Способ и устройство для обезвреживания и утилизации массива бытовых отходов

Способ для обезвреживания и утилизации массива бытовых отходов содержит бурение скважин в толще массива и установку в них вертикальных перфорированных отводящих труб, солнечный нагрев и увлажнение массива, размещенного под пирамидальными прозрачными колпаками, атмосферными осадками и питательной водой из канавок между колпаками, анаэробное брожение в толще массива с получением био–газа (метана), вывод его из колпаков и пор массива через вертикальные перфорированные отводящие трубы, соединенные через газопроводы с компрессором, который создает разрежение в полости колпаков и соединенных с ним на всасе газопроводов и сжимает на выходе биогаз, который под давлением поступает в трубное пространство воздушного холодильника, охлаждаемого наружным воздухом за счет естественной тяги, где происходит его охлаждение с конденсацией значительной части водяных паров и тяжелых углеводородов. Очищенный и охлажденный биогаз, состоящий в основном из CH4, поступает в газосборник, а конденсат, состоящий из воды и тяжелых углеводородов, направляют в накопительную емкость. Устройство для обезвреживания и утилизации массива бытовых отходов содержит участок массива на подошве полигона захоронения отходов, пробуренные в массиве по рассчитанной сетке N скважины, в которые вставлены отводящие вертикальные перфорированные трубы, соединенные с газопроводами, над скважинами установлены N прозрачных герметичных пирамидальных колпаков с зазорами между собой по горизонту шириной ∆1 и глубиной погружения в массив ∆2, образующими канавки. Каждый из вышеупомянутых колпаков изготовлен из каркаса, образованного нижней квадратной рамой, и верхнего кольца, соединенных между собой наклонными ребрами, покрытыми прозрачной оболочкой, причем в каждом колпаке через верхнее кольцо пропущены отводящие вертикальные перфорированные трубы, достигающие нижним торцом подошвы полигона, верхний торец которых вставлен в приемный патрубок рядового газового коллектора, соединенного с общим газовым коллектором, соединенного через всасывающий газопровод с расположенными за границей полигона компрессором, воздушным трубчатым холодильником и газосборником. Канавки пограничных колпаков соединены через распределительный лоток с питательным насосом. 2 н.п. ф-лы, 5 ил.

 

Предлагаемое изобретение относится к охране окружающей среды и может быть использовано для обезвреживания и утилизации городских и промышленных отходов органического происхождения за счет солнечной энергии и атмосферных осадков.

Известен способ утилизации отходов, включающий вскрытие угольного пласта скважиной, формирование полости подземного газогенератора и последующее газифицирование углеродсодержащей фракции отходов в подземном газогенераторе, причем полость подземного газогенератора формируют посредством гидромониторного агрегата, осуществляют термическую подготовку массива к газификации, для чего в полость подают газ с температурой 350-400°C, по завершении чего полость газогенератора загружают углеродсодержащей фракцией бытовых отходов, которые перед вводом в подземный газогенератор подвергают пиролизу при температуре 500-600°C, подают газовую смесь, включающую CO2, O2 , в состав дутья вводят пары воды, при этом после окончания выгазовывания первой порции отходов полость газогенератора заполняют следующей порцией отходов и так далее до полного заполнения полости газогенератора зольным остатком [Патент РФ №2167011, МПК В09В03/00, Е21В 3/295, F23 G 5/027, 2001].

Основными недостатками известного способа и устройства являются невозможность использования для обезвреживания отходов природных факторов (энергии солнца и атмосферных осадков), необходимость установки подземного газификатора-реактора в угольном пласте, что ведет к техническим трудностям и высоким издержкам, а также необходимость транспортировки отходов к месту расположения газификатора–реактора, что делает невозможным проведение одновременно стабилизации полигона и обезвреживания отходов внутри самого полигона.

