Способ производства сжиженного природного газа и компримированного природного газа на газораспределительной станции и комплекс для его реализации

Группа изобретений относится к газовой промышленности, а именно, к технологиям производства сжиженного природного газа и компримированного природного газа на газораспределительных станциях. Способ производства сжиженного природного газа и компримированного природного газа на газораспределительной станции (ГРС), энергонезависимый, при котором одновременно производят сжиженный и компримированный природный газ. Природный газ отбирают из магистрального газопровода, разделяют на два потока: первый поток направляют на ожижение природного газа и, одновременно с этим, второй поток направляют на компримирование природного газа. Второй поток пропускают поочередно через второй компрессор и аппарат воздушного охлаждения. Одновременно с этим, первый поток на ожижение фильтруют, очищают в адсорбере, охлаждают в по меньшей мере одном теплообменнике и разделяют на два потока: технологический и продукционный. Технологический поток направляют на детандер, с генератором которого устанавливают электрическую связь двигателей первого компрессора, который используют при ожижении продукционного потока входящего первого потока газа, и второго компрессора, который используют при компримировании входящего второго потока газа, а также двигателей вентиляторов аппаратов воздушного охлаждения. Продукционный поток пропускают через первый компрессор, охлаждают в аппарате воздушного охлаждения, затем дополнительно охлаждают в по меньшей мере одном теплообменнике и пропускают через дроссель для получения парожидкостной смеси. От нее отделяют жидкую фазу и, завершая проход продукционного потока, направляют ее для скачивания потребителю сжиженного природного газа. Из паровой фазы формируют обратный поток, направляют его через теплообменники продукционного потока, соединив с выходящим после детандера расширенным и низкотемпературным технологическим потоком. Комплекс для реализации способа включает в себя две линии. Первая линия подачи природного газа содержит блок фильтрации, адсорбер, теплообменник и разделяется на технологическую, продукционную и обратную линии. Продукционная линия содержит первый компрессор, аппарат воздушного охлаждения и по меньшей мере один теплообменник, дроссель, сепаратор и соединена с хранилищем сжиженного природного газа. Обратная линия берет начало в сепараторе, проходит через теплообменники продукционной линии и соединена на выходе с газораспределительной сетью. Технологическая линия содержит детандер и подключена к обратной линии, одновременно с этим вторая линия подачи природного газа содержит второй компрессор, аппарат воздушного охлаждения и соединена с потребителями компримированного природного газа, а генератор детандера связан посредством электрической связи с двигателями первого и второго компрессоров, а также с двигателями вентиляторов аппаратов воздушного охлаждения. 2 н. и 5 з.п. ф-лы, 4 ил.

 

Изобретение относится к газовой промышленности, конкретно, к технологиям производства сжиженного природного газа (СПГ) и компримированного природного газа (КПГ) на газораспределительных станциях (ГРС).

Благодаря характеристикам горения - его полноте и удобству, природный газ нашел широкое применение. Для транспортирования на рынки сбыта полученный природный газ может перерабатываться в сжиженный и компримированный газ. Сжиженный природный газ получают при охлаждении природного газа метана до -162°C. В жидком состоянии объем газа уменьшается в 600 раз, что позволяет в значительной степени увеличить эффективность его хранения и транспортировки. Компримированный, или сжатый природный газ - это тот же метан, но находящийся в газообразном состоянии, под давлением до 20 МПа. Потребитель может сразу использовать этот газ для собственных нужд.

Значительная энергоемкость процессов сжижения и компримирования природного газа обуславливает высокую чувствительность себестоимости производства к параметрам энергоэффективности, и экономической эффективности. Задача кардинального повышения энергетических характеристик производства требует качественно новых технологических решений.

Известна статья «Малотоннажное производство СПГ в условиях промысловой подготовки газа», авторы Д.А. Ожерельев, С.В. Дейнеко в сб. Труды РГУ нефти и газа имени И.М. Губкина, №1 (2778) 2015 г., с 80-84, в которой исследована область использования сжиженного природного газа и проведен сравнительный анализ экономической эффективности и производительности малотоннажных установок по сжижению с целью внедрения в технологический процесс промысловой подготовки природного газа. Разработана модель технологической установки производства СПГ для обеспечения технологического транспорта топливом. Согласно расчетным данным установка обеспечивает необходимую производительность СПГ с коэффициентом ожижения 10%. Разработана схема работы установки получения СПГ в промысловых условиях. За основу модели производства СПГ принят процесс, основанный на эффекте Джоуля-Томпсона реализуемый в дроссельном цикле. В схему добавляется турбодетандер, с помощью которого часть несжиженного газа компримируется до давления 3,0 МПа и подается в магистраль топливного газа для работы ГПА.

