Устройство для определения градиента температур в зоне сварки профилей при контактной стыковой сварке

Изобретение может быть использовано для измерения температуры и градиента температур в процессе стыковой контактной сварки оплавлением профилей различного сечения из алюминиевых сплавов. Устройство предназначено для размещения в канале формирующего ножа кондуктора и содержит термопары и прижимной винт с возможностью поджатия спаев термопар к поверхности детали. Наружная поверхность втулки из электроизоляционного материала идентична форме канала формирующего ножа кондуктора, а внутренняя имеет вертикальные пазы. Металлическая втулка подпружинена относительно прижимного винта и втулки из электроизоляционного материала, имеет центральное отверстие и установлена концентрично втулке из электроизоляционного материала с возможностью возвратно-поступательного перемещения. Ее выступы размещены в вертикальных пазах втулки из электроизоляционного материала. Прижимной винт выполнен с продольным каналом для размещения в нем термопар. Термопары соединены со средствами контроля процесса сварки. Спаи термопар расположены в одной плоскости и зафиксированы эпоксидной смолой в упомянутом центральном отверстии втулки. Изобретение обеспечивает высокую точность соблюдения оптимальных параметров нагрева и повышение качества сварного шва. 4 ил.

 

Предлагаемое изобретение относится к сварочному производству, а именно к устройствам для определения градиента температур в зоне сварки профилей различного сечения при контактной стыковой сварке, например, шпангоутов из алюминиевых сплавов на специализированных стыкосварочных машинах большой мощности с компьютерным управлением.

Процесс сварки включает несколько стадий: сборка деталей в кондукторах с формирующими ножами, установка припуска на соответствующие этапы сварки, а затем предварительное оплавление для выравнивания свариваемых торцов, подогрев методом сопротивления, оплавление, осадка и проковка.

Формирование соединения происходит на этапе осадки, все остальные этапы являются подготовительными. Осаживаемые торцы деталей должны быть нагреты до температуры пластической деформации (для высокопрочных алюминиевых сплавов она составляет ~400…450°С) и иметь относительно ровный рельеф оплавляемых поверхностей.

Для получения качественного соединения при контактной сварке оплавлением необходимо выполнить ряд требований, противоречивых по своему характеру - с одной стороны, для облегчения удаления оксидных пленок из стыка температуру заготовок необходимо увеличивать, а с другой стороны, нагрев высокопрочных алюминиевых сплавов может вызвать значительное разупрочнение в стыке и зоне термического влияния. Так, у сплава АМг6М при нагреве свыше 450°С и выдержке при ней более 30 секунд происходит выделение β-фазы (интерметаллидов), снижающее механические свойства получаемого соединения.

Однако, если нагрев до 450°С не превышает 30 секунд, разупрочнения можно избежать. Кроме этого, при сварке изделий развитого или большого сечения из алюминиевых сплавов важно получить равномерный нагрев по всему поперечному сечению и необходимый тепловой поток вглубь детали, чтобы избежать зон перегретого металла с низкими механическими свойствами.

Использование сварки рациональных заготовок в виде свальцованных полуколец (полушпангоутов) для получения замкнутых изделий, таких как кольца, шпангоуты и т.д. из различных профилей алюминиевых и титановых сплавов имеет большую экономическую выгоду, так как исключает многие затратные операции по мехобработке заготовок. Однако применяемая в таких случаях стыковая контактная сварка непрерывным оплавлением, требует строгого контроля и воспроизводимости режимов сварки для получения высокого качества сварного соединения заготовок между собой. Брак при изготовлении крупногабаритных изделий больших сечений практически недопустим, так как приводит к значительным затратам в случаях, когда бракованные изделия невозможно исправить подваркой или механической обработкой, поэтому возникает необходимость в контроле температуры заготовок на протяжении всего цикла сварки. При сварке профилей развитого или большого сечения особенно важно иметь возможность измерения температуры и определения градиента температур сразу в нескольких зонах заготовки.

Измерение температуры в производственных условиях представляет определенные сложности, так как оптические пирометры применять при контроле температуры вблизи торцов невозможно из-за опасности попадания расплавленных частиц металла на оптику и нестабильных показателей измерения, а контактные методы замеров трудоемки, поэтому подогрев контролируют по длительности нагрева, что не всегда позволяет достигать требуемой температуры или дает перегрев в зоне соединения, что вызывает отклонение параметров режима сварки и неисправимый брак сварного соединения.

Известен способ измерения температуры, применяемый при контактной стыковой сварке труб, при котором термопары расположены вдоль оси свариваемых труб на известных расстояниях в нескольких точках (см., например, B.C. Лифшиц и М.Д. Литвинчук «Прессовые методы сварки магистральных и промысловых трубопроводов». - М.: Недра, 1970 г., стр. 57). Спаи термопар при этом приваривают к поверхности стальных труб или зачеканивают в металл трубы.