Более близким к предлагаемому изобретению является способ для термической утилизации твердых бытовых отходов, содержащий бурение скважины на полигоне захоронения отходов и проведение газификации органических компонентов отходов непосредственно в массиве складированных отходов при помощи контролируемого нагрева, включающего подачу топлива и воздуха, горение топлива, в результате чего температура в прилегающей к горелке зоне и начинается горение отходов до температуры 900°C, при которой внутри участка массива отходов образуется реакторная зона, где происходит контролируемая газификация органических компонентов твердых отходов в автотермическом режиме и образование синтез-газа, в околореакторном пространстве за счет системы перфорированных труб создается зона пониженного давления, в результате чего синтез-газ извлекается из тела полигона.

Реализацию известного способа осуществляют с помощью устройства, содержащего проложенную в скважине газовоздушную магистраль, снабженную горелкой и электрическим поджигом (камеры сгорания), которую перемещают внутри массива по вертикали путем погружения-извлечения подводящих и отводящих труб, а по горизонтали - путем бурения скважин по рассчитанной сетке с чередованием подводящих и отводящих труб [Патент РФ №2536944, МПК B09B 3/00, B09C 1/06, F23G 5/027, F23G 5/34, 2014].

Основными недостатками известного способа являются невозможность использования для обезвреживания отходов природных факторов (энергии солнца и атмосферных осадков), необходимость сжигания топлива от постороннего источника в подземной передвижной камере сгорания, выбросы значительной части газообразных продуктов, полученных в результате происходящих в массиве реакций, через наружную поверхность массива отходов в окружающую атмосферу, что снижает экологическую и экономическую эффективность известного способа.

Основными недостатками известного устройства являются необходимость камеры сгорания с подводящими и отводящими трубопроводами, ее монтажа и перемещения внутри массива по вертикали путем погружения-извлечения подводящих и отводящих труб, а по горизонтали - путем бурения скважин по рассчитанной сетке с чередованием подводящих и отводящих труб, что обусловливает технические трудности, низкую надежность и высокие издержки на создание и эксплуатацию известного устройства и, в конечном итоге, снижает его надежность, экологическую и экономическую эффективность.

Техническим результатом, на решение которого направлено заявляемое изобретение, является повышение надежности, экологической и экономической эффективности способа и устройства для обезвреживания и утилизации массива бытовых отходов.

Технический результат достигается тем, что способ для обезвреживания и утилизации массива бытовых отходов содержит бурение скважин в толще массива и установку в них вертикальных перфорированных отводящих труб, солнечный нагрев и увлажнение массива, размещенного под пирамидальными прозрачными колпаками, атмосферными осадками и питательной водой из канавок между колпаками, анаэробное брожение в толще массива с получением био–газа (метана), вывод его из колпаков и пор массива через вертикальные перфорированные отводящие трубы, соединенные через газопроводы с компрессором, который создает разрежение в полости колпаков и соединенных с ним на всасе газопроводов и сжимает на выходе биогаз, поступающий далее под давлением в трубное пространство воздушного холодильника, охлаждаемого наружным воздухом за счет естественной тяги, где происходит его охлаждение с конденсацией значительной части водяных паров и тяжелых углеводородов, после чего очищенный и охлажденный биогаз, состоящий в основном из CH4, поступает в газосборник, а конденсат, состоящий из воды и тяжелых углеводородов, направляют в накопительную емкость.

Устройство для реализации предлагаемого способа обезвреживания и утилизации бытовых отходов приведено на фиг. 1–5 (на фиг.1, 2 – общий вид, на фиг.3–5 – основные узлы).

Устройство для обезвреживания и утилизации массива бытовых отходов содержит участок массива 1 на подошве 2 полигона захоронения отходов, пробуренные в массиве 1 по рассчитанной сетке N скважины 3, над которыми установлены N прозрачных герметичных пирамидальных колпаков 4 с зазорами между собой по горизонту шириной ∆1 и глубиной погружения в массив 1 ∆2, образующими канавки 5, каждый колпак 4 изготовлен из каркаса 6, образованного нижней квадратной рамой 7, и верхнего кольца 8, соединенных между собой наклонными ребрами 9, покрытыми прозрачной оболочкой 10 (например, полиэтиленовой пленкой), причем в каждом колпаке 4 через верхнее кольцо 8 пропущены в скважины 3 сквозные отводящие вертикальные перфорированные трубы 11, достигающие нижним торцом подошвы 2 полигона, верхний торец которых вставлен в приемный патрубок 12 рядового газового коллектора 13, соединенного с общим газовым коллектором 14, соединенного через всасывающий газопровод 15 с расположенными за границей полигона компрессором 16, воздушным трубчатым холодильником 17 и газосборником (на фиг. 1–5 не показан), а канавки 5 пограничных колпаков 4 соединены (на фиг. 1–5 узел соединения не показан) через распределительный лоток 18 с питательным насосом (на фиг. 1–5 не показан).