Максимальный коэффициент ожижения достигается в каскадных холодильных схемах, где в качестве внешнего хладагента для охлаждения прямого потока газа используются индивидуальные углеводороды или их смеси. Вследствие применения сложного, дорогостоящего и энергоемкого оборудования такие способы ожижения не всегда оказываются экономически выгодными.

Известен «Способ производства сжиженного природного газа и комплекс для его реализации», патент RU 2541360, МПК F25J 1/00, дата публикации 10.02.2015 года, где при реализации способа входящий поток газа очищают от примесей и компримируют до разделения его на технологический и продукционный потоки. Технологический поток пропускают через детандер, оборудованный газовой турбиной, вращающий момент которой используют для компримирования входящего потока газа до разделения его на технологический и продукционный потоки. Технологический поток очищают от примеси тяжелых углеводородов путем их конденсации в сопловом аппарате детандера, который выполняют из теплопроводящего материала. Продукционный поток очищают от примесей CO2, охлаждают, пропускают через дроссель для получения парожидкостной смеси, от которой отделяют СПГ в виде жидкой фазы для скачивания потребителю СПГ. Комплекс для реализации указанного выше способа содержит соединенный с магистралью газораспределительной станции трубу, с которой связаны технологическая линия, соединенная с газораспределительной сетью, и продукционная линия, соединенная с хранилищем сжиженного природного газа, включающая компрессор, дроссель, сепаратор, которая содержит детандер, оборудованный турбиной, выполненной с возможностью вращения потоком газа из технологической линии.

Основным недостатком известных технических решений является то, что при осуществлении технологического цикла процесса сжижения или компримирования природного газа сохраняется достаточно высокое потребление электроэнергии. Также, известные способы и устройства для реализации таких способов направлены на усовершенствование выполнения лишь одного технологического процесса - либо сжижения природного газа, либо его компримирования. Ни один из известных способов не направлен на совмещение этих процессов в один энергонезависимый технологический процесс одновременного производства сжиженного природного газа и компримированного природного газа на газораспределительной станции.

Целью изобретения является повышение экономической эффективности и энергоэффективности процессов производства сжиженного природного газа и компримированного природного газа на газораспределительной станции.

Техническим результатом изобретения является разработка полностью энергонезависимого способа и комплекса для его реализации, при котором осуществляют одновременное производство сжиженного природного газа, компримированного природного газа, обеспечение газом потребителя через газовую сеть.

Поставленная цель (для способа) достигается тем, что в энергонезависимом способе производства сжиженного природного газа и компримированного природного газа на газораспределительной станции одновременно производят сжиженный и компримированный природный газ, для этого природный газ отбирают из магистрального газопровода и разделяют на два потока: первый поток направляют на ожижение природного газа и одновременно с этим второй поток направляют на компримирование природного газа. Второй поток пропускают поочередно через второй компрессор и аппарат воздушного охлаждения, одновременно с этим первый поток на ожижение фильтруют, очищают в адсорбере, охлаждают в одном, но не ограничиваясь этим, теплообменнике и разделяют также на два потока: технологический и продукционный. При завершении прохода продукционного потока, организуют обратный поток. Технологический поток направляют на детандер, с генератором которого устанавливают электрическую связь двигателей первого компрессора, который используют при ожижении продукционного потока входящего первого потока газа, и второго компрессора, который используют при компримировании входящего второго потока газа, а также двигателей вентиляторов аппаратов воздушного охлаждения. Продукционный поток пропускают через первый компрессор, охлаждают в аппарате воздушного охлаждения, затем дополнительно охлаждают в одном, но не ограничиваясь этим, теплообменнике и пропускают через дроссель для получения парожидкостной смеси, от которой отделяют жидкую фазу и, завершая проход продукционного потока, направляют ее для скачивания потребителю сжиженного природного газа. Из паровой фазы формируют обратный поток, направляют его через теплообменники продукционного потока, соединив с выходящим после детандера расширенным и низкотемпературным технологическим потоком. Продукционный поток на ожижение природного газа также может быть направлен на охлаждение в теплообменник в обход первого компрессора и аппарата воздушного охлаждения. В адсорбере устанавливают теплообменное устройство и направляют на него часть произведенного компримированного горячего природного газа для осуществления запуска процесса регенерации адсорбента. В теплообменном устройстве адсорбера организуют циркуляцию высокотемпературного теплоносителя и теплообмен с ним части произведенного компримированного горячего природного газа для осуществления безопасного запуска процесса регенерации адсорбента.