Основным недостатком данного способа измерения температуры является его высокая трудоемкость приварки или зачеканивания спаев термопар, это ограничивает его применение лишь единичными опытами и невозможно для промышленного использования при контактной сварке оплавлением алюминиевых сплавов.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ измерения температуры в зоне сварки /см. патент RU 2389985, кл. В23К 11, G01К 7/02, опубл. 20.05.2010, Бюл. №14/, включающий установку термопар в каналах губок сварочной машины, параллельных поверхностям губок и изделию, при этом спай термопар поджимают в процессе замера к поверхности изделия через калиброванное отверстие дна канала, перпендикулярного к поверхности изделия, при этом спай термопар поджимают пружиной или винтом.

Недостатком вышеуказанного способа измерения температур является то, что при использовании этого способа каждая термопара закрепляется отдельно, а для получения графика распределения температур и построения температурного поля при сварке необходимо закрепить как минимум 2-3 термопары на изделии, при этом для профилей разного сечения на различном расстоянии от свариваемых торцов, кроме этого изоляция выводов термопар огнеупорной быстротвердеющей смесью не позволяет использовать термопары повторно при смене сварочных губок.

Техническим результатом предлагаемого изобретения является оптимизация технологических приемов при выполнении режима сварки с использованием предварительного подогрева свариваемых изделий, совершенствование машин контактной стыковой сварки с повышением точности соблюдения оптимальных параметров нагрева и повышение качества сварного шва за счет высокой точности нагрева торцов в процессе сварки.

Технический результат достигается тем, что измерение температуры производят не менее чем двумя термопарами, сцентрированными и зафиксированными в определенном требуемом положении в металлической втулке, заполненной эпоксидной смолой и установленной в канале кондуктора перпендикулярно поверхности изделия и ориентированной относительно торца изделия направляющими, спаи термопар перед замером поджимают винтом и нажимной пружиной через прокладку к поверхности изделия после установки деталей под сварку, а после сварки отводят спаи термопар от поверхности изделия при отжиме винта возвратной пружиной.

Указанный технический результат достигается тем, что устройство для определения градиента температур в зоне сварки профилей при контактной стыковой сварке, содержащее установленные в канале формирующего ножа кондуктора термопары, спаи которых сцентрированы и поджаты прижимным винтом с изолирующей прокладкой к поверхности изделия через калибровочное отверстие, ось которого перпендикулярна этой поверхности, снабжено дополнительными термопарами, спаи которых установлены в одной плоскости с существующим спаем, канал для размещения термопар выполнен соосно калибровочному отверстию и оснащен концентрично установленной в нем втулкой из электроизоляционного материала, наружная поверхность которой идентична форме канала, а внутренняя имеет вертикальные пазы, находящиеся в плоскости, расположенной вдоль оси свариваемых профилей, металлической втулкой, подпружиненной относительно прижимного винта изолирующей прокладкой и втулки из электроизоляционного материала, размещенной концентрично последней и установленной в ее вертикальных пазах с возможностью возвратно-поступательного перемещения, спаи с термопарами зафиксированы в центральном отверстии металлической втулки эпоксидной смолой и установлены в калибровочном отверстии на расстоянии от поверхности свариваемых профилей.

На фиг. 1 схематично показан общий вид заготовки, зажатой перед сваркой в кондукторах с установленной в формирующем ноже металлической втулки с термопарами, на фиг. 2 показан канал в формирующем ноже с установленной в нем металлической втулкой и закрепленными в ней термопарами, на фиг. 3 - вид по стрелке А на фиг. 2, на фиг. 4 - разрез Б-Б на фиг. 2.

Устройство для определения градиента температур в зоне сварки профилей 1 при контактной стыковой сварке содержит установленные в канале 2 формирующего ножа 3 кондуктора 4 термопары 5, спаи 6 которых сцентрированы и поджаты прижимным винтом 7 с изолирующей прокладкой 8 к поверхности 9 изделия через калибровочное отверстие 10, ось которого перпендикулярна поверхности 9.

Устройство снабжено дополнительными термопарами 11, спаи 12 которых установлены в одной плоскости с существующим спаем 6.

Канал 2 для размещения термопар 5 и 11 выполнен соосно калибровочному отверстию 10 и оснащен концентрично установленной в нем втулкой 13 из электроизоляционного материала, наружная поверхность которой идентична форме канала 2, а внутренняя имеет вертикальные пазы 14, находящиеся в плоскости, расположенной вдоль оси свариваемых профилей.

