Способ регистрации малых количеств органических нано- и микрочастиц в биологических тканях


G01N1/28 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2638820:

федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) (RU)

Изобретение относится к области аналитической химии, в частности к масс-спектрометрическим способам измерения концентрации частиц в биологических тканях, и раскрывает способ регистрации органических нано- или микрочастиц в биологических тканях методом ускорительной масс-спектрометрии (УМС). Способ характеризуется тем, что проводят регистрацию частиц в пробах тканей с помощью ускорительного масс-спектрометра, в качестве частиц используют полимерные нано- и микросферы, молекулы мономеров которых содержат избыточное относительно фонового значения количество изотопа углерода С-14. Способ обеспечивает снижение нижней границы измеряемой концентрации органических частиц в биологических тканях, возможность исследования воздействия аэрозолей на живые организмы в естественных условиях. 2 пр.

 

Изобретение относится к методам измерения концентрации частиц в биологических тканях путем определения в них изотопного соотношения 14С/12С и 14С/13С с помощью ускорительного масс-спектрометра (УМС).

Известно, что метод ускорительной масс-спектрометрии УМС позволяет проводить измерение изотопного соотношения (отношение концентрации редкого изотопа к полной концентрации элемента) от 10-9 до 10-15 в образце массой от микрограмма до нанограмма (US 5209919, А61К 51/04, G01N 33/60, 11.05.1993). Благодаря высокой чувствительности метод УМС нашел применение в различных областях исследований, таких как археология, науки о Земле, фармацевтика, медицина.

Одним из применений метода УМС является исследование продуктов метаболизма лекарственных и биологически активных веществ, меченных радиоуглеродом С-14. Применение ультрамалых доз вещества (1/100 от фармакологической дозы) позволяет снизить не только радиационный уровень (существенно ниже естественного уровня, обусловленного отличными от радиоуглерода источниками излучения), но и понизить негативное влияние самого лекарственного или биологически активного препарата. Сверхчувствительность метода также дает возможность исследовать фармакокинетику от нескольких минут до нескольких месяцев, а возможность анализа малых проб (<1 мг сухого вещества, <10 мг образца тканей и <50 мкл жидкости) позволяет свести к минимуму биопсию жира, мышц и костной ткани. В результате безопасные испытания новых биоорганических веществ на человеке с использованием метода УМС позволяют сократить время и расходы, избегая длительных испытаний на животных и исключая непригодные препараты на ранних этапах его тестирования (Hellborg R (2003) Accelerator mass spectrometry - an overview. Vacuum, 70, 365-372).

С другой стороны, при исследовании воздействия аэрозольных частиц на живой организм, в том числе в работах по адресной доставке лекарств с помощью частиц-носителей лекарств и проникающей способности частиц разного состава и размера, остро стоит проблема регистрации низких концентраций частиц органического происхождения в биологических тканях. Вследствие малых размеров частиц (менее 10 мкм) и малого количества вдыхаемых (103-105 шт/см3, <100 мкг/м3) или вводимых (10-6-10-8 г на 1 г органа) частиц прямые исследования инородных частиц в живых организмах методами хроматографии, электронной, флуоресцентной микроскопии, ЯМР и масс-спектрометрии крайне осложнены или невозможны из-за недостаточной чувствительности методов.

Большинство работ посвящено исследованию отклика организма (иммунный ответ, цитотоксичность, физиологические проявления) на воздействие определенными частицами (Silva, V.M., Corson, N., Elder, A., , G. The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles. Toxicological Sciences, 85 (2), p. 983-989 (2005). Сложность прямого определения содержания органических частиц в организме вынуждает исследователей использовать слишком большие дозы вещества и/или вводить частицы в условиях, значительно отличающихся от наблюдаемых или применяемых в действительности, напримервнутривенно или под повышенным давлением непосредственно в дыхательные пути. Например, для того чтобы обнаружить аэрозольные частицы волокнистого углерода или полимерных сфер в образцах легких лабораторных мышей с помощью электронного микроскопа, им проводили обезболивание, трахеотомию и вводили концентрированную (5 мг/г массы лабораторной мыши) суспензию частиц под повышенным давлением (около 2 атм) (Kato, Т., Yashiro, Т., Murata, Y., Herbert, D.C., Oshikawa, К., Bando, М, Ohno, S., Sugiyama, Y. Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell and Tissue Research, 311 (1), p. 47-51 (2003)). Результаты испытаний новых лекарственных препаратов и исследований воздействия аэрозолей в таких условиях могут значительно отличаться от результатов, наблюдаемых при практическом использовании лекарств и в реальных условиях воздействия аэрозолями.