В основу работы предлагаемого способа и устройства положены хорошая растворимость диоксида углерода, находящегося в дождевой воде, в сыром массиве бытовых отходов, ввиду наличия в нем белков, жиров и других органических соединений [К. Неницеску. Общая химия. – М.: Мир, 1968, 4, с.490] и возможность получения метана при сбраживании сырого массива бытовых отходов [С. В. Яковлев и др. Канализация. – М.: Госстройизд, 1976, с. 263].

Предлагаемый способ обезвреживания и утилизации массива бытовых отходов осуществляется в предлагаемом устройстве следующим образом.

Предварительно, вблизи полигона захоронения отходов монтируют стационарное оборудование установки (место установки этого оборудования желательно располагать также поблизости от источника водоснабжения), а именно: компрессор 16, воздушный трубчатый холодильник 17, распределительный лоток 18, газосборник, накопительную емкость и питательный насос (на фиг. 1–5 не показаны), на участке массива 1 полигона захоронения бурят скважины 3, куда вставляют отводящие вертикальные перфорированные трубы 11, достигающие нижним торцом подошвы 2 полигона, после чего засыпают свободное пространство скважин 3. Затем на вышеупомянутом участке массива 1 устанавливают N предварительно собранных, прозрачных герметичных пирамидальных колпаков 4 с зазорами между собой по горизонту шириной ∆1 и глубиной погружения в массив 1 ∆2, образующими канавки 5. При этом глубина погружения ∆2 должна обеспечивать достаточную герметичность колпаков 4, а ширина зазоров ∆1 и их глубина должны обеспечивать надежное увлажнение площади и толщи массива 1 под колпаками 4. Далее на верхние торцы труб 11 надевают приемные патрубки 12 рядовых газовых коллектора 13, соединяют их с общим газовым коллектором 14, который соединяют через всасывающий газопровод 15 с компрессором 16.

Примечание. Площадь колпаков 4 находят, исходя из оптимального расстояния всасывания биогаза трубой 11 и увлажнения массива 1 из канавок 5, а угол наклона ребер 9 должен быть не меньше угла естественного откоса воды. Количество пирамидальных прозрачных колпаков 4 N и соответствующее им количество скважин 3 с отводящими трубами 11 лимитируется аэродинамическим сопротивлением всасывающей части газопроводов установки.

Проведение обезвреживания органических компонентов полигона захоронения отходов осуществляют в теплое время года непосредственно в массиве 1 складированных отходов при помощи солнечного нагрева и дождевого увлажнения (при недостаточном естественном увлажнении используют подачу воды в канавки 5 из постороннего источника водоснабжения посредством питательного насоса и распределительного лотка 18) с получением биогаза (метана) и его последующим выводом через отводящие трубы 11 и поры массива 1 в пространство под колпаком 4 и газопроводы 3. При насыщении массива 1 дождевой водой или водой из источника водоснабжения и нагрева его солнечными лучами через прозрачную оболочку пирамидальных колпаков 4, в толще массива 1 образуется нечто подобное сырому осадку в метантенке с температурой (20–30)°С, которая достаточно близка к оптимальной температуре анаэробного брожения (30–50)°С. Температура в толще массива 1 может также повышаться за счет экзотермических реакций, происходящих между его компонентами. В то же время, наряду с увлажнением, массив 1 насыщается примесями, присутствующими в дождевой или подпиточной воде (СО2, NOX, SOX, соли Са, Mg и пр.), в результате процессов абсорбции, адсорбции и хемосорбции, которые протекают с компонентами массива бытовых отходов (частицами белков, жирами, песком, глиной и. д.), причем в массиве 1 при разложении жиров, белков, минеральных солей и пр. образуется СО2, а дождевая вода уменьшает рН массива 1, что также интенсифицирует процессы образования СН4. В результате взаимодействия вышеперечисленных факторов происходит обезвреживание органических компонентов сырого массива 1 путем анаэробного сбраживания, которое является основным методом обезвреживания сырых осадков сточных вод, имеющих приблизительно тот же состав, что и массив бытовых отходов. При этом, в результате распада органических веществ бытовых отходов и взаимодействия продуктов распада с диоксидом углерода в качестве основных продуктов получается метан.