Канал 2 также оснащен металлической втулкой 15 с выступами 16, которая подпружинена:

- относительно прижимного винта 7 с изолирующей прокладкой 8 - нажимной пружиной 17;

- относительно втулки 13 из электроизоляционного материала - возвратной пружиной 18.

Металлическая втулка 15 установлена концентрично втулке 13, а ее выступы 16 размещены в вертикальных пазах 14 втулки 13 с возможностью возвратно-поступательного перемещения.

Спаи 6 и 12 с термопарами 5 и 11 зафиксированы в центральном отверстии металлической втулки 15 эпоксидной смолой 19 и установлены в калибровочном отверстии 10 на расстоянии L от поверхности 6 свариваемых профилей 1.

Измерение температуры при использовании предлагаемого устройства осуществляется следующим образом:

- перед сваркой профили 1 зажимают в кондукторах 4, оснащенных формирующими ножами 3. Внутри канала 2 одного из них предварительно устанавливается металлическая втулка 15 с залитыми в ней эпоксидной смолой 19 термопарами 5 и 11 со спаями 6 и 12, которые при помощи выступов 16 втулки 15 фиксируются в вертикальных пазах 14 втулки 13, перпендикулярно свариваемому торцу и расположены вдоль оси свариваемых профилей 1;

- выводы термопар присоединяют к входам контрольного прибора или к системе управления процессом сварки (не показаны);

- затем прижимают спаи 6 и 12 термопар 5 и 11 при помощи поворота прижимного винта 7 и нажимной пружины 17 через изолирующую прокладку 8, выполненную из электроизоляционного материала;

- производят сварку и замер температуры;

- после сварки отводят спаи 6 и 12 термопар 5 и 11 от поверхности профилей 1 возвратной пружиной 13 при повороте прижимного винта 7 в другую сторону.

Втулка 13 с вертикальными пазами 14 изготовлена из электроизоляционного материала, что позволяет избежать погрешностей в передаче ЭДС термопар.

В отжатом состоянии спаи 6 и 12 расположены на расстоянии L от поверхности 9 и не касаются ее, что исключает их повреждение при снятии заготовок.

При необходимости подобные устройства могут быть расположены в нескольких местах, что позволит построить распределение температур по сечению профиля. После извлечения прижимного винта 7 все элементы могут быть установлены на другую оснастку.

Применение предложенного устройства для определения градиента температур в зоне сварки профилей при контактной стыковой сварке позволяет:

- полностью решить задачу точного и быстрого размещения термопар для замера температур при сварочном нагреве изделий;

- с успехом использовать его как при исследованиях сварочных процессов, так и в промышленном производстве для обеспечения управления сварочным нагревом в процессе сварки;

- использовать измеряемый температурный градиент как объективный параметр качества сварных соединений;

- получать высокое качество сварных соединений за счет обеспечения требуемого температурного градиента и воспроизводимости режимов сварки;

- использовать термопары для замеров многократно.

Устройство для определения градиента температур в зоне сварки деталей при контактной стыковой сварке, предназначенное для размещения в канале формирующего ножа кондуктора, содержащее термопары и прижимной винт с изолирующей прокладкой, установленный с возможностью поджатия спаев термопар к поверхности детали в зоне сварки через калибровочное отверстие, соосное упомянутому каналу, отличающееся тем, что оно снабжено втулкой из электроизоляционного материала, наружная поверхность которой идентична форме канала формирующего ножа кондуктора, а внутренняя имеет вертикальные пазы, и металлической втулкой с центральным отверстием, установленной концентрично относительно втулки из электроизоляционного материала с возможностью возвратно-поступательного перемещения и выполненной с выступами, размещенными в вертикальных пазах втулки из электроизоляционного материала, при этом металлическая втулка подпружинена относительно прижимного винта и относительно втулки из электроизоляционного материала, причем прижимной винт выполнен с продольным каналом для размещения в нем термопар, соосным центральному отверстию металлической втулки, термопары выполнены с возможностью соединения со средствами контроля процесса сварки, а спаи термопар расположены в одной плоскости и зафиксированы эпоксидной смолой в упомянутом центральном отверстии втулки.



 

Похожие патенты:

Изобретение относится к термометрии и может быть использовано для измерения температуры при точении вращающейся заготовки. Устройство для измерения термоэлектродвижущей силы резания при точении содержит прокладки электроизоляционные, заготовку вращающуюся, установленную и закрепленную на шпинделе станка, и инструмент режущий.