Описываемое изобретение предлагает сверхчувствительный метод ускорительной масс-спектрометрии для прямой регистрации органических частиц в тканях, в котором в качестве частиц-носителей разрабатываемых лекарств и модельной системы аэрозольных частиц следует использовать полимерные нано- или микросферы, мономеры которых содержат избыточное количество радиоуглерода. Полимерные нано- и микросферы представляют большой интерес для фармакологических и аэрозольных исследований, так как процедура синтеза полимерных сфер дает возможность строго регулировать размер частиц от нескольких десятков нм до нескольких микрон, изменять химические свойства поверхности частиц, создавая определенный состав функциональных групп, а также варьировать биосовместимость, покрывая поверхность сфер слоем различных биоорганических соединений.

Известна процедура прямой регистрации частиц в тканях (Gibaud, S., Demoy, М., Andreux, J.P., Weingarten, С, Gouritin, В., Couvreur, P. Cells involved in the capture of nanoparticles in hematopoietic organs. Journal of Pharmaceutical Sciences, 85 (9), p. 944-950 (1996)), при которой к поверхности полимерных частиц «пришивали» флуоресцирующий белок и проводили анализ частиц в тканях методом флуоресцентной микроскопии. Однако при этом удельные воздействующие дозы модельной системы были большими - порядка 15 мкг/г и вводились в организм внутривенно.

Известен способ регистрации радиоуглерода, находящегося в функциональных аминогруппах полистирольных частиц (14C-NH2-ПC), методом сцинтилляционного счета (Simon, В.Н., Ando, H.Y., Gupta, Р.К. Circulation time and body distribution of 14C-labeled amino-modified polystyrene nanoparticles in mice. Journal of Pharmaceutical Sciences, 84 (10), p. 1249-1253 (1995)). Однако из-за низкого удельного содержания меченых атомов вследствие малой концентрации функциональных групп на поверхности частиц, проблема высоких удельных доз осталась нерешенной - в описанном примере мышам внутривенно вводили 185 кБк/г или 90 мг/г 14C-NH2-ПC.

Таким образом, в литературе неизвестны способы прямой регистрации ультрамалых количеств (<1 мкг на 1 г ткани) нано- и микрочастиц в образцах биологических тканей.

Изобретение решает задачу прямого определения ультрамалого содержания частиц в биологических тканях.

Технический результат - снижение существующего на сегодняшний день нижнего предела измеряемой концентрации нано- и микрочастиц в образцах биологических тканей и проведение фармакологических и аэрозольных исследований в естественных или требуемых условиях.

Задача решается способом регистрации малых количеств органических нано- и микрочастиц в биологических тканях методом ускорительной масс-спектрометрии, при этом частицы содержат избыточную относительно фонового значения концентрацию изотопа углерода С-14, в качестве частиц используют полимерные частицы, состоящие из меченных С-14 мономеров или полимерные частицы, состоящие из меченных С-14 мономеров и сополимеров. В качестве мономеров используют меченные С-14 стирол, алкилметакрилаты, изопрен, бутадиен, хлоропрен, изобутилен, акриловые или уретановые соединения, а также любые их смеси. Полимерные частицы, состоящие из меченных С-14 мономеров, могут содержать сополимер, в качестве которого можно использовать, например, меченные или не меченные С-14 дивинилбензол, карбоновые кислоты.

Другими словами, задача решается использованием в качестве модельных частиц полимерных нано- или микросфер, мономер которых содержит избыточное относительно фонового значения количество изотопа углерода С-14, регистрацию частиц в пробах тканей проводят с помощью ускорительного масс-спектрометра (УМС). Например, в качестве частиц-носителей лекарственного препарата или аэрозольных частиц можно использовать полимерные микросферы, состоящие из цепочек стирола или алкилметакрилата, часть атомов углерода в которых являются изотопом С-14. В результате того, что удельное содержание радиоуглерода в частице можно регулировать вплоть до 100% относительно углеродных атомов, то появляется возможность проводить испытания аэрозолей в требуемых условиях и осуществлять воздействие на организм частицами любым путем, например, ингаляционным - при концентрации частиц в воздухе, не превышающей естественный уровень загрязнения. Исходное содержание радиоуглерода в частице подбирают в соответствии с применяемыми условиями воздействия (способ воздействия, доза частиц) и необходимой чувствительностью определения.

После воздействия биологические образцы сушат и подвергают процедуре пробоподготовки, типичной для ускорительной масс-спектрометрии. В частности, сухой образец сжигают в токе кислорода, выделившийся диоксид углерода направляют на анализ на ускорительном масс-спектрометре либо на стадию графитизации CO2 для получения углеродной таблетки и последующего анализа на УМС. Выделяющийся в результате окисления диоксид углерода в случае необходимости подвергают дополнительной процедуре очистки и осушки путем последовательных операций: адсорбции CO2 на сорбенте, десорбции СО2 с сорбента при нагревании, замораживанием диоксида углерода и вакуумированием с последующим размораживанием CO2 и направлением очищенного газа на анализ на ускорительном масс-спектрометре или на графитизацию с последующим анализом на УМС (Пат. РФ №2574738, G01N 1/28, B01D 59/44, 10.02.16).