Метан образуется в результате восстановления СО2 или метильной группы уксусной кислоты

где АН2 – органическое вещество, служащее для метанообразующих бактерий донором водорода (жирные кислоты кроме уксусной и спирты кроме метилового).

Кроме этого многие виды метанообразующих бактерий окисляют молекулярный водород, образующийся в кислой фазе по реакции:

Микроорганизмы, использующие уксусную кислоту и метиловый спирт, осуществляют реакции:

При этом, если в массиве 1 имеется свободный СО2, скорость реакций (1), (2) увеличивается, а реакций (3), (4) уменьшается, что повышает долю метана в получаемом газе.

Полученный биогаз компрессором 16 подают в трубное пространство воздушного холодильника 17, который охлаждается наружным воздухом за счет естественной тяги, где происходит его охлаждение с конденсацией значительной части водяных паров и тяжелых углеводородов. Очищенный и охлажденный биогаз, состоящий в основном из CH4, поступает в газосборник (на фиг. 1–5 не показан), а конденсат направляют в накопительную емкость. При этом в результате работы компрессора 16, в полости колпаков 4 создается некоторое разрежение, которое увеличивает скорость отрыва молекул компонентов биогаза от поверхности массива 1 под колпаком 4, в результате чего также увеличивается скорость движения этих молекул в порах массива 1, затрудняется движение их к поверхности канавок 5 и предотвращается их попадание в атмосферу. Кроме того, постоянное присутствие влаги на поверхности канавок 1 также препятствует попаданию молекул компонентов биогаза в атмосферу.

Полученный метан может быть использован как топливо для теплогенераторов, конденсат в зависимости от типа и концентрации в нем углеводородов направляют на дальнейшую переработку или сбрасывают с питательной водой на увлажнение массива 1, а сброженный массив после отделения от него посторонних предметов используется как высокоэффективное удобрение для сельского хозяйства.

Процесс обезвреживания участка массива 1 проводят в течение теплого периода одного года (длительность процесса зависит от средней температуры теплого периода, толщины и пористости массива 1, содержания и характера органических компонентов отходов). По окончании обезвреживания демонтируют все оборудование одновременно с вывозом сброженных бытовых отходов и устанавливают его на следующем участке полигона захоронения отходов. Для ускорения процесса обезвреживания полигона можно устраивать несколько одновременно функционирующих участков массива 1.

Таким образом, предлагаемые способ и устройство за счет использования природных факторов (солнечного тепла и атмосферных осадков), наряду с улучшением экологической ситуации в местах обезвреживания бытовых отходов, обеспечивают утилизацию их наиболее опасной (органической) части с получением биогаза (топливного газа–метана), без существенных энергетических затрат (энергия тратится только на привод компрессора и питательного насоса), что повышает надежность, экологическую и экономическую эффективность процесса обезвреживания и утилизации массива бытовых отходов.

