Способ одновременного воспроизведения заданных значений флюенса нейтронов и экспозиционной дозы гамма-излучения на исследовательских реакторах

Изобретение относится к средствам проведения испытаний объектов на радиационную стойкость в полях излучений исследовательских реакторов, а именно к способу одновременного воспроизведения заданных значений флюенса нейтронов (Фзад) и экспозиционной дозы гамма-излучения (Dзад). В испытательном объеме реактора формируют поле гамма-нейтронного излучения с использованием конверторов тепловых нейтронов в гамма-кванты, расположенных вне сектора прямого воздействия излучений реактора симметрично активной зоны. На расстояниях (R) вдоль оси, проходящей через центр АЗ в направлении прогнозируемого размещения объекта испытаний, измеряют флюенс нейтронов с энергиями более 0,1 МэВ (Ф0,1) и экспозиционную дозу гамма-излучения (Dγ) при постоянных размерах конверторов и выбранной схеме их размещения. Затем по зависимости Ф0,1(R)/Dγ(R) определяют расстояние, где Ф0,1/Dγзад/Dзад, а по зависимости Кn(R)=Ф0,1(R)/N - значение параметра Кn. Далее по формуле Р⋅t=Фзадn⋅α выбирают мощность (Р) реактора и длительность (t) облучения объекта испытаний, обеспечивающие воспроизведение заданных параметров излучений, где N - показания измерительного канала, α=N/Q - коэффициент чувствительности измерительного канала, Q - энерговыделение в активной зоне реактора. Техническим результатом является одновременное воспроизведение заданных параметров излучений в широком диапазоне значений Фзад/Dзад при упрощенной технологии воспроизведения этих параметров. 3 ил.

 

Изобретение относится к области испытаний объектов на радиационную стойкость в полях излучений исследовательских реакторов, которые являются мощными источниками нейтронов и сопутствующего гамма-излучения.

К объектам испытаний относятся изделия электронной техники (ИЭТ), используемые в образцах военной и специальной техники при выполнении работ в полях излучений ядерных взрывов или при ликвидации последствий радиационных аварий.

При оценке стойкости изделий на реакторах по необратимым (остаточным) последствиям облучения нормами испытаний являются флюенс нейтронов (Фзад) и экспозиционная доза гамма-излучения (Dзад), эквивалентные по воздействию излучениям в реальных радиационных полях. Задача методического обеспечения испытаний заключается в том, чтобы воспроизвести нормы испытаний не только по уровню воздействия, но и одновременно, что может быть реализовано только за счет воспроизведения отношения Фзад/Dзад. В штатных режимах работы реакторов эта задача не всегда выполнима, т.к. при воспроизведении Фзад на различных расстояниях (R) от центра активной зоны (АЗ) реактора доза гамма-излучения значительно меньше требуемой величины.

Известен способ [1] воспроизведения заданных параметров излучений путем последовательного облучения ИЭТ на разных установках. Сначала воспроизводятся значения Фзад на реакторе, затем недостающая доза гамма-излучения добирается на статических гамма-источниках типа ГУ-200, РХ-γ-30 или др., что требует больших затрат времени и трудовых ресурсов.

Для усиления поля гамма-излучения предложены устройства, конвертирующие тепловые нейтроны в гамма-кванты (конверторы), в виде различных конструкциЙ коробчатого типа [2], цилиндра [3] или усеченного конуса [4], внутри которых или за ними размещаются ИЭТ. Однако эти устройства не нашли широкого применения, т.к. значительно ослабляют поток нейтронов и трансформируют спектр нейтронного излучения.

Наиболее близким по техническому решению задачи (прототипом предлагаемого способа) является способ одновременного воспроизведения заданных значений флюенса нейтронов и экспозиционной дозы гамма-излучения [5], основанный на суперпозиции полей излучений от реактора и конверторов из пластин водородсодержащего материала, чередующихся с пластинами кадмия. Размещены конверторы вне сектора прямого действия излучений реактора на объект испытаний, что позволяет использовать в конверсионном процессе нейтроны с других радиальных направлений, не участвующие в создании дозовой нагрузки на объект испытаний. Кроме того, конверторы не экранируют объект испытаний от излучения реактора, не трансформируют спектр нейтронов и в несколько раз увеличивают дозовую нагрузку за счет вторичного гамма-излучения.