Поставленная цель (для устройства) достигается тем, что комплекс для реализации способа выполнен с подключенной трубой, соединенной с магистралью газораспределительной станции и разделенной на две линии: первая линия подачи природного газа содержит блок фильтрации, адсорбер, теплообменник и разделяется на технологическую, продукционную и обратную линии. Продукционная линия содержит первый компрессор, аппарат воздушного охлаждения и один, но не ограничиваясь этим, теплообменник, дроссель, сепаратор и соединена с хранилищем сжиженного природного газа. Обратная линия берет начало в сепараторе, проходит через теплообменники продукционной линии и соединена на выходе с газораспределительной сетью. Технологическая линия содержит детандер и подключена к обратной линии. Одновременно с этим вторая линия подачи природного газа содержит второй компрессор, аппарат воздушного охлаждения и соединена с потребителями компримированного природного газа. Генератор детандера связан посредством электрической связи с двигателями первого и второго компрессоров, а также с двигателями вентиляторов аппаратов воздушного охлаждения. В адсорбере установлено теплообменное устройство, соединенное со второй линией подачи трубопроводами подвода и отвода части произведенного компримированного горячего природного газа. Теплообменное устройство адсорбера подключено к дополнительному теплообменнику, соединенному со второй линией подачи трубопроводами подвода и отвода части произведенного компримированного горячего природного газа.

Это обеспечивает повышение экономической эффективности за счет осуществления одновременно нескольких технологических процессов: производство сжиженного природного газа, производство компримированного природного газа на газораспределительной станции, обеспечение газом потребителя через газовую сеть, также это обеспечивает повышение энергоэффективности за счет обеспечения полной энргонезависимости технологического процесса такого производства.

Настоящее изобретение и его преимущества будут более понятны путем ссылки на последующее подробное описание и прилагаемые чертежи.

На фиг. 1 показана упрощенная схема технологического процесса одного конструктивного исполнения этого изобретения, иллюстрирующая процессы сжижения и компримирования в соответствии с практическим применением этого изобретения. Схема технологического процесса представляет собой предпочтительное конструктивное исполнение применения на практике процесса по этому изобретению. Чертеж не исключает из объема изобретения другие конструктивные исполнения, которые являются результатом обычных и предполагаемых модификаций этого конкретного конструктивного исполнения. Различные требуемые вспомогательные системы, такие как клапаны, смесители потоков, системы регулирования и датчики исключены из чертежа в целях упрощения и ясности представления. На фиг. 2 представлена блок-схема варианта комплекса для реализации способа с направлением по трубопроводам подвода-отвода части компримированного природного газа на установленное в адсорбере теплообменное устройство для запуска процесса регенерации адсорбента. На фиг. 3 представлена блок-схема варианта комплекса для реализации способа с направлением по трубопроводам подвода-отвода части компримированного природного газа в дополнительный теплообменник для теплообмена с высокотемпературным теплоносителем, подаваемым посредством насоса в теплообменное устройство, установленное в адсорбере, для обеспечения более безопасного запуска процесса регенерации адсорбента. На фиг. 4 представлена блок-схема варианта комплекса для реализации способа, где продукционный поток природного газа на сжижение направляют сразу в теплообменники, без компрессора и аппарата воздушного охлаждения.