1. Способ для обезвреживания и утилизации массива бытовых отходов, содержащий бурение скважин в толще массива и установку в них вертикальных перфорированных отводящих труб, нагрев массива и получение топливного газа, вывод его через вертикальные перфорированные отводящие трубы, отличающийся тем, что участок массива бытовых отходов покрывают пирамидальными прозрачными колпаками, после чего в течение теплого периода года вышеупомянутый участок подвергается солнечному нагреву и увлажнению атмосферными осадками и питательной водой из канавок между колпаками, в результате чего происходит анаэробное брожение в толще массива с получением топливного газа в форме биогаза (метана), вывод его из колпаков и пор массива через вертикальные перфорированные отводящие трубы, соединенные через газопроводы с компрессором, который создает разрежение в полости колпаков и соединенных с ним на всасе газопроводов, подает под давлением вышеупомянутый биогаз в трубное пространство воздушного трубчатого холодильника, который охлаждается наружным воздухом за счет естественной тяги, где происходит его охлаждение с конденсацией значительной части водяных паров и тяжелых углеводородов, после чего очищенный и охлажденный биогаз, состоящий в основном из CH4, поступает в газосборник, а конденсат, состоящий из воды и тяжелых углеводородов, направляют в накопительную емкость.

2. Устройство по реализации способа по п. 1, содержащее участок массива на подошве полигона захоронения отходов, пробуренные в массиве по рассчитанной сетке N скважины, в которые вставлены отводящие вертикальные перфорированные трубы, соединенные с газопроводами, отличающееся тем, что над скважинами установлены N прозрачных герметичных пирамидальных колпаков с зазорами между собой по горизонту шириной ∆1 и глубиной погружения в массив ∆2, образующими канавки, каждый из вышеупомянутых колпаков изготовлен из каркаса, образованного нижней квадратной рамой, и верхнего кольца, соединенных между собой наклонными ребрами, покрытыми прозрачной оболочкой, причем в каждом колпаке через верхнее кольцо пропущены отводящие вертикальные перфорированные трубы, достигающие нижним торцом подошвы полигона, верхний торец которых вставлен в приемный патрубок рядового газового коллектора, соединенного с общим газовым коллектором, соединенного через всасывающий газопровод с расположенными за границей полигона компрессором, воздушным трубчатым холодильником и газосборником, причем канавки пограничных колпаков соединены через распределительный лоток с питательным насосом.



 

Похожие патенты:

Изобретение относится к устройствам для термического обезвреживания опасных отходов, а также отсортированных органических компонентов твердых бытовых отходов, углерод - и углеводородсодержащих отходов, в том числе нефтешламов, отходов предприятий органического синтеза, иловых осадков канализационных очистных сооружений, отходов медицинских и лечебно-профилактических учреждений и прочих горючих, биоразлагаемых отходов.

Предложен способ обеспечения теплом и электричеством компактных автономных объектов, расположенных в полевых условиях. Согласно способу в пиролизном котле, установленном в автономном объекте, сжигают твердое топливо в верхней части котла 1 с недостаточным количеством окислителя и дожигают пиролизный газ в нижней части котла 2, где подогревают теплоноситель замкнутой системы отопления 10, при этом часть пиролизного газа из верхней части котла 1 выводят наружу, отчищают от примесей и подают в двигатель внутреннего сгорания 8, на валу которого установлен электрогенератор 9.

Изобретения относятся к области пиролизной утилизации бытовых и промышленных отходов. Утилизированные бытовые и промышленные отходы направляют винтовым конвейером из бункера-накопителя в металлическую жаропрочную трубу корпуса мобильной пиролизной камеры, где винтовым конвейером перемещаются вдоль пиролизной камеры с разогревом и поддержанием температуры пиролиза в интервале 800-900°C.

Изобретение относится к способу и структурной схеме экологически безопасной переработки отходов и биомассы для повышения эффективности производства электроэнергии и тепла.

Изобретение относится к жилищно-коммунальному хозяйству и может быть использовано на полигонах по переработке твердых коммунальных отходов. Техническим результатом является повышение эффективности пиролизного реактора.

Изобретение относится к области теплоэнергетики и может использоваться как в бытовых отопительных системах, так и на небольших производствах, использующих тепловую энергию, а также для утилизации измельченных горючих бытовых отходов.

Изобретение относится к химической промышленности, а именно к способам очистки технологического оборудования, изготовленного из рядовых и легированных сталей, от полимерных отложений и эмульсионных каучуков путем термического разложения.

Изобретение относится к области производства биотоплив на основе возобновляемого органического сырья и может быть использовано для целей транспортной отрасли и в энергетике.