Диапазон воспроизводимых значений Фзад/Dзад составляет (5⋅108-2⋅109) н/см2⋅Р, что не является достаточным для всех объектов испытаний. Например, для испытаний аппаратуры некоторых образцов наземной и авиационной техники требуются поля излучений в более высоком диапазоне значений Фзад/Dзад (до 5⋅109 н/см2⋅Р). Кроме того, технология воспроизведения норм испытаний весьма сложна, что обусловлено следующими факторами:

Способ применим только для испытаний крупногабаритных объектов, размещаемых на определенном расстоянии от АЗ (для реактора ПРИЗ-М это расстояние равно 115 см). При таком варианте размещения объекта равномерное поле излучений в испытательном объеме создается за счет движения платформы с источниками излучений (реактора с конверторами) вдоль объекта испытаний. При этом закономерности пространственного распределения контролируемых параметров излучений в испытательном объеме при подвижном реакторе не применимы при работе реактора в штатном режиме (без перемещения). Кроме того, воспроизведение Фзад достигается за счет выбора скорости движения платформы при заданной мощности реактора, что требует применения сложного в управлении шагового двигателя типа FL110STH150 с электронным блоком типа АМД-28. Воспроизведение Dзад (одновременно с Фзад) осуществляется за счет выбора толщины конверторов, их количества и варианта (схемы) размещения конверторов у АЗ реактора, что также является непростой задачей, требующей проведения сложных расчетно-экспериментальных исследований. Кроме того, погрешности результатов этих исследований превышают допустимые значения. Таким образом, требуются новые упрощенные технологии воспроизведения норм испытаний.

Цель изобретения заключается в одновременном воспроизведении заданных значений флюенса нейтронов и экспозиционной дозы гамма-излучения в широком диапазоне значений Фзад/Dзад и в упрощении технологии воспроизведения норм испытаний.

Технический результат достигается тем, что в испытательном объеме реактора формируют поле гамма-нейтронного излучения с использованием конверторов тепловых нейтронов в гамма-кванты, расположенных вне сектора прямого воздействия излучений реактора симметрично активной зоны. На расстояниях (R) вдоль оси, проходящей через центр АЗ в направлении прогнозируемого размещения объекта испытаний, измеряют флюенс нейтронов с энергиями более 0,1 МэВ (Ф0,1) и экспозиционную дозу гамма-излучения (Dγ) при постоянных размерах конверторов и выбранной схеме их размещения. Затем по зависимости Ф0,1(R)/Dγ(R) определяют расстояние, где Ф0,1/Dγзад/Dзад, а по зависимости Кn(R)=Ф0,1(R)/N - значение параметра Кn. Далее по формуле P⋅t=Фзадn⋅α выбирают мощность (Р) реактора и длительность (t) облучения объекта испытаний, обеспечивающие воспроизведение заданных параметров излучений, где N - показания измерительного канала, α=N/Q - коэффициент чувствительности измерительного канала, Q - энерговыделение в активной зоне реактора.

На Фиг. 1 приведена схема одного из вариантов размещения объекта испытаний и конверторов у АЗ реактора (вид сверху), где

1 - активная зона реактора;

2 - конверторы;

3 - объект испытаний.

На Фиг. 2 приведены пространственные распределения флюенса нейтронов (1) с энергиями более 0,1 МэВ: Кn(R)=Ф0,1(R)/N, н/см2⋅имп и экспозиционной дозы гамма-излучения (2): Kγ(R)=Dγ(R)/N вдоль оси, проходящей через центр АЗ реактора в направлении объекта испытаний (см. Фиг. 1), нормированные на импульс измерительного канала на основе камеры деления КНТ-54.

На Фиг. 3 приведены зависимости отношений контролируемых параметров излучений Ф0,1(R)/Dγ(R) от расстояния R до центра АЗ реактора.

Зависимость Кn(R), приведенная на Фиг. 2, позволяет прогнозировать энерговыделение (Q) в АЗ реактора, необходимое для воспроизведения Фзад, по соотношению

Если учесть, что по определению Q=P⋅t, тогда

Следовательно, воспроизведение Фзад достигается за счет выбора режима работы реактора (Р и t), при котором выполняется равенство (2).