Предлагаемый способ регистрации частиц и исследований воздействия частиц на живые организмы в требуемых условиях решает задачу прямого определения ультрамалого содержания частиц в биологических тканях.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Раствор полистирольных (ПС) монодисперсных микросфер, полученный в процессе эмульсионной полимеризации стирола, меченного С-14, по методике, описанной в E.V. Parkhomchuk et al. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry. Chemosphere (2016) 159, 80-88, с активностью 600 кБк/г углерода и размером сфер 225 нм (по данным метода лазерного рассеяния) пропускают через форсунку для получения аэрозоля. Очищенный воздушный поток частиц направляют в камеру с лабораторными мышами (самцы линии СВА) таким образом, чтобы максимально предотвратить попадание меченых частиц на шерсть. Концентрация полистирольных ПС частиц в потоке составляет 104 шт/см3. Мышей подвергают воздействию аэрозолем однократно в течение 30 мин. После эфтаназии проводят забор органов у экспериментальных и контрольных мышей, не подвергшихся воздействию аэрозолем. Биологические образцы хранят при температуре жидкого азота, затем сушат под вакуумом и подвергают процедуре пробоподготовки с дальнейшим анализом на УМС.

Результаты УМС анализа представляют в виде величины превышения содержания радиоуглерода в органах экспериментальных мышей относительно контрольных в единицах концентрации С-14 в органах контрольных мышей: 14Сэксп/14Сконтр - 1. Анализ изотопного соотношения методом ускорительной масс-спектрометрии показывает повышенное относительное содержание радиоуглерода в легких и печени: 0,18±0.02 и 0,10±0.02, соответственно. Данное превышение означает, что в 1 г легких и печени находилось около 10-8 г ПС частиц, а суммарное количество меченных ПС частиц, введенных ингаляционным путем в экспериментальных мышей, составляло 107 шт. на 1 мышь.

Пример 2

Испытания проводят по примеру 1, но с тем отличием, что микросферы состоят из полиметилметакрилата, активность радиоуглерода 600 кБк на 1 г углерода, размер частиц составляет 70 нм, концентрация частиц в потоке составляет 103 шт/см3. Воздействие аэрозолем проводят в течение 5 дней по 30 мин в день.

Через 6 месяцев после воздействия частицы обнаружены в легких, сердце, печени и мозге экспериментальных мышей, в которых УМС анализ показал статистически достоверное превышение содержания радиоуглерода. Суммарное количество введенных ингаляционным путем частиц в каждую мышь составило 6⋅106 шт.

Аналогичные результаты получают в случае использования в качестве мономеров меченные С-14 стирол, алкилметакрилаты, изопрен, бутадиен, хлоропрен, изобутилен, акриловые или уретановые соединения, а также любые их смеси.

При этом полимерные частицы, состоящие из меченных С-14 мономеров, могут содержать дополнительно сополимер, в качестве которого можно использовать, например, меченные или не меченные С-14 дивинилбензол, карбоновые кислоты.

Способ регистрации органических нано- или микрочастиц в биологических тканях методом ускорительной масс-спектрометрии (УМС), отличающийся тем, что в качестве нано- или микрочастиц используют полимерные частицы, состоящие из меченных радиоактивным углеродом С-14 мономеров, выбранных из С-14 стирола, аклилметакрилатов, изопрена, бутадиена, хлоропрена, изобутилена, акриловых или уретановых соединений, или из указанных выше С-14 мономеров и сополимеров, выбранных из меченных или не меченных С-14 дивинилбензола, карбоновых кислот, при осуществлении способа из раствора меченых частиц получают аэрозоль, вводят ингаляционно подопытным мышам, затем анализируют образцы биологических тканей с применением метода УМС.



 

Похожие патенты:

Группа изобретений относится к: метящей композиции для непосредственного введения в раковую ткань для идентификации места и размера ракового поражения в режиме реального времени во время хирургического вмешательства по удалению рака, содержащей комплекс, в котором макроагрегат альбумина (МАА) связан с пигментом для окрашивания живых тканей, радиоактивным изотопом или их комбинацией, где МАА дополнительно связан с фибрином; способу предоставления информации о месте и размере ракового поражения с применением метящей композиции для ракового поражения; набору для идентификации места и размера ракового поражения в режиме реального времени во время хирургического вмешательства по удалению рака, содержащему вышеуказанную метящую композицию.

