Способ радиолокационного обзора пространства (варианты)

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС). Достигаемый технический результат - обеспечение быстрого сканирования по азимуту и обеспечение высокого коэффициента усиления антенны при гибком управлении перемещением луча антенны в широко распространенных РЛС с фазированной антенной решеткой (ФАР), имеющих одномерное электронное сканирование по углу места. Указанный технический результат по первому варианту достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании по углу места и механическом по азимуту с помощью фазированной антенной решетки при обзоре азимутального сектора с наибольшей вероятностью появления скоростных и малоразмерных целей электронное сканирование перемещают в азимутальную плоскость путем поворота ФАР вокруг оси, перпендикулярной к ее плоскости. Указанный технический результат по второму варианту достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании по углу места и механическом по азимуту с помощью фазированной антенной решетки при обзоре азимутального сектора с наибольшей вероятностью появления скоростных или малоразмерных целей электронное сканирование перемещают в азимутальную плоскость путем поворота ФАР вокруг оси, перпендикулярной к ее плоскости, и выполняют дополнительно к механическому электронное сканирование в угломестной плоскости путем изменения несущей частоты зондирующего сигнала. 2 н.п. ф-лы, 2 ил.

 

Заявляемые технические решения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС).

В современных условиях наибольшую опасность представляют высокоскоростные малоразмерные цели, налет которых одновременно может осуществляться в достаточно широком азимутальном секторе. В связи с высокой скоростью этих целей время их нахождения в зоне возможного обнаружения и взятия на сопровождение минимально, поэтому их обнаружение и взятие на сопровождение необходимо производить еще на предельной дальности при их входе в зону действия РЛС, когда они находятся под малыми углами места, чтобы успеть в это время применить средства противовоздушной обороны. Пространственное положение этих целей меняется быстро и при механическом азимутальном обзоре, когда один период обращения антенны РЛС измеряется десятком секунд, высока вероятность срыва сопровождения и выход целей из зоны. Поэтому важнейшими требованиями, предъявляемыми к РЛС при ее работе по малоразмерным высокоскоростным целям в зоне малых углов места, являются обеспечение быстрого сканирования по азимуту, а из-за их малой отражающей поверхности - обеспечение высокого коэффициента усиления (Ку) антенны, что фактически становится невозможным при использовании только механического азимутального обзора.

Известен способ радиолокационного обзора пространства с помощью фазированной антенной решетки (ФАР), реализованный в РЛС 1Л121Е [История отечественной радиолокации под ред. А.С. Якунина, М., Изд. Дом «Столичная энциклопедия», с. 81], заключающийся в одномерном электронном сканировании по углу места и механическом - в азимутальной плоскости. Достоинство способа состоит в возможности быстрого программного изменения пределов обзора по углу места, а также то, что ФАР с одномерным электронным сканированием получили широкое применение благодаря относительной простоте их реализации. Недостаток известного способа состоит в том, что в нем не решена проблема быстрого сканирования по азимуту.

Известен наиболее близкий к первому и второму вариантам способ обзора пространства [патент РФ 2582067] «Способ радиолокационного обзора пространства», заключающийся в электронном и механическом сканировании по углу места и механическом по азимуту с помощью фазированной антенной решетки.

Выбирая предпочтительное направление обзора, механически устанавливают в угломестной плоскости угол наклона ФАР из условия получения максимального значения коэффициента усиления антенны в этом направлении. Достоинством способа является использование быстрого электронного сканирования по углу места при обзоре пространства РЛС при максимальном значении коэффициента усиления антенны для всех углов места. Недостаток способа состоит в том, что он не решает проблему быстрого сканирования по азимуту.

Таким образом решаемой проблемой (техническим результатом) данного изобретения является обеспечение быстрого сканирования по азимуту и обеспечение высокого Ку антенны в широко распространенных РЛС с ФАР, имеющих одномерное электронное сканирование по углу места.

Проблема решается на основе поворота ФАР вокруг оси, перпендикулярной к ее плоскости, в процессе обзора пространства.