Воспроизведение Dзад (одновременно с Фзад) осуществляется за счет выбора расстояния от центра АЗ до объекта испытаний, на котором

Алгоритм одновременного воспроизведения заданных параметров излучений на исследовательских реакторах предлагаемым способом заключается в следующем:

- В испытательном объеме реактора на расстояниях вдоль оси, проходящей через центр АЗ в направлении прогнозируемого размещения объекта испытаний, измеряют флюенс нейтронов с энергиями более 0,1 МэВ и экспозиционную дозу гамма-излучения при постоянных размерах конверторов и выбранной схеме их расположения.

- По зависимости Ф0,1(R)/Dγ(R), приведенной на Фиг. 3, выбирается расстояние для размещения объекта испытаний, на котором Ф0,1/Dγзад/Dзад.

- По зависимости Кn(R), приведенной на Фиг. 2, определяется значение Кn, затем прогнозируются энерговыделение в АЗ по соотношению (1) и количество импульсов измерительного канала за время облучения объекта испытаний по формуле N=Q⋅α.

- Режим работы реактора: мощность и время облучения ИЭТ выбираются по соотношению (2).

Апробация предлагаемого способа проводилась на исследовательском реакторе ПРИЗ-М [6] при постоянных размерах конверторов 110×80×7 см3 и постоянной схеме их размещения у АЗ реактора, приведенной на Фиг. 1. Для проверки работоспособности способа воспроизведены значения Фзад=1,6⋅1013 н/см2 и Dзад=4⋅103 Р, требуемые при испытании блоков ракетной техники, которые реализуются на R=35 см при работе реактора на мощности 2 кВт за 1 час и 3,36 мин при значениях Кn=1,4⋅104 н/см2⋅имп, α=150,3 имп/Дж.

Погрешности воспроизведения флюенса нейтронов с энергиями более 0,1 МэВ и экспозиционной дозы гамма-излучения с доверительной вероятностью 0,95 равны соответственно ±16% и ±20% и не превышают допустимых значений.

Диапазон воспроизводимых значений Фзад/Dзад на расстояниях от 120 см до 30 см составляет (8⋅108-5⋅109) н/см2⋅Р (Фиг. 3), что вполне удовлетворяет требованиям нормативных документов к параметрам модельных полей излучений на реакторах, в т.ч. при испытании изделий наземной и авиационной техники.

Упрощение технологии воспроизведения норм испытаний достигается за счет использования реактора в штатном режиме работы (без его перемещения относительно объекта испытаний), применения конверторов с постоянными размерами при постоянной схеме их размещения у активной зоны реактора и выбора только двух параметров (R и t) для воспроизведения Dзад и Фзад в одном временном интервале.

Таким образом, предлагаемый способ позволяет воспроизводить Dзад одновременно с Фзад в широком диапазоне значений Фзад/Dзад и при упрощенной технологии воспроизведения норм испытаний.

Источники информации

1. Анисимов А.В., Данилов В.П., Пикалов Г.Л., Костяев Ю.Г. Воспроизведение воздействия проникающих излучений на моделирующих установках // Вопросы атомной науки и техники. Серия: Физика радиационного воздействия на радиоэлектронную аппаратуру, вып. 1. - Лыткарино, 2009, стр. 36-38.

2. Кувшинов М.И., Кошелев А.С., Смирнов И.Г. и др., Трансформация излучений быстрых нейтронов импульсных реакторов БИР-2М, БР-1, БИГР с помощью n-γ конверторов // Вопросы атомной науки и техники. Серия: Физика ядерных реакторов, вып. 2. - Лыткарино, 1992, стр. 3.

3. Васильев А.В., Ненадышин Н.Н., Романенко А.А. Конвертор гамма-нейтронного поля импульсного ядерного реактора Барс-4 // Научно-технический сборник «Радиационная стойкость электронных систем - Стойкость-2007», вып 10. - М., МИФИ, 2007, стр. 169.

4. Грицай В.Н., Гуликов Ф.Ф., Казанцев В.В., Пикалов Г.Л., Солодовников Н.И. Устройство для формирования поля радиационного нагружения объектов при их испытании на радиационную стойкость. Патент РФ на изобретение №2284068 от 24.03.2005 г.

5. Пикалов Г.Л., Базака Ю.Г., Краснокутский И.С., Комаров Н.А., Рымарь А.И. Способ одновременного воспроизведения заданных значений флюенса нейтронов и экспозиционной дозы гамма-излучения на исследовательском реакторе. Патент РФ на изобретение №2497214 от 27.10.2013 г.

