Очистка источника ионов на основе коронного разряда

Изобретение относится к области спектрометрии. Описываются системы и способы для очистки коронирующего острия. Контроллер функционально связан с коронирующим острием, чтобы управлять его работой. Контроллер и коронирующее острие включены в состав, например, системы спектрометрии подвижности ионов (IMS). Контроллер используется для работы коронирующего острия при рабочем напряжении в течение первого временного интервала с дополнительным более высоким импульсным напряжением или без него для создания коронного разряда и для работы коронирующего острия при напряжении очистки, большем, чем рабочее напряжение, в течение второго временного интервала, следующего за первым временным интервалом для создания коронного разряда. Технический результат - повышение эффективности работы коронирующего острия. 3 н. и 20 з.п. ф-лы, 2 ил.

 

Предпосылки создания изобретения

[0001] Спектрометрия подвижности ионов относится к аналитической технологии, которая может использоваться для разделения и идентификации ионизированного материала, такого как молекулы и атомы. Ионизированный материал может быть идентифицирован в газовой фазе на основании подвижности в буферном газе-носителе. Таким образом, спектрометр подвижности ионов (Ion Mobility Spectrometer, IMS) может идентифицировать материал из пробы, представляющей интерес, ионизируя материал и измеряя время, которое требуется полученным в результате ионам для достижения детектора. Время пролета иона связано с его подвижностью, которая взаимосвязана с массой и геометрией материала, который был ионизирован. Выходной сигнал детектора IMS может быть визуально представлен как спектр с высотой пика в зависимости от времени дрейфа. В некоторых случаях детектирование IMS выполняется при повышенной температуре (например, более 100°С). В других случаях детектирование IMS может выполняться без нагревания. Детектирование IMS может использоваться для военных применений и обеспечения безопасности, например для обнаружения присутствия наркотических, взрывчатых веществ и т.д. Детектирование IMS может использоваться также в лабораторных аналитических применениях и с дополняющими способами детектирования, такими как масс-спектрометрия, жидкостная хроматография и т.д.

Сущность изобретения

[0002] Описываются системы и способы для очистки коронирующего острия. Контроллер может быть функционально связан с коронирующим острием, чтобы управлять его работой. Контроллер и коронирующее острие могут быть включены, например, в систему IMS. Контроллер может использоваться для управления коронирующим острием при рабочем напряжении в течение первого временного интервала, с дополнительным более высоким импульсным напряжением или без него, для создания коронного разряда и управления коронирующим острием при напряжении очистки, большем, чем рабочее напряжение, в течение второго временного интервала, следующего за первым временным интервалом для создания коронного разряда. Эффективность коронирующего острия может контролироваться, например, измерением напряжения, необходимого для создания коронного разряда у коронирующего острия, измерением тока, создаваемого коронирующим острием вследствие коронного разряда, и т.д.

[0003] Это описание сущности изобретения дано для того, чтобы в упрощенной форме предоставить выбор концепций, которые далее описаны в подробном описании. Это описание сущности изобретения не предназначено для выявления ключевых признаков или основных признаков заявленного предмета, а также не предназначено для использования в качестве помощи в определении объема заявленного изобретения.

Краткое описание чертежей

[0004] Подробное описание приводится со ссылкой на прилагаемые чертежи. На чертежах крайняя левая цифра(-ы) ссылочного номера указывает чертеж, на котором ссылочный номер появляется сначала. Использование того же самого ссылочного номера в различных случаях в описании и на чертежах может указывать подобные или идентичные позиции.

[0005] Фиг. 1А - схематическая иллюстрация системы, содержащей контроллер, функционально связанный с коронирующим острием детектора IMS, где контроллер может использоваться для управления коронирующим острием, чтобы обеспечивать очистку коронирующего острия в соответствии с примерами реализации данного изобретения.

[0006] Фиг. 1В - схематическая иллюстрация системы, содержащей контроллер, функционально связанный с детектором IMS, где контроллер может использоваться для управления коронирующим острием, чтобы обеспечивать очистку коронирующего острия в соответствии с примерами реализации данного изобретения.

[0007] Фиг. 2 - блок-схема, иллюстрирующая способ для управления коронирующим острием, чтобы обеспечивать очистку коронирующего острия в соответствии с примерами реализации данного изобретения.