Техническая проблема (технический результат) по первому варианту решается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании по углу места и механическом по азимуту с помощью фазированной антенной решетки, согласно изобретению при обзоре азимутального сектора с наибольшей вероятностью появления скоростных и малоразмерных целей электронное сканирование перемещают в азимутальную плоскость путем поворота ФАР вокруг оси, перпендикулярной к ее плоскости.

Техническая проблема (технический результат) по второму варианту решается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании по углу места и механическом по азимуту с помощью фазированной антенной решетки, согласно изобретению, при обзоре азимутального сектора с наибольшей вероятностью появления скоростных и малоразмерных целей электронное сканирование перемещают в азимутальную плоскость путем поворота ФАР вокруг оси, перпендикулярной к ее плоскости, и выполняют дополнительно к механическому электронное сканирование в угломестной плоскости путем изменения несущей частоты зондирующего сигнала.

Изобретения иллюстрируются чертежом фиг. 1 и диаграммами фиг. 2.

На фиг. 1 показаны крайние положения ФАР - 1 до поворота и 2 после.

На фиг. 2а приведена расчетная диаграмма направленности антенны на частоте 3,2 ГГц, а на фиг. 2б - диаграмма направленности антенны на частоте 3,6 ГГц.

Способ по первому варианту работает следующим образом. В процессе кругового обзора пространства осуществляют механическое изменение направления луча антенны по азимуту за счет вращения антенны вокруг вертикальной оси, осуществляют электронное сканирование луча ФАР по углу места в области предпочтительных углов, выбираемых в процессе механического изменения направления луча антенны в угломестной плоскости для ускоренного осмотра секторов пространства в азимутальной плоскости с наибольшей вероятностью появления скоростных и малоразмерных целей поворачивают ФАР вокруг оси, перпендикулярной к плоскости ФАР, изменяют при этом плоскость электронного сканирования с угломестной на азимутальную при предпочтительном значении угла места. Предпочтительными углами места для обнаружения новых целей являются такие углы, в направлении которых наибольшая вероятность их появления; например, зона малых углов места (размерами, соизмеримыми с размерами луча ФАР), в которой прежде всего появляются цели при максимально достижимых высотах полета (например, ракет). При этом осуществляют механическое перемещение направления луча антенны для выбора предпочтительного угла места и азимутального сектора. Благодаря быстрому азимутальному сканированию при таком обзоре удается обеспечить высокий темп выдачи информации в выбранном достаточно широком азимутальном секторе, определяемом размерами электронного сканирования угломестного сектора при исходном положении ФАР. При этом только электронное сканирование в азимутальной плоскости обеспечивает надежное обнаружение и взятие на сопровождение таких целей в широком заданном азимутальном секторе при небольших значениях угла места.

Таким образом, решается поставленная проблема и достигается технический результат в первом варианте.

Способ по второму варианту работает следующим образом. В процессе кругового обзора пространства, так же как в первом варианте, осуществляют механическое изменение направления луча антенны по азимуту за счет вращения антенны вокруг вертикальной оси, осуществляют электронное сканирование луча ФАР по углу места в области предпочтительных углов, выбираемых в процессе механического изменения направления луча антенны в угломестной плоскости, для ускоренного осмотра секторов пространства в азимутальной плоскости поворачивают ФАР вокруг оси, перпендикулярной к плоскости ФАР, и осуществляют электронное сканирование в азимутальной плоскости при предпочтительном значении угла места и выполняют дополнительно электронное сканирование в угломестной плоскости путем изменения несущей частоты зондирующего сигнала. При изменении несущей частоты зондирующего сигнала происходит изменение направления луча (фиг. 2). Как видно из диаграмм (фиг. 2), полученных расчетным путем для ФАР из набора Ш-образных линеек [патент РФ №2049368]. При изменении частоты зондирующего сигнала на 12% луч отклоняется на 10°. Диаграммы рассчитывались на персональном компьютере с помощью программы MathCad. Этот способ дает возможность обеспечить электронное сканирование в широком азимутальном секторе и в небольшом угломестном, в котором прежде всего появляются цели на максимальных дальностях, что обеспечивает решение задачи обнаружения и взятие на сопровождение цели в секторе с наибольшей вероятностью появления скоростных малоразмерных целей (вероятный сектор ракетного направления).