При реализации способа производства сжиженного природного газа и компримированного природного газа на газораспределительной станции, природный газ отбирают из магистрального газопровода, разделяют на два потока, первый из который направляют на ожижение природного газа и одновременно с этим второй поток направляют на компримирование природного газа. Поток на ожижение очищают, фильтруют и разделяют еще на два потока: технологический и продукционный. Технологический поток направляют на детандер, с генератором которого устанавливают электрическую связь двигателей первого и второго компрессоров, а также двигателей вентиляторов аппаратов воздушного охлаждения. Продукционный поток пропускают через первый компрессор, охлаждают в аппарате воздушного охлаждения, затем дополнительно охлаждают в одном, но не ограничиваясь этим, теплообменнике и пропускают через дроссель для получения парожидкостной смеси, от которой отделяют жидкую фазу и направляют ее для скачивания потребителю сжиженного природного газа, а из паровой фазы формируют обратный поток, в который направляют технологический поток, расширенный и низкотемпературный, после детандера. Второй поток, направляемый на компримирование природного газа, пропускают поочередно через второй компрессор и аппарат воздушного охлаждения и направляют полученный компримированный природный газ потребителю. Продукционный поток могут направлять в обход первого компрессора и аппарата воздушного охлаждения непосредственно в теплообменники перед дросселем, тем самым высвобождая значительную часть электроэнерии, вырабатываемой детандером, для направления ее на другие нужды комплекса, повышая экономическую эффективность технологического процесса. Часть произведенного компримированного горячего природного газа направляют на установленное в адсорбере теплообменное устройство. Это позволяет исключить потребление электроэнергии для запуска процесса регенерации адсорбента. В теплообменном устройстве адсорбера организуют циркуляцию высокотемпературного теплоносителя, например термомасла, и пропускают его через дополнительный теплообменник доохлаждения, соединенный со второй линией подачи трубопроводами подвода и отвода части произведенного компримированного горячего природного газа. Направление компримированного газа через дополнительный теплообменник доохлаждения позволяет повысить безопасность запуска процесса регенерации адсорбента в адсорбере и значительно уменьшить энергопотребление вентиляторов аппарата воздушного охлаждения второй линии подачи.

Комплекс, реализующий способ, содержит соединенную с магистралью газораспределительной станции трубу 1, первую линию 20 подачи природного газа, вторую линию 21 подачи природного газа с выходом 4, блок 5 фильтрации, адсорбер 6, теплообменники 7, 11, 12, через которые проходят технологический 22 с выходом 24, продукционный 23 с выходом 15 и обратный 25 с выходом 19 потоки, аппараты воздушного охлаждения 3 и 10, дроссель 13, сепаратор 14, детандер 9, первый компрессор 8 и второй компрессор 2, а также теплообменное устройство 16, насос 17, дополнительный теплообменник 18.

В конкретном исполнении комплекс работает следующим образом.

Природный газ высокого давления, поступающий из ГРС по трубе 1, разделяют на два потока: первая линия 20 подачи природного газа и вторая линия 21 подачи природного газа. По первой линии 20 подаваемый газ направляют на производство сжиженного природного газа, а также потребителю в газовую сеть, одновременно с этим, по второй линии 21 подаваемый газ направляют на производство компримированного природого газа. Поток по первой линии 20 пропускают через блок 5 фильтрации, затем направляют в адсорбер 6, где очищают от примесей CO2 и удаляют влагу с помощью адсорбента. Далее поток направляют в теплообменник 7 для охлаждения и разделяют на два потока: технологический 22 поток (для выработки холода) и продукционный 23 поток (для сжижения природного газа), из сепаратора 14 организуют обратный 25 поток.

Поток газа, направляемый по продукционному 23 потоку, пропускают через первый компрессор 8, аппарат воздушного охлаждения 10, два последовательно подключенных теплообменника 11 и 12, где охлаждают до температур (-70)- (-85°)C и направляют на дроссель 13. Далее, газ с температурой около -131°C и давлением около 0,7Мпа направляют в сепаратор 14 в виде парожидкостной смеси. Здесь жидкую фазу (сжиженный природный газ) парожидкостной смеси отделяют от паровой фазы, из которой формируют обратный 25 поток газа с параметрами: температура минус 131°C и давление 0,7МПа. Полученный сжиженный природный газ направляют из сепаратора 14 через выход 15 потребителю с достигнутыми требуемыми параметрами: температурой -131°C и давлением 0,7МПа.

Также, продукционный поток 23 на ожижение природного газа могут направлять на охлаждение в теплообменники 11 и 12 в обход первого компрессора 8 и аппарата воздушного охлаждения 10.

Технологический поток 22 газа направляют на детандер 9, где он расширяется с совершением внешней работы, при этом резко снижается его температура. Охлажденный таким образом технологический 22 поток газа соединяют не его выходе 24 с обратным 25 потоком. Обратный 25 поток подают противотоком в теплообменники 12 и 11 для доохлаждения продукционного 23 потока. После теплообменников 12 и 11 обратный 25 поток газа пропускают через теплообменник 7 и с достигнутыми требуемыми параметрами: с температурой +20°C и давлением 0,6 МПа подают на выход 19 потребителям в газовую сеть.