Подробное описание

[0008] Коронный разряд может использоваться, чтобы ионизировать материал из пробы, представляющей интерес для анализа детектором IMS. Например, детектор IMS может содержать проводник, имеющий острие, где приложение разности электрических потенциалов к проводнику вызывает электрический разряд посредством ионизации текучей среды вокруг проводника. Этот разряд происходит, когда градиент электрического поля вокруг проводника достаточно высок, чтобы сформировать проводящую область, но недостаточно высок, чтобы вызвать образование дуги. Острие для этого электрического разряда обычно упоминается как коронирующее острие. Когда электрические потенциалы прикладываются к электродам в детекторе IMS, создается электрическое поле, которое перемещает ионизированный материал от коронирующего острия. В некоторых случаях ионизированный материал может транспортироваться через затвор, и вслед за этим через дрейфовое пространство к коллекторному электроду.

[0009] Через какое-то время коронирующее острие может покрываться различными веществами, которые могут уменьшать эффективность коронного разряда. Например, у ненагреваемого детектора взрывчатых веществ (например, детектора взрывчатых веществ, который работает при окружающих условиях (окружающей или комнатной температуре)) коронирующее острие может покрываться составами, которые конденсируются на поверхности (например, когда зонд для отбора проб используется, чтобы смыть поверхность для получения пробы, и проба затем вводится в детектор IMS, используя десорбер, чтобы испарить часть пробы). Эти вещества могут включать, например, составы, имеющие высокие точки кипения. В некоторых случаях реакционная область и/или входной узел детектора IMS могут нагреваться, чтобы уменьшить осаждение грязи на коронирующее острие. Однако для малогабаритного портативного устройства, которое питается от батареи (например, легкое, ручное детекторное устройство), требования к источнику питания для этого вида постоянного нагревания могут быть чрезмерно высокими.

[0010] Здесь описывается технология для очистки коронирующего острия, чтобы сохранить эффективность, которая иначе может быть уменьшена слоем покрытия на коронирующем острие. Например, когда коронирующее острие становится покрытым, все более и более высокие напряжения могут требоваться, чтобы вызывать электрический разряд. Благодаря периодической очистке коронирующего острия меньшее напряжение может требоваться для работы, например, оборудования детектирования IMS. Кроме того, эта технология может предотвращать неустойчивость коронного разряда и/или отказ коронирующего острия. Фиг. 1 - иллюстрация спектрометрической системы, такой как спектрометрическая система 100 подвижности ионов (IMS). Хотя здесь описана технология детектирования IMS, следует отметить, что множество различных спектрометров может извлечь выгоду из структур, способов и подходов данного описания. Целью данного описания является охватить и включить такие изменения.

[0011] Системы IMS 100 могут содержать спектрометрическое оборудование, которое использует технологию детектирования без нагревания (например, при температуре окружающей среды или комнатной температуре). Например, система IMS 100 может быть сконфигурирована как легкий детектор взрывчатых веществ. Однако следует отметить, что детектор взрывчатых веществ приводится только как пример и не предназначен для ограничения данного описания. Таким образом, технология данного изобретения может использоваться с другими спектрометрическими конфигурациями. Например, система IMS 100 может быть сконфигурирована как химический детектор. Система IMS 100 может включать детекторное устройство, такое как детектор IMS 102, имеющий порт для получения пробы для того, чтобы вводить материал из пробы, представляющей интерес, в ионизационную область/камеру. Например, детектор IMS 102 может иметь входной узел 104, где воздух, пробу которого необходимо отобрать, пропускается в детектор IMS 102. В некоторых реализациях детектор IMS 102 может иметь другое устройство, такое как газовый хроматограф (не показанный), включенный в одну линию с входным узлом IMS 104.