Способ по второму варианту может быть использован там, где требуется высокий темп выдачи информации в широком азимутальном секторе и угломестном, с размером больше, чем ширина луча ФАР (обеспечивается способом по первому варианту).

Таким образом решается поставленная проблема и достигается технический результат во втором варианте.

1. Способ радиолокационного обзора пространства, заключающийся в электронном и механическом сканировании по углу места и механическом по азимуту с помощью фазированной антенной решетки (ФАР), отличающийся тем, что при обзоре азимутального сектора с наибольшей вероятностью появления скоростных и малоразмерных целей электронное сканирование перемещают в азимутальную плоскость путем поворота ФАР вокруг оси, перпендикулярной к ее плоскости.

2. Способ радиолокационного обзора пространства, заключающийся в электронном и механическом сканировании по углу места и механическом по азимуту с помощью фазированной антенной решетки (ФАР), отличающийся тем, что при обзоре азимутального сектора с наибольшей вероятностью появления скоростных или малоразмерных целей электронное сканирование перемещают в азимутальную плоскость путем поворота ФАР вокруг оси, перпендикулярной к ее плоскости, и выполняют дополнительно к механическому электронное сканирование в угломестной плоскости путем изменения несущей частоты зондирующего сигнала.



 

Похожие патенты:

Изобретение относится к способам дистанционного охранного мониторинга местности и может быть использовано в случаях применения однопозиционного радиоволнового средства обнаружения (СО) для сигнализационного прикрытия двух лежащих рядом дорог, одна из которых имеет изгиб.

Изобретение относится к ультразвуковым системам обнаружения препятствий, предназначенным для регистрации и обработки сигналов, получаемых с акустических датчиков, и может быть использовано в подвижных дистанционно-управляемых объектах военного или двойного назначения для определения расстояний до препятствий.

Изобретение относится к области электротехники, а именно к океанологическим измерениям, и может быть использовано для контроля солености морской воды на разных акваториях Мирового океана.

Предлагаемые устройства относятся к радиолокационным и гидролокационным системам с импульсным сжатием многофазных кодов. Технический результат заключается в повышении качества сжатия сигналов, производится подавление боковых лепестков, возникающих в процессе сжатия, при котором обеспечивается увеличение числа многофазных кодов длины N, для всех значений временных сдвигов (отсчетов), исключая двух ±N, в которых относительный уровень боковых лепестков находится в диапазоне от -20 lgN -6 до -20 lgN -8 dB за счет использования симметрично усеченных кодов, образованных последовательным удалением равного числа первых и последних символов кодов большей длины.

Изобретение относится к радиолокации, а именно к способам формирования диаграммы направленности цифровыми антенными решетками при обзоре пространства и земной поверхности, и может быть использовано в радиолокационных станциях (РЛС).

Изобретение относится к области радиолокации и может быть использовано при радиолокационном обзоре заданной зоны с помощью мобильных радиолокационных станций кругового обзора с антенной в виде одномерной фазированной антенной решетки с электронным управлением лучом по углу места и механическим вращением по азимуту.

Изобретение относится к радиолокации, в частности к способам определения эффективной площади рассеяния (ЭПР) объектов, и может быть использовано для расчета эффективной площади рассеяния летательных аппаратов в полете штатными средствами радиолокационных станций.

Изобретение относится к обзорным радиолокационным станциям (РЛС), конкретно к РЛС кругового обзора со стационарными антеннами, и может быть использовано в системах контроля и управления воздушным движением (УВД).

Изобретение относится к области радиолокации и может быть использовано для обнаружения, сопровождения и получения координатной и некоординатной информации о ракетах-носителях и космических аппаратах в секторе электронного сканирования (СЭС), оценки помеховой обстановки в СЭС, а также обобщения информации о целевой и помеховой обстановке, полученной в активном и пассивном режимах функционирования.

Изобретение относится к способам обработки сверхширокополосных сигналов (СШС) с линейной частотной модуляцией (ЛЧМ) в радио и акустических системах локации, навигации и связи при наличии искажений этих сигналов за счет нелинейности фазочастотных характеристик приемопередающих трактов и канала распространения.