Подаваемый по второй линии 21 магистральный газ для производства компримированного природного газа подают на компрессор 2, аппарат воздушного охлаждения 3, с двигателями которых устанавливают электрическую связь генератора детандера 9. Основное количество электроэнергии, выработанной детандером 9, направляют на питание электропривода компрессора для сжатия газа до 250 атм и отправки через выход 4 потребителю компримированного природного газа с достигнутыми требуемыми параметрами: температурой +20°C и давлением 25,0 МПа.

По одному из возможных вариантов исполнения комплекса в адсорбере 6 устанавливают теплообменное устройство 16, соединенное со второй линией 21 подачи трубопроводами подвода и отвода части произведенного компримированного горячего природного газа для осуществления запуска процесса регенерации адсорбента. Также, в теплообменном устройстве 16 адсорбера 6 организуют посредством насоса 17 циркуляцию высокотемпературного теплоносителя, например термомасла, и подключают к дополнительному теплообменнику 18, соединенному со второй линией 21 подачи трубопроводами подвода и отвода части произведенного компримированного горячего природного газа с целью организации более безопасного запуска процесса регенерации адсорбента.

Повышение энергоэффективности достигается использованием энергии, вырабатываемой детандером, для обеспечения всех энергозависимых устройств комплекса: двигателей компрессоров, насоса, вентиляторов аппаратов воздушного охлаждения и т.п., без привлечения внешних источников энергии. Экономическая эффективность и производительность повышаются за счет организации одновременного процесса производств сжиженного природного газа, компримированного природного газа, обеспечение газом потребителя через газовую сеть.

Таким образом, повышение экономической эффективности и энергоэффективности достигается за счет организации полностью энергонезависимого процесса за счет организации на газораспределительной станции в комплексе одновременного производства сжиженного природного газа и компримированного природного газа, подачи газа с требуемыми параметрами потребителю в газораспределительную сеть.

1. Способ производства сжиженного природного газа и компримированного природного газа на газораспределительной станции, энергонезависимый, при котором одновременно производят сжиженный и компримированный природный газ и для осуществления которого природный газ отбирают из магистрального газопровода, разделяют на два потока: первый поток направляют на ожижение природного газа и одновременно с этим второй поток направляют на компримирование природного газа, для чего второй поток пропускают поочередно через второй компрессор и аппарат воздушного охлаждения, одновременно с этим первый поток на ожижение фильтруют, очищают в адсорбере, охлаждают в одном, но не ограничиваясь этим, теплообменнике и разделяют на два потока: технологический и продукционный, при завершении прохода последнего из которых организуют обратный поток, при этом технологический поток направляют на детандер, с генератором которого устанавливают электрическую связь двигателей первого компрессора, который используют при ожижении продукционного потока входящего первого потока газа, и второго компрессора, который используют при компримировании входящего второго потока газа, а также двигателей вентиляторов аппаратов воздушного охлаждения, а продукционный поток пропускают через первый компрессор, охлаждают в аппарате воздушного охлаждения, затем дополнительно охлаждают в одном, но не ограничиваясь этим, теплообменнике и пропускают через дроссель для получения парожидкостной смеси, от которой отделяют жидкую фазу и, завершая проход продукционного потока, направляют ее для скачивания потребителю сжиженного природного газа, а из паровой фазы формируют обратный поток, направляют его через теплообменники продукционного потока, соединив с выходящим после детандера расширенным и низкотемпературным технологическим потоком.

2. Способ по п. 1, отличающийся тем, что продукционный поток на ожижение природного газа направляют на охлаждение в теплообменник в обход первого компрессора и аппарата воздушного охлаждения.

3. Способ по п. 1, отличающийся тем, что в адсорбере устанавливают теплообменное устройство и направляют на него часть произведенного компримированного горячего природного газа для осуществления запуска процесса регенерации адсорбента.

4. Способ по п. 3, отличающийся тем, что в теплообменном устройстве адсорбера организуют циркуляцию высокотемпературного теплоносителя и теплообмен с ним части произведенного компримированного горячего природного газа для осуществления безопасного запуска процесса регенерации адсорбента.