[0012] Входной узел 104 может использовать ряд подходов для ввода пробы. В некоторых случаях может использоваться поток воздуха. В других случаях системы IMS 100 могут использовать ряд жидкостей и/или газов для втягивания материала во входной узел 104. Подходы для втягивания материала через входной узел 104 включают использование вентиляторов, сжатых газов, вакуума, создаваемого дрейфовым газом, текущим через дрейфовую область/камеру и т.д. Например, детектор IMS 102 может быть соединен с линией отбора проб, в которую воздух из окружающей среды (например, воздух помещения) втягивается с использованием вентилятора. Системы IMS 100 могут работать при значительном давлении окружающей среды, хотя поток воздуха или другой текучей среды может использоваться, чтобы вводить материал пробы в ионизационную область. В других случаях системы IMS 100 могут работать при более низких давлениях (то есть давлениях меньше, чем давление окружающей среды). Кроме того, системы IMS 100 могут содержать другие компоненты, чтобы обеспечивать ввод материала от источника пробы. Например, десорбер, такой как нагреватель, может быть включен в состав системы IMS 100, чтобы заставлять по меньшей мере часть пробы испаряться (например, переходить в газовую фазу), так что часть пробы может втягиваться во входной узел 104. Например, зонд для отбора проб, тампон, смыв или что-либо подобное может использоваться, чтобы получать с поверхности пробу, представляющую интерес. Зонд для отбора проб может затем использоваться, чтобы доставить пробу во входной узел 104 системы IMS 100. Системы IMS 100 могут содержать также предконцентратор, чтобы концентрировать или заставлять дозу материала входить в ионизационную область.

[0013] Часть пробы может втягиваться через входной узел с малым отверстием (например, точечной диафрагмой) в детектор IMS 102 с использованием, например, диафрагмы, связанной по текучей среде с внутренним объемом детектора IMS 102. Например, когда внутреннее давление во внутреннем объеме уменьшается с помощью перемещения диафрагмы, часть пробы передается из входного устройства 104 в детектор IMS 102 через малое отверстие. После прохождения малого отверстия часть пробы входит в ионизационную область 106, где проба ионизируется с использованием источника ионизации, такого как ионизатор на основе коронного разряда (например, имеющего коронирующее острие 108). В некоторых случаях коронирующее острие 108 может ионизировать материал из пробы, представляющей интерес, в несколько шагов. Например, коронирующее острие 108 может создавать электрическую корону, которая ионизирует газы в ионизационной области 106, используемые впоследствии, чтобы ионизироваться материал, представляющий интерес. Примеры газов включают, но не обязательно ограничиваются ими: азот, водяной пар, газы, входящие в состав воздуха, и т.д.

[0014] В разных реализациях детектор IMS 102 может работать в положительном режиме, отрицательном режиме, с переключением между положительным и отрицательным режимами и т.д. Например, в положительном режиме коронирующее острие 108 может генерировать положительные ионы из пробы, представляющей интерес, в то время как в отрицательном режиме коронирующее острие 108 может генерировать отрицательные ионы. Работа детектора IMS 102 в положительном режиме, отрицательном режиме или с переключением между положительным и отрицательным режимами может зависеть от предпочтений реализации, предполагаемого типа пробы (например, взрывчатого вещества, наркотика, ядовитых промышленных химических веществ) и т.д. Кроме того, коронирующее острие 108 может периодически работать в импульсном режиме (например, на основании ввода пробы, открытия затвора, возникновения события и тому подобного).

[0015] Ионы пробы могут затем направляться к сеточному затвору с использованием электрического поля. Сеточный затвор может открываться на мгновение, чтобы позволить малым группам ионов пробы войти в дрейфовую область. Например, детектор IMS 102 может содержать электронный затвор 110 на входном конце дрейфовой области 112. В реализациях затвор 110 управляет вводом ионов в дрейфовую область 112. Например, затвор 110 может содержать проволочную сетку, к которой прикладывается или снимается разность электрических потенциалов. Дрейфовая область 112 имеет электроды 114 (например, фокусирующие кольца), разнесенные по его длине для приложения электрического поля, чтобы перемещать ионы по дрейфовой области 112, и/или чтобы направлять ионы к детектору, расположенному, как правило, напротив затвора 110 в дрейфовой области 112. Например, дрейфовая область 112, содержащая электроды 114, может создавать по существу однородное поле в дрейфовой области 112. Ионы пробы могут собираться на электроде коллектора, который может быть связан с аппаратурой анализа для анализа времен пролета различных ионов пробы. Например, коллекторная пластина на дальнем конце дрейфовой области 112 может собирать ионы, которые проходят дрейфовую область 112.