Изобретения (варианты) относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС). Достигаемый технический результат изобретения - обеспечение накопления энергии в процессе электронного сканирования лучом фазированной антенной решетки (ФАР) с одномерным электронным сканированием и повышение помехозащищенности, при действии помехи в области боковых лепестков диаграммы направленности антенны. Указанный технический результат по первому варианту достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании лучом ФАР по углу места и механическом по азимуту увеличивают затраты энергии в выбранной зоне в процессе вращения ФАР по азимуту, перемещая область электронного сканирования в зону путем наклона ФАР за счет ее поворота вокруг оси, перпендикулярной к ее плоскости. Указанный технический результат по второму варианту достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании и снижении уровня боковых лепестков диаграммы направленности фазированной антенной решетки в направлении на постановщика помехи перемещают область электронного сканирования пространства РЛС с одномерным электронным сканированием за счет поворота ФАР вокруг оси, перпендикулярной к ее плоскости так, чтобы направление на постановщика помех перемещалось в область между направлениями главных осей ФАР. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных системах с зондирующими сигналами, кодированными по фазе (фазокодоманипулированными сигналами), для измерения поляризационной матрицы рассеяния объекта. Достигаемый технический результат - повышение точности измерения поляризационной матрицы рассеяния объекта за счет компенсации возникающих искажений (погрешности измерения). Технический результат достигается тем, что в способе измерения поляризационной матрицы рассеяния объекта с компенсацией искажений при зондировании на одной несущей частоте на ортогональных поляризациях одновременно излучают соответствующие ортогональные по структуре радиосигналы, принимают одновременно все ортогонально поляризованные составляющие отраженных от объекта радиосигналов, выходные радиосигналы каждого соответствующего по поляризации канала приемника подают на фильтры, каждый из которых согласован с одним из излученных ортогональных по структуре радиосигналов, при этом для компенсации искажений, обусловленных неидентичностью используемых передающих и приемных каналов, радиосигналы на выходах согласованных фильтров умножают на весовые коэффициенты, которые находят до излучения зондирующих радиосигналов по объекту локации на основе анализа результатов работы радиолокационной станции, после чего измеряют на выходах умножителей параметры радиосигналов, определяющие соответствующие элементы поляризационной матрицы рассеяния объекта, при этом измеренные значения кроссовых элементов поляризационной матрицы рассеяния объекта объединяют. 1 ил.

Изобретение относится к классу геофизических приборов, предназначенных для исследований, не нарушающих структуры грунта, на глубины от нескольких десятков до нескольких сотен метров. Достигаемый технический результат - расширение диапазона обрабатываемых значений сигналов, поступающих в ответ на подачу зондирующих импульсов, что позволяет без искажений принимать информацию с различных глубин зондирования, практически исключая искажения, связанные с нелинейностью входных характеристик приемных элементов. Указанный результат достигается за счет того, что устройство содержит передающую часть и приемную часть. Передающая часть включает в себя последовательно связанные высоковольтный источник питания, формирователь зондирующих импульсов и передающую антенну, а приемная часть - последовательное связанные приемную антенну, средство обработки сигналов, средство представления результатов обработки сигналов. Средство обработки сигналов содержит двухканальный аналого-цифровой преобразователь, выходы которого подключены к входам средства объединения канальных сигналов преобразователя для передачи средству представления результатов обработки. 5 з.п. ф-лы, 8 ил.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах, и предназначено для решения задач картографирования земной поверхности. Достигаемый технический результат - повышение разрешающей способности по азимуту вблизи линии пути носителя бортовой радиолокационной станции (БРЛС). Указанный результат достигается за счет того, что когерентно излучают и накапливают сигнал в процессе сканирования лучом диаграммы направленности антенны вблизи линии пути носителя БРЛС, когда луч диаграммы направленности антенны, плавно перемещаясь, охватывает весь передний сектор, осуществляют сигнальную обработку накопленного сигнала, заключающуюся в определении и компенсации фазового набега, определении крутизны частотной модуляции сигналов, выделении сигналов, накопленных слева и справа от линии пути носителя БРЛС, спектральной обработке сигналов, объединении сигналов, накопленных слева и справа от линии пути носителя, затем повторно сканируют тот же участок земной поверхности с когерентным накоплением отраженного сигнала, осуществляют обработку повторно накопленного сигнала, аналогичную обработке первого сигнала, причем выделение сигналов с положительной и отрицательной крутизнами частотной модуляции осуществляют с компенсацией разности фаз относительно первого накопленного сигнала, после обработки обоих сигналов суммируют поэлементно полученные массивы амплитуд сигналов и формируют радиолокационное изображение из суммарного массива амплитуд. 3 ил.