5. Комплекс для реализации способа по п. 1, на вход которого подключена соединенная с магистралью газораспределительной станции труба, разделенная на две линии: первая линия подачи природного газа содержит блок фильтрации, адсорбер, теплообменник и разделяется на технологическую, продукционную и обратную линии, причем продукционная линия содержит первый компрессор, аппарат воздушного охлаждения и один, но не ограничиваясь этим, теплообменник, дроссель, сепаратор и соединена с хранилищем сжиженного природного газа, а обратная линия берет начало в сепараторе, проходит через теплообменники продукционной линии и соединена на выходе с газораспределительной сетью, при этом технологическая линия содержит детандер и подключена к обратной линии, одновременно с этим вторая линия подачи природного газа содержит второй компрессор, аппарат воздушного охлаждения и соединена с потребителями компримированного природного газа, а генератор детандера связан посредством электрической связи с двигателями первого и второго компрессоров, а также с двигателями вентиляторов аппаратов воздушного охлаждения.

6. Комплекс по п. 5, отличающийся тем, что в адсорбере установлено теплообменное устройство, соединенное со второй линией подачи трубопроводами подвода и отвода части произведенного компримированного горячего природного газа.

7. Комплекс по п. 6, отличающийся тем, что теплообменное устройство адсорбера подключено к дополнительному теплообменнику, соединенному со второй линией подачи трубопроводами подвода и отвода части произведенного компримированного горячего природного газа.



 

Похожие патенты:

Изобретение относится к системам управления компрессионных холодильных машин, а именно к способам управления процессом сжижения природного газа (СПГ), и может быть использовано для сжижения и переохлаждения природного газа.

Изобретение описывает способ удаления тяжелых углеводородов при сжижении природного газа, заключающийся в том, что предварительно очищенный и осушенный исходный природный газ охлаждают, разделяют полученную парожидкостную смесь в сепараторе на жидкую и паровую фазы, отводят жидкую фазу с повышенным содержанием тяжелых углеводородов на утилизацию, при этом охлаждение исходного природного газа осуществляют в теплообменнике, паровую фазу из сепаратора направляют на вход пассивного потока эжектора, из установки сжижения природного газа выводят часть холодного потока высокого давления и направляют ее на вход активного потока эжектора, выходящий из эжектора поток направляют в дополнительный сепаратор, в котором поток разделяют на газ и жидкость, газ направляют в теплообменник для рекуперации холода, после рекуперации холода газ направляют в компрессор, газ после компрессора направляют в установку сжижения природного газа.

Изобретение относится к газовой промышленности и криогенной технике, конкретно к технологиям сжижения природного газа на газораспределительных станциях. Способ производства сжиженного природного газа включает подачу потока сжатого природного газа из магистрального трубопровода высокого давления со входа газораспределительной станции и разделение потока на продукционный и технологический потоки.

Изобретение может быть использовано для обеспечения экспорта природного газа. Комплекс сжижения, хранения и отгрузки природного газа включает объединенные прямыми и обратными связями следующие звенья, параметры которых определяют в соответствии с содержанием примесей в сырьевом природном газе, а также с климатическими условиями региона и топографией местности: звено сепарации и замера природного газа, звено очистки природного газа от ртути и метанола, звено очистки природного газа от кислых примесей, звено осушки и очистки природного газа от меркаптанов, звено очистки природного газа от тяжелых углеводородов С5 и выше, звено сжижения природного газа, звено хранения и компаундирования компонентов хладагента, звено компримирования хладагента, звено хранения сжиженного природного газа, звено отгрузки сжиженного природного газа, звено компримирования отпарного газа и звено очистки стабильного конденсата от меркаптанов.

Изобретение относится к газовой промышленности, в частности к области сжижения газов и их смесей, и может найти применение при сжижении природного газа, отбираемого из магистрального газопровода.

В компрессоре, приводимом в действие электрическим двигателем, сжимают, по меньшей мере, часть текучей среды. Компрессор содержит регулируемые входные направляющие лопатки, угол поворота которых можно регулировать.

Изобретение относится к отделению диоксида углерода от газового потока. Заявлены способ отделения диоксида углерода (CO2) от газового потока и устройство отделения диоксида углерода (CO2) от потока, содержащего CO2.