[0016] Дрейфовая область 112 может использоваться для разделения пропускаемых в нее ионов на основании подвижности отдельных ионов. Подвижность ионов определяется зарядом иона, массой иона, геометрией и т.д. Таким образом, системы IMS 100 могут разделять ионы на основе времени пролета. Дрейфовая область 112 может иметь по существу однородное электрическое поле, которое простирается от затвора 110 до коллектора. Коллектор может быть коллекторной пластиной (например, пластиной Фарадея), которая детектирует ионы на основе их заряда, когда они входят в контакт с коллекторной пластиной. В реализациях дрейфовый газ может подаваться через дрейфовую область 112 в направлении, как правило, противоположном пути прохождения ионов к коллекторной пластине. Например, дрейфовый газ может течь из области, примыкающей к коллекторной пластине, к затвору 110. Примеры дрейфовых газов включают, но не обязательно ограничены ими: азот, гелий, воздух, воздух, который рециркулируется (например, воздух, который очищается и/или высушивается), и т.д. Например, насос может использоваться, чтобы прокачивать воздух по дрейфовой области 112 против направления потока ионов. Воздух может высушиваться и очищаться с использованием, например, пакета молекулярных сит.

[0017] В разных реализациях детектор IMS 102 может включать ряд компонентов, чтобы способствовать идентификации представляющего интерес материала. Например, детектор IMS 102 может содержать одну или несколько ячеек, содержащих калибрующее вещество и/или компонент легирующей примеси. Калибрующее вещество может использоваться для калибровки измерения подвижности ионов. Легирующая примесь может использоваться для предотвращения ионизации ионов мешающих веществ. Легирующая примесь может также комбинироваться с материалом пробы и ионизироваться, чтобы формировать ион, который может более эффективно обнаруживаться, чем ион, который соответствует чистому материалу пробы. Легирующая примесь может вноситься в одну или несколько из следующих областей: входной узел 104, ионизационную область 106 и/или дрейфовую область 112. Детектор IMS 102 может быть сконфигурирован для внесения легирующей примеси в различные места, возможно в разное время в течение работы детектора IMS 102. Детектор IMS 102 может быть сконфигурирован так, чтобы координировать подачу легирующей примеси с работой других компонентов системы IMS 100.

[0018] Контроллер 150 может обнаруживать изменение в заряде на коллекторной пластине, когда ионы достигают ее. Таким образом, контроллер 150 может идентифицировать материалы по соответствующим им ионам. В реализации контроллер 150 может использоваться также для управления открыванием затвора 110, чтобы создавать спектр времени пролета различных ионов по дрейфовой области 112. Например, контроллер 150 может использоваться для управления напряжениями, прикладываемыми к затвору 110. Работа затвора 110 может управляться так, чтобы происходить периодически, после возникновения события и т.д. Например, контроллер 150 может регулировать, как долго затвор 110 открыт и/или закрыт, на основании возникновения события (например, коронного разряда), периодически и т.д. Далее, контроллер 150 может переключать электрический потенциал, прикладываемый к затвору 110, на основании режима источника ионизации (например, находится ли детектор IMS 102 в положительном или отрицательном режиме). В некоторых случаях контроллер 150 может быть сконфигурирован для обнаружения наличия взрывчатых и/или отравляющих веществ и подачи предупреждения или индикации о таких веществах на индикатор 158.

[0019] В реализации система IMS 100, включая некоторые или все ее компоненты, может работать под управлением компьютера. Например, микропроцессор может быть включен с системой IMS 100 или в нее, чтобы управлять компонентами и функциями системы IMS 100, описанными здесь, с использование программного обеспечения, встроенных программ, аппаратных средств (например, схем с фиксированными логическими функциями), обработки вручную или их комбинации. Используемые здесь термины "контроллер", "функциональные возможности", "услуга" и "логика", как правило, представляют программное обеспечение, встроенные программы, аппаратные средства или комбинацию программного обеспечения, встроенных программ или аппаратных средств во взаимосвязи с управлением системами IMS 100. В случае реализации программными средствами, модули, функциональные возможности или логика представляют код программы, который выполняет определенные задачи при выполнении в процессоре (например, центральном процессоре или центральных процессорах). Код программы может храниться в одном или нескольких машиночитаемых запоминающих устройствах (например, во внутренней памяти и/или на одном или нескольких материальных носителях данных) и тому подобного. Структуры, функции, подходы и способы, описанные здесь, могут быть реализованы на ряде коммерческих вычислительных платформ, имеющих множество процессоров.

