этом время решения tp составляет десятки секунд из-за использования итерационной процедуры решения обратной задачи.

Отсюда следует, что в условиях ионосферных возмущений с помощью данного способа можно определить только высотный профиль средней электронной концентрации ионосферы , который практически не изменяется в течение времени решения tp обратной задачи, что обусловлено соотношением . Определить с помощью известного способа [1] высотный профиль среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации в неоднородной ионосфере нельзя, поскольку характерный период их флуктуаций меньше времени решения обратной задачи .

Таким образом, недостатком известного способа [1] является отсутствие возможности определения высотного профиля среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации σΔN(z) в неоднородной ионосфере. Знание высотного профиля средней электронной концентрации ионосферы и высотного профиля среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации σΔN(z) необходимо для расчета оптимальных рабочих частот при планировании сеансов коротковолновой радиосвязи в условиях возмущений (диффузности) ионосферы.

Известно (Черенкова Л.Е., Чернышов О.В. Распространение радиоволн. - М.: Радио и связь, 1984. - 272 с.), что отношение высотного профиля среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации σΔN(z) к высотному профилю средней электронной концентрации ионосферы характеризует интенсивность мелкомасштабных неоднородностей электронной концентрации ионосферы βи, которая на всех ее высотах z остается практически постоянной: . Поэтому существует возможность определения высотного профиля среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации σΔN(z) в неоднородной ионосфере согласно выражению на основе данных об интенсивности мелкомасштабных неоднородностей электронной концентрации ионосферы βи и высотном профиле средней электронной концентрации неоднородной ионосферы.

Наиболее близким к предлагаемому является способ, реализованный в устройстве двухчастотного измерения интенсивности неоднородностей ионосферы (Патент РФ на полезную модель №108150, опубликованный 10.09.2011 - [2]). В устройстве [2] на основе вычисления величин полного электронного содержания NT ионосферы, его среднего значения и среднеквадратического отклонения мелкомасштабных флуктуаций полного электронного содержания ионосферы определяется значение интенсивности мелкомасштабных неоднородностей электронной концентрации ионосферы βи.

Недостаток устройства [2] заключается в том, что оно определяет только величину интенсивности мелкомасштабных неоднородностей электронной концентрации ионосферы βи, но не позволяет определить высотный профиль средней электронной концентрации ионосферы и среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации σΔN(z) относительно высотного профиля средней электронной концентрации ионосферы .

Устройство [2] работает следующим образом. Приемная антенна принимает электромагнитные колебания, излучаемые навигационными спутниками. С выхода приемной антенны напряжение uВХ(t) поступает на вход двухчастотного приемника, предназначенного для усиления и селекции принятых сигналов. С выхода двухчастотного приемника на вход аналого-цифрового процессора первичной обработки подается вектор оценки цифровых сигналов y(tj), состоящий из сигналов j=1…n видимых навигационных спутников. Опорный генератор и синтезатор частот формирует номиналы рабочих частот ƒ1 и ƒ2 на входы двухчастотного приемника, аналого-цифрового процессора первичной обработки и блока вычисления полного электронного содержания NT ионосферы. В аналого-цифровом процессоре первичной обработки реализованы схемы поиска и слежения за параметрами сигнала. С выхода аналого-цифрового процессора оценки фазового времени распространения сигнала на частотах ƒ1 и ƒ2 поступают на вход блока вычисления фазового пути сигнала для вычисления псевдодальностей до навигационного спутника Р1 и Р2. С выхода блока вычисления фазового пути сигнала значения псевдодальностей до навигационного спутника Р1 и Р2 поступают на вход блока вычисления полного электронного содержания NT ионосферы. Далее с выхода блока вычисления полного электронного содержания ионосферы оценки полного электронного содержания NT поступают на вход блока вычисления среднеквадратического отклонения мелкомасштабных флуктуаций полного электронного содержания ионосферы и на вход блока вычисления среднего значения полного электронного содержания ионосферы . С выходов блоков вычисления среднеквадратического отклонения мелкомасштабных флуктуаций полного электронного содержания ионосферы и среднего значения полного электронного содержания ионосферы значения поступают на входы блока вычисления интенсивности мелкомасштабных неоднородностей электронной концентрации ионосферы βи. В этом блоке определяется значение интенсивности мелкомасштабных неоднородностей электронной концентрации ионосферы согласно выражению , где zэ - эквивалентная толщина ионосферы, - характерный размер мелкомасштабных неоднородностей. Рассчитанное значение интенсивности мелкомасштабных неоднородностей электронной концентрации ионосферы βи отображается в устройстве вывода информации.

Техническим результатом настоящего изобретения является обеспечение возможности одновременного определения высотных профилей средней электронной концентрации ионосферы и среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации σΔN(z) в неоднородной ионосфере.