Изобретение относится к прецизионным устройствам усиления сигналов. Технический результат заключается в повышении разомкнутого коэффициента усиления по напряжению операционного усилителя. Каскодный дифференциальный операционный усилитель содержит: входной дифференциальный каскад с общей эмиттерной цепью, согласованной с первой шиной источника питания, первый, второй, третий, четвертый дополнительные транзисторы, базы первого и второго дополнительных транзисторов подключены к первому токовому выходу входного дифференциального каскада, базы третьего и четвертого дополнительных транзисторов подключены ко второму токовому выходу входного дифференциального каскада, объединенные эмиттеры первого и второго дополнительных транзисторов связаны с эмиттером второго выходного транзистора, объединенные эмиттеры третьего и четвертого дополнительных транзисторов соединены с эмиттером первого выходного транзистора, коллекторы второго и третьего дополнительных транзисторов соединены с первым токовым выходом входного дифференциального каскада а коллекторы первого и четвертого дополнительных транзисторов связаны со вторым токовым выходом входного дифференциального каскада. 1 з.п. ф-лы, 11 ил.

Изобретение относится к системам для обнаружения объекта путем отражения от его поверхности радиоволн и может быть использовано в радиолокации для распознавания разрушения (подрыва) самолета. Достигаемый технический результат - обеспечение возможности распознавания разрушения (подрыва) самолета. Технический результат достигается тем, что в способе распознавания разрушения (подрыва) самолета, заключающемся в излучении в сторону самолета электромагнитной энергии, приеме отраженных от самолета сигналов, получении спектра отраженного сигнала, проведении узкополосной фильтрации составляющих частоты Доплера, дополнительно определяют наличие частоты Доплера на частоте, вызванной перемещением со скоростью, близкой к скорости фронта ударной волны, обеспечивают ее воспроизведение, индицируют и сигнализируют о наличии данного сигнала. Устройство, реализующее способ, содержит последовательно соединенные антенну и радиолокационную станцию (РЛС), фильтр, настроенный на частоту Доплера, вызванную перемещением со скоростью, близкой к скорости фронта ударной волны, динамик, детектор, пороговое устройство и схему индикации, причем вход фильтра соединен с выходом РЛС, выход фильтра соединен со входами динамика и детектора, выход которого через пороговое устройство соединен со схемой индикации. 2 н.п. ф-лы, 1 ил.

Изобретение относится к метеорологии и может быть использовано в системах мониторинга опасных явлений погоды, а также в исследованиях электрических процессов в атмосфере и геофизических исследованиях. Достигаемый технический результат – упрощение определения объемной плотности грозоопасного заряда на основе использования сетевых геомагнитных, метеорологических и спутниковых данных, а также расширение возможностей его определения в случае движущихся облаков по их собственному магнитному полю, что в свою очередь открывает возможность получения прогностических оценок развития грозы. Указанный результат достигается за счет того, что: величину объемной плотности движущегося на определенной высоте заряда облака определяют по величине скорости движения V, индукции его собственного магнитного поля ΔВ и по геометрическим параметрам расположения центральной части объемного заряда относительно точки регистрации магнитной индукции в соответствии с формулой: ,где ρ - объемная плотность заряда облака (Кл/м3);ΔВ - магнитная индукция движущегося объемного заряда облака (Тл);V - скорость движения объемного заряда (м/с);Hh и - высоты верхней и нижней границ облаков, соответственно (м);L - ширина массива движущихся облаков по линии, перпендикулярной вектору скорости (м);α - угол между вертикалью и направлением на центр объемного заряда от точки регистрации магнитной индукции (рад);μ0 - магнитная постоянная, равная 4π×10-7 (Гн/м).Среднюю скорость и направление движения облаков V в районе наблюдения определяют по результатам измерения вертикального профиля скорости ветра на сетевых аэрологических станциях с помощью радиозондов, а также по спутниковым наблюдениям. Величину индукции ΔВ движущегося объемного заряда облаков определяют по разности индукций геомагнитного поля, регистрируемых на ближайшей сетевой геомагнитной обсерватории, где по спутниковым снимкам не наблюдается облаков, и на аналогичной геомагнитной обсерватории, где наблюдается прохождение потенциально опасной облачности. Ширину облачного массива L по линии, перпендикулярной вектору скорости движения, и высоту верхней границы облаков Hh определяют по данным спутниковых наблюдений. Высоту нижней границы облаков определяют по данным измерителя нижней границы облачности на ближайшей метеостанции, входящей в состав гидрометеорологической сети.