Изобретение относится к медицине и может быть использовано для определения присутствия белка STEAP-1 в биологическом образце, полученном от индивида, имеющего подозрение на метастатический рак предстательной железы.

Настоящее изобретение относится к области биотехнологии, конкретно к применению полипептида, меченного радиоактивной меткой 99mTс, для визуализации экспрессии рецептора человеческого эпидермального фактора роста 2 типа (HER2), и может быть использовано в диагностике опухолевых заболеваний.

Изобретение относится к медицине, а именно к фармакологии, и описывает способ определения связывания радиофармпрепарата на основе ципрофлоксацина, меченного 99mTc с бактериями, заключающийся в следующем.

Изобретение относится к области медицины, а именно к способу выявления костных метастазов при почечно-клеточной карциноме (RCC), включающему введение нуждающемуся в этом субъекту эффективного количества 124I-меченного антитела против карбоангидразы-IX или его антигенсвязывающего фрагмента, выполнение визуализации с помощью позитронно-эмиссионной томографии (PTE) для измерения уровня радиации в указанном субъекте и определение костных метастазов.

Изобретение относится к области биохимии и молекулярной биологии. .

Изобретение относится к медицине и может быть использовано для определения сигнальных лимфатических узлов у больных РМЖ. .
Изобретение относится к области медицины, а именно к дерматологии. .

Изобретение относится к медицине, а именно к фтизиопедиатрии. .

Изобретение относится к области клинической медицины, более конкретно к работам по определению паразитологических агентов в клиническом материале – кале адаптированным методом иммуномагнитной сепарации с последующим иммунофлюоресцентным мечением.

Изобретение относится к медицинской технике, используемой в общей хирургии, травматологии, ортопедии и гнойной хирургии, и может быть использовано для взятия проб биоматериала для исследований.

Группа изобретений относится к устройствам и способу разделения компонентов биологических жидкостей и может быть использовано в биотехнологии, для препаративных целей в промышленности, в лабораторной или исследовательской практике, в частности для отделения осадка при центрифугировании с непрерывной подачей биологической жидкости для разделения.

Группа изобретений относится к отбору пробы жидкости, в частности топливной, на определение уровня содержания серы в топливе. Пробоотборник (100; 300; 400; 500; 610; 620; 630) приспособлен для установки в систему с вариациями температуры, которая содержит в себе или транспортирует жидкость.

Изобретение относится к устройству для формирования образцов из тампонажных растворов, применяемых при цементировании нефтяных и газовых скважин, полученных в условиях, имитирующих скважинные по температуре до 200°C и давлению до 100 МПа, для последующих прочностных испытаний образцов на сжатие и может быть использовано на скважинах, в лабораториях тампонажных контор, управлений буровых работ и нефтедобывающих объединений, в лабораториях научно-исследовательских организаций.

Группа изобретений относится к формированию и анализу составной пробы текучей среды. Устройство содержит входное отверстие, выполненное с возможностью приема части текучей среды, протекающей по трубопроводу; клапан, подсоединенный к входному отверстию; насос, соединенный с клапаном; резервуар, соединенный с клапаном; и газовый хроматограф, соединенный с клапаном.

Изобретение относится к технике отбора проб газонасыщенных конденсатов, нефти, продуктов их промысловой подготовки и других жидкостей. Устройство для отбора проб жидкости из трубопровода включает установленные последовательно на ответвление 1 трубопровода 2 через переходник 3 поворотный клапан 4 с отводным проходным каналом.
Изобретение относится к медицине, а именно к фармакологии, фармации, дерматологии, косметологии и судебной медицине, и может быть использовано при разработке новых лекарственных средств, предназначено для поиска и оценки эффективности средств, обесцвечивающих кожу в области «красных» и «синих», свежих и старых кровоподтеков, при разработке косметических технологий, предназначенных для удаления кровоподтеков, а также при судебной медицинской экспертизе давности кровоподтеков и ушибов мягких тканей.

Изобретение относится к исследованию прочностных свойств материалов и может применяться при аттестации сотовых структур при изготовлении трехслойных конструкций кораблестроения, авиастроения и космической техники.
Изобретение относится к области медицины, а именно к акушерству, и касается способа раннего прогнозирования развития инфекционно-воспалительных осложнений (ИВО). У женщин после сверхранних преждевременных родов перед родами устанавливают: имели ли место роды ранее, страдает ли женщина эндокринной патологией и никотинозависимостью, была ли угроза прерывания беременности в первом триместре данной беременности, имеет ли место истмико-цервикальная недостаточность при данной беременности.

Изобретение относится к методам пробоподготовки биоорганических, в том числе медицинских образцов для определения в них изотопного соотношения 14С/12С и 14С/13С с помощью ускорительного масс-спектрометра (УМС).
Наверх