Изобретение может быть использовано в газовой промышленности. Способ переработки магистрального природного газа с низкой теплотворной способностью, включающий стадию цеолитной осушки и очистки исходного магистрального природного газа от примесей, стадию криогенного разделения природного газа с извлечением гелия, азота и широкой фракции легких углеводородов, последующие стадии очистки широкой фракции легких углеводородов и стадию извлечения товарных сжиженных углеводородных газов в виде пропана, бутана, фракции С5 и выше, при этом исходный магистральный природный газ делят на три части: первую часть отправляют на выработку энергоресурсов для собственных нужд, вторую часть отправляют на выработку товарных продуктов через последовательные стадии цеолитной осушки и очистки исходного магистрального природного газа и криогенного разделения природного газа с извлечением гелия, метана и широкой фракции легких углеводородов, последующие стадии очистки широкой фракции легких углеводородов и извлечения товарных сжиженных углеводородных газов в виде пропана, бутана, фракции С5 и выше, третью часть отправляют на компаундирование с метаном, выделенным из второй части исходного магистрального природного газа.

Изобретение относится к криогенной технике. Способ сжижения природного газа включает очистку природного газа от тяжелых углеводородов, сернистых соединений и паров ртути, смешение с технологическим газом и сжатие компрессором с двигателем внутреннего сгорания в качестве привода.

Данное изобретение относится к способу и устройству для сжижения природного газа. В варианте осуществления настоящего изобретения способ сжижения природного газа включает: охлаждение части питающего потока природного газа с образованием охлажденного питающего потока природного газа; объединение охлажденного питающего потока природного газа со сжатым потоком орошения с формированием объединенного потока природного газа; разделение объединенного потока природного газа на первый поток легких фракций и первый поток тяжелых фракций; расширение первого потока легких фракций с формированием расширенного первого потока легких фракций; и сжатие потока орошения в сжатый поток орошения.

Изобретение относится к управлению компрессорными установками, преимущественно для шахтных предприятий горной промышленности. Установка содержит компрессор, установленные на линии нагнетания теплообменник-утилизатор, концевой холодильник, воздухосборник, соединенные между собой основными и дополнительными трубопроводами, которые снабжены клапанами, электрически связанными с блоком управления, и пневмосеть.

Группа изобретений относится к нефтедобывающей промышленности и, в частности, к вторичным и третичным методам увеличения нефтеотдачи пластов с пониженной нефтенасыщенностью, предусматривающим применение оборудования для выработки газообразного азота с высоким давлением и температурой.

Изобретение относится к компрессорной технике, преимущественно к передвижным компрессорным станциям с мембранными генераторами азота, для получения инертной газовой смеси на основе азота.

Изобретение относится к конструкции устройств для сжатия газа и может быть использовано в нефтегазовой, нефтеперерабатывающей, химической, нефтехимической и других отраслях промышленности для компримирования газов, содержащих легкие компоненты и пары малолетучих (тяжелых) компонентов (например, попутного нефтяного газа и природного газа), с получением сжатого газа и конденсата тяжелых компонентов, образующего, например, углеводородную и водную фазы.

Изобретение относится к области машиностроения, а именно к установкам для получения сжатого газа. .

Изобретение относится к устройствам для получения сжатого воздуха или газа и может быть использовано для обслуживания цехов в различных отраслях народного хозяйства.

Изобретение относится к компрессоростроению и может быть использовано в установках, работающих с переменным давлением нагнетания. .

Изобретение относится к компрессоростроению и может быть использовано для установок, работающих с переменным давлением нагнетания, например, при работе на сеть с резко и значительно изменяющимся расходом.

Изобретение относится к газовой промышленности, конкретно к технологиям производства компримированного природного газа, и может найти применение на газораспределительных станциях (ГРС). Способ производства компримированного природного газа на газораспределительной станции, при котором в месте поступления природного газа из магистральной сети в газораспределительную сеть устанавливают бустер-компрессор с газовым приводом, направляют в бустер-компрессор природный газ из магистральной сети и используют этот газ одновременно в качестве приводного и компримируемого газов. В процессе работы бустер-компрессора производят компримированный природный газ для технологических нужд и, одновременно с этим, отработанный природный газ из привода бустер-компрессора направляют потребителям в газораспределительную сеть. Изобретение направлено на повышение энергетической эффективности процессов производства компримированного природного газа на ГРС. 2 н.п. ф-лы, 1 ил.
Наверх