Технический результат достигается благодаря тому, что на основе приема радиосигналов от навигационных спутников на двух когерентных частотах ƒ1 и ƒ2 и определения полного электронного содержания NT в неоднородной ионосфере сначала вычисляется его среднее значение и определяется высотный профиль средней электронной концентрации ионосферы путем применения итерационной процедуры решения обратной задачи, потом вычисляется среднеквадратическое отклонение мелкомасштабных флуктуаций полного электронного содержания ионосферы , и интенсивность мелкомасштабных неоднородностей электронной концентрации ионосферы , и затем определяется высотный профиль среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации в неоднородной ионосфере.

В предлагаемом способе определения высотного профиля электронной концентрации неоднородной ионосферы используются действия (из которых действия 1-4 и 6 аналогичны соответствующим пунктам патента [1]), представленные на фиг. 2, включающие в себя:

1) прием радиосигналов от навигационных спутников на двух когерентных частотах ƒ1 и ƒ2;

2) определение псевдодальностей до навигационного спутника Р1 и Р2, измеренных соответственно на частотах ƒ1 и ƒ2, и соответствующих значений фаз ϕ1 и ϕ2 принятых радиосигналов;

3) определение разности псевдодальностей ΔР1,2 по комбинации выполненных измерений псевдодальностей до навигационного спутника Р1 и Р2 и соответствующих значений фаз ϕ1 и ϕ2 принятых радиосигналов;

4) определение полного электронного содержания ионосферы NT вдоль трассы «спутник-наземный пункт»;

5) вычисление среднего значения полного электронного содержания ионосферы вдоль трассы «спутник-наземный пункт»;

6) определение высотного профиля средней электронной концентрации ионосферы путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы;

7) вычисление среднеквадратического отклонения мелкомасштабных флуктуаций полного электронного содержания ионосферы ;

8) вычисление интенсивности мелкомасштабных неоднородностей электронной концентрации ионосферы βи;

9) определение высотного профиля среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации ионосферы σΔN(z) в неоднородной ионосфере.

В предлагаемом способе определение разности псевдодальностей ΔP1,2 по комбинации выполненных измерений псевдодальностей до навигационного спутника P1, Р2 и значений фаз ϕ1 и ϕ2 принятых радиосигналов производится следующим образом [1]: в каждый i-й момент времени после определения псевдодальностей до навигационного спутника Р1(i) и Р2(i), измеренных соответственно на частотах ƒ1 и ƒ2, и соответствующих значений фаз ϕ1(i), ϕ2(i) принятых радиосигналов, производится определение разности псевдодальностей ΔР1,2 по формуле:

где М - количество временных измерений, принятых в обработку; λ1, λ2 - длина волны излучения соответственно на частотах ƒ1 и ƒ2.

Определение полного электронного содержания ионосферы NT вдоль трассы «спутник-наземный пункт» осуществляется по формуле [1]:

где δ - погрешность фазовых измерений (реально величина погрешности в линейной мере составляет единицы миллиметров).

Рассчитанные значения полного электронного содержания ионосферы NT(i) используются для вычисления среднего значения полного электронного содержания ионосферы: .

По результатам вычисления разности псевдодальностей ΔР1,2 определяется высотный профиль средней электронной концентрации ионосферы путем применения известной [1] итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы.

Среднеквадратическое отклонение мелкомасштабных флуктуаций полного электронного содержания ионосферы рассчитывается по формуле:

Вычисление интенсивности мелкомасштабных неоднородностей электронной концентрации ионосферы производится согласно выражению [2] при заданных значениях эквивалентной толщины ионосферы zэ и характерного размера мелкомасштабных неоднородностей .

Данные о высотном профиле средней электронной концентрации ионосферы и интенсивности мелкомасштабных неоднородностей электронной концентрации ионосферы βи используются для определения высотного профиля среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации σΔN(z) в неоднородной ионосфере согласно выражению .

Таким образом, благодаря заявленной совокупности существенных признаков, реализованной в разработанном алгоритме (фиг. 2), достигается технический результат изобретения, заключающийся в возможности одновременного определения высотных профилей средней электронной концентрации и среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации σΔN(z) в неоднородной ионосфере.

Способ определения параметров ионосферы, заключающийся в том, что принимают радиосигналы от навигационных спутников на двух когерентных частотах и ; определяют псевдодальности до навигационного спутника Р1 и Р2, измеренные соответственно на частотах и , и соответствующие значения фаз ϕ1 и ϕ2 принятых радиосигналов; определяют разности псевдодальностей ΔР1,2 по комбинации выполненных измерений псевдодальностей до навигационного спутника Р1 и Р2 и соответствующих значений фаз ϕ1 и ϕ2 принятых радиосигналов; определяют полное электронное содержание ионосферы NT вдоль трассы «спутник-наземный пункт»; вычисляют среднее значения полного электронного содержания ионосферы вдоль трассы «спутник-наземный пункт»; определяют высотный профиль средней электронной концентрации ионосферы путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы; вычисляют среднеквадратическое отклонение мелкомасштабных флуктуаций полного электронного содержания ионосферы ; вычисляют интенсивность мелкомасштабных неоднородностей электронной концентрации ионосферы βи и определяют высотный профиль среднеквадратического отклонения мелкомасштабных флуктуаций электронной концентрации ионосферы σΔN(z) в неоднородной ионосфере.