[0020] Например, как показано на фиг. 1В, детектор IMS 102 может быть связан с контроллером 150 для управления детектором IMS 102. Контроллер 150 может содержать систему 152 обработки, модуль 154 связи и запоминающее устройство 156. Система 152 обработки обеспечивает функциональные возможности обработки для контроллера 150 и может содержать некоторое число процессоров, микроконтроллеров или других систем обработки и резидентной или внешней памяти для хранения данных и другой информации, к которой обращается или которую генерирует контроллер 150. Система 152 обработки может выполнять одну или несколько программ, которые реализуют описанные здесь способы. Система 152 обработки не ограничена материалами, из которых она образована, или механизмами обработки, используемыми в ней, и также может быть реализована посредством полупроводника(-ов) и/или транзисторов (например, используя электронные компоненты на интегральных схемах (Integrated Circuit, IC)), и т.д. Модуль 154 связи функционально сконфигурирован для осуществления связи с компонентами детектора IMS 102. Модуль 154 связи также функционально связан с системой 152 обработки (например, для передачи входных данных от детектора IMS 102 к системе 152 обработки). Модуль 154 связи и/или система 152 обработки также может быть сконфигурирована для осуществления связи с рядом различных сетей, включая, но необязательно ограничиваясь ими: Интернет, сотовую телефонную сеть, локальную сеть (Local Area Network, LAN), глобальную сеть (Wide Area Network, WAN), беспроводную сеть, телефонную сеть общего пользования, внутреннюю электронную сеть и тому подобное.

[0021] Запоминающее устройство 156 - пример машиночитаемого материального носителя данных, который обеспечивает функциональные возможности хранения, чтобы хранить различные данные, связанные с работой контроллера 150, такие как программы и/или сегменты программы или другие данные для подачи команд системе 152 обработки и возможно другим компонентам контроллера 150 для выполнения описанных здесь шагов. Таким образом, запоминающее устройство 156 может хранить данные, такие как программа команд для управления системой IMS 100 (включая ее компоненты), спектральные данные и тому подобное. Хотя показано единственное запоминающее устройство 156, может использоваться широкое разнообразие типов и комбинаций запоминающих устройств (например, энергонезависимое запоминающее устройство). Запоминающее устройство 156 может быть неотъемлемой частью системы 152 обработки, может быть выполнено в виде автономного запоминающего устройства или может быть их комбинацией.

[0022] Запоминающее устройство 156 может включать, но необязательно ограничиваться этим: сменные и несменные компоненты запоминающих устройств, такие как оперативное запоминающее устройство (Random Access Memory, RAM), постоянное запоминающее устройство (Read Only Memory, ROM), флэш-память (например, карта памяти стандарта Secure Digital, SD), карта памяти стандарта mini-SD, и/или карта памяти стандарта micro-SD, магнитное запоминающее устройство, оптическое запоминающее устройство, запоминающее устройство с универсальной последовательной шиной (Universal Serial Bus, USB), запоминающее устройство с жестким диском, внешняя память и другие типы машиночитаемых носителей данных. В реализациях детектор IMS 102 и/или запоминающее устройство 156 может включать сменную карту с интегральной схемой (Integrated Circuit Card, ICC), такую как запоминающее устройство, обеспечиваемое картой модуля идентификации абонента (Subscriber Identity Module, SIM), картой универсального модуля идентификации абонента (Universal Subscriber Identity Module, USIM), универсальной микропроцессорной картой 3-го поколения (Universal Integrated Circuit Card, UICC) и тому подобное.

[0023] В некоторых реализациях ряд аналитических устройств может использовать описанные здесь структуры, способы, подходы и тому подобное. Таким образом, хотя здесь описаны системы IMS 100, множество аналитических приборов может использовать описанные способы, подходы, структуры и тому подобное. Эти устройства могут быть сконфигурированы с ограниченными функциональными возможностями (например, маломощные устройства) или с повышенными функциональными возможностями (например, полные устройства). Таким образом, функциональные возможности устройства могут касаться программных или аппаратных ресурсов устройства, например мощности обработки, запоминающего устройства (например, возможности хранения данных), аналитической возможности и тому подобного.