Изобретение относится к радиолокации протяженных целей, в частности к радиолокационным измерителям высоты, скорости и наклона вектора скорости летательного аппарата (ЛА) относительно земной поверхности, и может быть использовано при пикирующих траекториях ЛА, в том числе на беспилотных летательных аппаратах и снарядах. Результаты измерений высоты и вектора скорости ЛА могут быть использованы в интересах автономной навигации ЛА или коррекции инерциальной системы управления. Достигаемый технический результат - измерение высоты, истинной скорости ЛА и угла между направлением вектора скорости и плоскостью горизонта (угла пикирования) при использовании однолучевой антенной системы, ориентированной в направлении, совпадающем с продольной осью ЛА. Указанный результат достигается тем, что производится зондирование земной поверхности радиолокационным сигналом в направлении продольной оси ЛА, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, нахождение зависимости максимальной доплеровской частоты (МДЧ) от дальности по данным РЛИ, формирование исходной гипотезы о координатах ЛА по имеющимся априорным данным, при этом итерационно уточняют гипотезу о значениях измеряемых параметров за счет расчета гипотетической кривой МДЧ, соответствующей гипотезе, формируют сигнал ошибки гипотетической кривой МДЧ относительно кривой МДЧ по данным РЛИ, преобразуют сигнал ошибки кривой МДЧ в сигнал ошибки измеряемых параметров, суммируют его с уточняемой гипотезой, повторяют итерации и выдают в режиме слежения измеренных параметров высоты, истинной скорости и угла наклона вектора скорости ЛА относительно горизонта потребителю. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к радиолокации и может быть использовано для определения путевой скорости неманеврирующей аэродинамической цели преимущественно в радиолокационных станциях (РЛС) с грубыми измерениями угловых координат. Достигаемый технический результат изобретения - повышение точности определения путевой скорости. Для этого перемножают данные измерений дальности и радиальной скорости, определяют с помощью, цифрового нерекурсивного фильтра (ЦНРФ) оценку первого приращения произведения дальности на радиальную скорость за период обзора РЛС, делят оценку на период обзора РЛС, из полученного результата вычисляют квадратный корень. Устройство, реализующее способ, содержит последовательно соединенные умножитель дальности на радиальную скорость, ЦНРФ, делитель на период обзора, вычислитель квадратного корня. 2 н.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к области радиолокации и предназначено для применения в радиолокационных станциях (РЛС) для предотвращения столкновений летальных аппаратов с наземными препятствиями. Достигаемый технический результат - расширение диапазона азимутальных углов, в котором осуществляется поиск опасных препятствий при маловысотном полете летательного аппарата, а также при сохранении малого времени обзора. Способ основан на том, что осуществляют двухстрочный обзор подстилающей поверхности по азимуту лучом ДНА на разных интервалах дальности. В процессе обзора накапливают отраженный сигнал, проводят пороговую обработку. При обнаружении препятствия осуществляют сканирование по углу места, обнаруживают верхнюю границу препятствия, рассчитывают превышение летательного аппарата над препятствием и сравнивают с допустимым превышением. 2 ил.
Наверх