 

Похожие патенты:

Изобретение относится к области радиофизики и может быть использовано для контроля за солнечной, геомагнитной и сейсмической активностью, за предвестниками землетрясения, извержения вулканов, цунами, процессами грозовой активности, динамикой мощных штормовых циклонов, а также для обнаружения ядерных и иных крупных взрывов и пожаров, больших аварийных выбросов на атомных электростанциях, запусков комических аппаратов и ракет, излучений мощных радиопередающих комплексов радиолокационного и связного назначения, средств специального воздействия на ионосферу с целью управления ее параметрами..

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС).

Изобретение относится к радиотехнике и радиоэлектронике, предназначено для дистанционного зондирования атмосферы и может быть использовано в радиолокации, навигации и связи.

Устройство предупреждения об аэрологических явлениях для летательного аппарата содержит бортовое оборудование, способное к выявлению метеорологических явлений, модуль для сбора и хранения метеорологических данных, модуль для создания сводки по собранным метеорологическим данным, модуль для отправки сводок, модуль для приема сводок от окружающих летательных аппаратов, модуль для обработки, консолидации принятых сводок и формированию предупреждений, модуль содействия обходу, модуль ввода, модуль интерактивного диалога, модуль для опроса окружающих летательных аппаратов и сбора от них данных.

Изобретение относится к области физики ионосферы и может быть использовано для пассивного определения ионосферных параметров. Сущность: выполняют двухчастотный прием спутниковых сигналов ГЛОНАСС/GPS.

Изобретение относится к способам дистанционных исследований атмосферы, основанных на использовании эффекта Доплера и применении фазоманипулированных сигналов, и может быть использовано для измерения скорости ветра.

Изобретение представляет собой способ и устройство для радиолокационного измерения полного вектора скорости движения метеорологического объекта на основе измерения составляющих этого вектора скорости в ограниченной области пространства, определяемой шириной диаграмм направленности антенны, за короткое время без сканирования.

Изобретение относится к метеорологии, в частности к дистанционным методам измерения характеристик атмосферы, и может быть использовано в автоматизированных системах определения опасных для авиации явлений погоды, а также в других областях человеческой деятельности, где необходимо знание о величине заряда частиц облаков и осадков.

Изобретение относится к радиотехнике и может быть использовано в системах определения местоположения источников грозовых разрядов в системах сбора и обработки метеорологической информации.

Изобретение относится к области радиотехники и может быть использовано в навигационных и метеорологических системах. Достигаемый технический результат - определение дальности до молниевых разрядов без ухудшения точностных характеристик и без увеличения габаритов устройства.

Изобретение относится к способам измерения расстояния и может быть использовано в радионавигации и радиолокации. Достигаемый технический результат изобретения - сокращение времени и повышение точности измерения расстояния между бортовой и наземной приемопередающими станциями.

Изобретение относится к геофизике и предназначен для мониторинга окружающей среды, обеспечения радиосвязи и навигации, геодезических измерений, информационного обеспечения сельского хозяйства и здравоохранения.

Изобретение относится к области спутниковой навигации и может быть использовано для определения ионосферной задержки распространения сигналов глобальных навигационных спутниковых систем с помощью навигационной аппаратуры потребителей глобальной навигационной спутниковой системы, работающей на одной частоте.

Изобретение относится к измерительной технике и может быть использовано при создании измерительных систем в геодезии. .

Изобретение относится к измерительной технике и может быть использовано при создании высокоточных измерительных систем в геодезии и радионавигации. .

Изобретение относится к измерительной технике и может быть использовано для дистанционного определения координат подвижных объектов. .

Изобретение относится к радиотехнике и может быть использовано при разработке систем радиозондирования атмосферы (CP) построенных на основе применения радиолокационного метода измерения пространственных координат аэрологического радиозонда (АРЗ) и использования сигналов спутниковых навигационных радиоэлектронных систем (СНРС) ГЛОНАСС/GPS для определения текущих координат аэрологического радиозонда (РЗ), направления и скорости ветра, а также передачи координатной и телеметрической информации на наземную базовую станцию (БС). Достигаемый технической результат изобретения - повышение надежности и точности получения метеорологической информации о вертикальном профиле состояния атмосферы в оперативном радиусе действия CP при возможном воздействии преднамеренных и непреднамеренных помех. Указанный технический результат достигается за счет развития структуры построения CP, а именно за счет обеспечения возможности оперативной работы CP в двух разрешенных диапазонах частот и различных режимах определения текущих координат АРЗ: радиолокационном, радиопеленгационном, радионавигационном. 1 ил.
Наверх