Изобретение относится к энергетике, в частности к устройствам для получения горючих газов, жидкого топлива и твердого остатка из пластмассы, полимеров, шин, автомобильных скрабов, кабелей.

Изобретение относится к области уничтожения отходов сжиганием и может быть использовано в установках для производства пиролизного газа посредством термической обработки органического вещества с помощью предварительно нагретых твердых тел по существу одинакового размера.
Изобретение относится к коммунальному хозяйству и может быть использовано для утилизации бытовых отходов и отходов сельскохозяйственного производства. Способ раздельной утилизации бытовых отходов включает разгрузку транспортных средств, разгрузку отходов из приемных бункеров на пластинчатый конвейер с ножами для вскрытия пакетов, выдувание потоком воздуха фрагментов легких составляющих, измельчение их, дробление крупногабаритных отходов, измельчение металлических составляющих, дробление крупногабаритных элементов отходов, измельчение металлических составляющих, сортировку раздробленных элементов на фракции, выделяют органические составляющие, которые перегоняют на технический спирт.

Изобретение относится к области переработки зольных отходов угольных тепловых электростанций с целью их утилизации в качестве, в частности, материалов для производства строительных изделий.

Изобретение относится к устройствам для термического обезвреживания опасных отходов, а также отсортированных органических компонентов твердых бытовых отходов, углерод - и углеводородсодержащих отходов, в том числе нефтешламов, отходов предприятий органического синтеза, иловых осадков канализационных очистных сооружений, отходов медицинских и лечебно-профилактических учреждений и прочих горючих, биоразлагаемых отходов.

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты.

Изобретение может быть использовано в химической промышленности. Способ переработки диборидтитанового материала включает хлорирование диборидтитанового материала газообразным хлором с получением титансодержащего продукта и борсодержащего продукта.

Изобретение направлено на утилизацию и обезвреживание слабокарбонатных отходов флотационного обогащения вольфрамо-молибденовых руд без использования высокотемпературных технологий и сбора возгонов, с разделением на два основных продукта.

Группа изобретений относится к области биохимии. Предложен способ получения топлива из органического материала в подземном реакторе (варианты) и подземный реактор для применения в вышеуказанном способе (варианты).

Изобретение может быть использовано в химической технологии. Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства включает обработку фторсодержащих растворов гидроокисью кальция с последующим разделением раствора и пульпы и выделением фторида кальция, который промывают водой.

Изобретение может быть использовано при утилизации отходов промышленного производства. Шлак производства феррованадия силикоалюминотермическим способом используют в качестве нейтрализующего материала для рекультивации закисленных почв терриконников.

Способ промышленной переработки органических отходов включает компостирование с использованием компостного червя. Субстрат органических отходов загружают в вермимодуль, где производят его увлажнение в растворе биогумуса, аэробное сбраживание, затем производят формирование массива органических отходов из вермимодулей, с последующим периодическим перекладыванием их и поворотом на 1200 для рыхления и аэрации субстрата, загрузку и выгонку компостного червя.

Изобретение относится к очистке воды в непроточных водоемах от нефтепродуктов и тяжелых металлов. Способ очистки непроточных водоемов от тяжелых металлов и нефтепродуктов включает использование сорбента, коагулянта и грубодисперсного минерального вещества. Извлекают донный осадок и воду. Извлеченный донный осадок компостируют со структурообразователями, нефтеокисляющими микроорганизмами, биогенными элементами с получением почвогрунтов. Используют электроды для уменьшения остаточной концентрации металлов в почвогрунтах. Отделенную от донного осадка воду возвращают в непроточный водоем. Извлеченную из водоема воду очищают последовательно сорбцией и фильтрованием в геохимическом барьере, заполненном минеральным зернистым материалом - силицированным кальцитом фракции 2-5 мм, в котором размещены электрохимические источники тока, генерирующие коагулянт. Очищенную воду возвращают в водоем, создавая циркуляцию воды. Воду фильтруют со скоростью 1-5 м/ч при длине геохимического барьера 8-16 м. Изобретение позволяет повысить эффективность очистки воды и донных отложений водоема. 1 ил., 4 табл.
Наверх