[0024] Описав системы, компоненты, способы, модули и подходы, которые могут быть реализованы в соответствии с данным описанием, теперь опишем процедуры анализа проб, которые могут быть реализованы вышеописанными системами, компонентами, способами, модулями и подходами.

Типовые процедуры

[0025] Ниже описываются процедуры, которые могут быть реализованы с использованием ранее описанных компонентов, способов, подходов и модулей системы IMS 100. Аспекты каждой из процедур могут быть реализованы аппаратными средствами, программными средствами или их комбинацией. Процедуры показаны как набор блоков, которые определяют операции, выполняемые одним или несколькими устройствами (например, спектрометром, компьютерной системой, управляющей спектрометром или компонентами спектрометра), и не обязательно ограничены показанным порядком, чтобы выполнять операции соответствующими блоками. В частях следующего обсуждения будут сделаны ссылки на системы IMS 100, показанные на фиг. 1.

[0026] На фиг. 2 изображена процедура 200 в примере реализации, в котором коронирующее острие периодически управляется так, чтобы очищать коронирующее острие и сохранять эффективность, которая иначе может уменьшаться из-за осажденного покрытия коронирующего острия. Например, как показано на фиг. 1, коронирующее острие 108 системы IMS 100 может периодически использоваться для операции очистки. Это может обеспечивать улучшенную реакцию короны на напряжение после периода очистки. В реализациях процедура 200 выполняется под управлением компьютера. Например, как показано на фиг. 1, контроллер 150 может использоваться для обеспечения работы коронирующего острия 108. В некоторых случаях процедура 200 может использоваться с коронирующим острием, которое создает непрерывный разряд во время работы. В других случаях процедура 200 может использоваться с коронирующим острием, которое создает импульсы на более коротких промежутках времени, то есть использует прерывистую работу коронирующего острия. Например, при реализации с импульсным режимом, где есть периоды бездействия между импульсами, коронирующее острие может быть более восприимчивым к явлению покрытия.

[0027] Коронирующее острие может приводиться в действие при первом (рабочем) напряжении (например, напряжении постоянного тока (Direct Current, DC)) в течение первого временного интервала (Блок 210). Например, коронирующее острие может приводиться в действие непрерывно при напряжении приблизительно 800 B в течение первого временного интервала. Следует отметить, что это напряжение приводится только для примера и не предназначено для ограничения данного описания. Таким образом, коронирующее острие может приводиться в действие при одном или нескольких других напряжениях в течение первого временного интервала. В некоторых случаях работа коронирующего острия может прекращаться немедленно вслед за первым временным интервалом (Блок 212), когда коронирующее острие приводится в действие не непрерывно, например, в реализации с импульсным режимом. В других, не непрерывных, случаях дополнительное более высокое напряжение может прикладываться в течение короткого периода времени и затем удаляться. Например, коронирующее острие может приводиться в действие при непрерывном напряжении приблизительно 800 В с более высоким напряжением приблизительно 1,5 кВ, прикладываемым в течение части импульса первого временного интервала. В этой реализации напряжение приблизительно 800 В упоминается как первое (рабочее) напряжение коронирующего острия. Следует отметить, что для целей данного описания термин "непрерывный" со ссылкой на работу коронирующего острия может охватывать работу, когда напряжение прикладывается непрерывно. Однако результирующий коронный разряд может быть непрерывным или прерывистым. Например, коронный разряд может быть спорадическим время от времени, когда непрерывное напряжение недостаточно, чтобы создать коронный разряд, например, когда коронирующее острие становится все более и более покрытым материалом.