Изобретение относится к области температурных измерений и может быть использовано в качестве датчика температуры биологических и физических объектов. Предложено устройство для измерения температуры, содержащее мостовую схему для компенсации температуры холодного спая, источник стабилизированного питания, термопару, делитель напряжения, состоящий из потенциометра и резистора, включенного в диагональ питания моста, причем отрицательный электрод термопары и средняя точка делителя напряжения подключены к измерительной диагонали моста.

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство представляет собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая собой металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай.

Изобретение относится к области электроизмерительной техники, а именно к устройствам термопреобразователей, и может быть использовано для измерения быстроменяющихся температурных процессов, например температуры капель воды.

Изобретение относится к области контактных измерений температуры высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований рабочего процесса силовых установок при проведении аэродинамических испытаний.

Изобретение относится к производству графитированных конструкционных материалов, а конкретно к операции графитации. Прелагаемый новый способ определения температуры керна печи графитации отличается тем, что измеряют температуру в теплоизоляционном слое по нормали к поверхности керна в нескольких, но не менее чем в трех, точках одновременно, причем в той части слоя, температура которой не превышает 1500°C.

Изобретение относится к измерительной технике и может быть использовано при измерении температуры газообразных, жидких и твердых сред. Предложен датчик температуры, включающий в себя чувствительный элемент, выполненный в виде кабельного термоэлектрического преобразователя, и защитный чехол, состоящий из отрезка трубы и пробки.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей.

Изобретение относится к термометрии, а именно к полевому определению температуры грунтов, где требуется получить конкретные данные о температуре мерзлых, промерзающих и протаивающих грунтов.
Изобретение может быть использовано при сооружении трубопроводов с применением труб малого и среднего диаметра, для сварки деталей со сплошным и развитым сечением, а также для соединения деталей в тавр.

Изобретение относится к изготовлению кольца подшипника. Для упрощения изготовления колец подшипника, повышения твердости, износостойкости, усталостной прочности способ включает стадию формирования кольца подшипника по меньшей мере из одной стальной полосы, имеющей концы, в по меньшей мере один кольцевой сегмент и стадию стыковой сварки оплавлением концов указанного по меньшей мере одного кольцевого сегмента для изготовления кольца.

Изобретение может быть использовано для получения сварных соединений разнородных электропроводных материалов, например, для соединения выводов электрохимической защиты с металлическими трубопроводами для обеспечения их защиты от коррозии.

Изобретения могут быть использованы для соединения проводящих металлических элементов. Проводят этап предварительного скользящего перемещения пары соединяемых элементов относительно друг друга без резистивного нагрева.

Изобретение может быть использовано для получения трубы методом электрического сопротивления. Перемещаемую металлическую полосу сгибают формующими роликами до получения цилиндрической формы так, что оба ее конца в направлении ширины металлической полосы обращены друг к другу.

Изобретение относится к способу изготовления трубчатых радиаторов и сварочному устройству. Способ заключается в том, что по меньшей мере один патрубок (31) одной головной части (3, 4) и по меньшей мере одну трубу (5) радиаторов (2), состоящих из головных частей (3, 4), содержащих патрубки (31), и располагаемых между ними труб (5), позиционируют в устройстве для контактной сварки.

Изобретение относится к машиностроению, в частности к оборудованию для контактно-стыковой сварки сопротивлением, и может быть использовано для герметизации стержневых тепловыделяющих элементов (твэлов) ядерных реакторов с металлическими оболочками.

Изобретение относится к сварочному производству, а именно к способам подготовки полос к сварке на специализированных машинах контактной стыковой сварки, которые устанавливаются в высокопроизводительных металлургических агрегатах, например трубосварочных и профилегибочных станах, травильных линиях и пр.

Изобретение относится к способу соединения коллекторов радиатора с трубками вертикальных колонок. В стенках трубчатых коллекторов выполняют отверстия с расположенными вокруг них воротничками. Изготавливают трубки вертикальных колонок и соединяют концы трубок колонок с воротничками коллекторов. Каждое отверстие в каждом коллекторе изготавливают с диаметром, меньшим диаметра воротничка. Путем пластической деформации стенки коллектора вокруг отверстия коллектора выдавливают стенку внутрь коллектора и изготавливают вокруг отверстия воротничок из стенки коллектора. Каждый воротничок располагают в полости коллектора. Надевают на концы каждой трубки выполненные из припоя кольца и вводят концы трубки в воротнички коллекторов так, чтобы кольцо контактировало с поверхностью лунки и трубки. Соединяют контактные поверхности концов трубок колонок с воротничками коллекторов пайкой путем нагревания в индукторе контактных поверхностей коллектора и трубки в зоне расположения кольца из припоя. В результате, упрощается способ соединения коллекторов радиатора с трубками колонок. 6 з.п. ф-лы, 6 ил.
Наверх