6. Комаров Н.А., Костяев С.В., Нехай Е.Н., Пикалов Г.Л., Чаплыгин А.А. Параметры излучений и термодинамические характеристики модернизированного реактора ПРИЗ-М // Научно-технический сборник «Радиационная стойкость электронных систем - Стойкость-2009», вып 12. - М., МИФИ, 2009, стр. 189.

Способ одновременного воспроизведения заданных значений флюенса нейтронов (Фзад) и экспозиционной дозы гамма-излучения (Dзад) на исследовательских реакторах при испытании объектов на радиационную стойкость, основанный на суперпозиции полей излучений от реактора и конверторов тепловых нейтронов в гамма-кванты, расположенных вне сектора прямого воздействия излучений реактора симметрично активной зоны (АЗ), отличающийся тем, что на расстояниях (R) вдоль оси, проходящей через центр АЗ в направлении прогнозируемого размещения объекта испытаний, измеряют флюенс нейтронов с энергиями более 0,1 МэВ (Ф0,1) и экспозиционную дозу гамма-излучения (Dγ) при постоянных размерах конверторов и выбранной схеме их расположения, затем по зависимости Ф0,1(R)/Dγ(R) определяют расстояние, где Ф0,1/Dγзад/Dзад, а по зависимости - значение параметра , далее по формуле выбирают мощность (Р) реактора и длительность (t) облучения объекта испытаний, обеспечивающие воспроизведение заданных параметров излучений, где N - показания измерительного канала, α=N/Q - коэффициент чувствительности измерительного канала, Q - энерговыделение в активной зоне реактора.



 

Похожие патенты:

Изобретение относится к средствам охраны окружающей среды и объектов от загрязнений, анализа состояния радиоактивных веществ и может быть использовано при испытаниях ядерного оружия и других ядерно-физических установок (ЯФУ).

Изобретение относится к средствам моделирования параметров гамма и нейтронного излучений ядерного взрыва на исследовательских ядерных реакторах с отражателями нейтронов.

Изобретение относится к области испытаний на радиационную стойкость крупногабаритных объектов военного или гражданского назначения, в том числе предназначенных для выполнения работ в радиационных полях ядерно-технических установок или при ликвидации последствий радиационных аварий.

Изобретение относится к средствам для диагностики и динамического мониторирования с виртуальным отображением органов пациента и процедуры разрешения проблемных диагностических и лечебно-реабилитационных ситуаций, а также при повышении квалификации и в научной деятельности.

Изобретение относится к радиационным методам обработки минералов для изменения их оптико-механических свойств, в частности повышения их ювелирной ценности. .

Изобретение относится к области методологии формирования полей гамма-нейтронного излучения на исследовательских реакторах и может быть использовано при испытаниях объектов, в первую очередь крупногабаритных, на радиационную стойкость.

Изобретение относится к устройствам для получения экстремального ультрафиолетового (ЭУФ) излучения из плазмы импульсно- периодического вакуумного разряда, инициируемого лазером между вращающимися электродами.

Изобретение относится к устройствам для получения экстремального ультрафиолетового (ЭУФ) излучения высокой средней мощности из плазмы импульсно-периодического вакуумного разряда, инициируемого лазером между вращающимися электродами.

Изобретение относится к генераторам разовых импульсов нейтронов и рентгеновского излучения и предназначено для проведения ядерно-физических исследований, изучения радиационной стойкости и генерирования нейтронных пучков.

Изобретение относится к мощной ускорительной технике, предназначено для получения импульсов тормозного излучения со сложными амплитудно-временными параметрами (импульсы сложной формы) и может быть использовано для проведения радиационно-физических исследований и испытаний радиоэлектронной аппаратуры. Способ получения импульсов тормозного излучения сложной формы включает подачу двух импульсов высокого напряжения различной величины и формы на ускоряющее устройство, состоящее из двух ускорительных трубок, при этом импульсы напряжения формируются двумя синхронизированными во времени генераторами импульсных напряжений, каждый из которых срабатывает на отдельную ускорительную трубку. Способ осуществляется при помощи устройства, содержащего два генератора импульсных напряжений, обостряющий и коммутирующий разрядники, а также ускоряющее устройство, при этом для запуска генераторов импульсных напряжений с определенным временным интервалом используется схема синхронизации, а ускоряющее устройство включает две ускорительные трубки. Техническим результатом является обеспечение стабильности генерации импульсов тормозного излучения сложной формы. 2 н.п. ф-лы, 3 ил.
Наверх