[0028] Затем коронирующее острие может приводиться в действие при втором (очищающем) напряжении, большем чем первое напряжение, в течение второго временного интервала, следующего за первым временным интервалом (Блок 220). Например, коронирующее острие может приводиться в действие при напряжении приблизительно 2 кВ в течение второго временного интервала. Следует отметить, что это напряжение приводится только для примера и не предназначено для ограничения данного описания. Таким образом, коронирующее острие может приводиться в действие при одном или нескольких других напряжениях в течение второго временного интервала. Далее, следует отметить, что второе напряжение может быть большим, чем первое (рабочее) напряжение коронирующего острия, но меньшим, равным или большим, чем другое напряжение коронирующего острия, используемое в течение первого временного интервала. Например, в предыдущем примере, где коронирующее острие приводится в действие при непрерывном напряжении приблизительно 800 В с импульсным напряжением приблизительно 1,5 кВ, второе напряжение может быть меньшим, чем импульсное напряжение 1,5 кВ, равным 1,5 кВ или большим чем 1,5 кВ. В реализациях коронирующее острие может приводиться в действие в течение второго временного периода, длящегося по меньшей мере приблизительно от 2 с до 10 мин. Например, в частном случае, коронирующее острие может приводиться в действие непрерывно приблизительно в течение 10 с. Непрерывная работа коронирующего острия при втором напряжении может создавать коррозийную среду, которая может удалять осадок с коронирующего острия. В некоторых случаях работа коронирующего острия может прекращаться немедленно вслед за вторым временным интервалом (очистки) (Блок 222), например, когда коронирующее острие приводится в действие не непрерывно, например, в реализации с импульсным режимом. Однако в других реализациях коронирующее острие может продолжать работать, как описано ранее.

[0029] После периода очистки в течение второго временного интервала напряжение может быть уменьшено, и работа коронирующего острия может возвратиться, например, к его нормальному импульсному или непрерывному режиму. Тогда в течение последующей работы эффективность коронирующего острия может быть улучшена. Например, коронирующее острие может приводиться в действие при рабочем напряжении в течение третьего временного интервала, следующего за вторым временным интервалом. Например, коронирующее острие может приводиться в действие при напряжении приблизительно 800 В в течение третьего временного интервала, с дополнительным более высоким напряжением для работы в импульсном режиме или без него. Следует отметить, что это напряжение приводится только для примера и не предназначено для ограничения данного описания. Таким образом, коронирующее острие может приводиться в действие при одном или нескольких других напряжениях в течение третьего временного интервала. Как рассмотрено ранее, работа коронирующего острия может прекращаться немедленно вслед за третьим временным интервалом, например, когда коронирующее острие приводится в действие не непрерывно, например, в реализации с импульсным режимом. В других реализациях коронирующее острие может продолжать работать. Например, коронирующее острие может приводиться в действие при непрерывном напряжении приблизительно 800 В с более высоким напряжением приблизительно 1,5 кВ, прикладываемым в течение импульсной части первого временного интервала, как описано ранее.

[0030] В некоторых случаях состояние исправности коронирующего острия может контролироваться, и периоды очистки могут применяться в качестве реагирования на уменьшенную эффективность коронирующего острия. Например, эффективность коронирующего острия может контролироваться (Блок 230). В конфигурации с импульсным режимом эффективность может контролироваться так, чтобы, когда коронирующее острие определяется как достаточно грязное, может вызываться непрерывный коронный разряд, чтобы удалять вещества, которые сконденсировались на разрядном острие. Таким образом, могут собираться данные обратной связи об эффективности коронного разряда во время операции детектирования и/или в течение операции очистки. Эта обратная связь может использоваться для управления одной или несколькими характеристиками операции очистки, такими как, но необязательно ограничиваясь ими: частота очистки, продолжительность очистки, прикладываемое напряжение, индуцируемый ток и т.д. Один или несколько компонентов системы детектирования могут использоваться для контроля состояния исправности коронирующего острия, и контур обратной связи может использоваться для регулирования операции очистки системы. Соответственно, описанная в Блоке 220 операция может выполняться периодически и/или между регулярными операциями системы IMS в зависимости от измеряемых рабочих характеристик, конструктивных предпочтений и т.д.

[0031] Эффективность коронирующего острия может контролироваться измерением напряжения, необходимого для создания коронного разряда у коронирующего острия (Блок 232). Например, когда коронирующее острие загрязняется, напряжение, необходимое для создания разряда, может увеличиваться. Напряжение, необходимое для создания разряда, может измеряться во время операции детектирования и/или во время операции очистки. Например, необходимое напряжение может измеряться во время операции очистки, чтобы контролировать, насколько хорошо проходит процесс очистки. Необходимое напряжение может измеряться также между периодами очистки, например в течение операции детектирования. В реализациях коронирующее острие может приводиться в действие, операция может быть остановлена, когда измеряется необходимое напряжение, и затем операция очистки может быть начата снова. Этот процесс может повторяться до тех пор, пока не будет достигнута достаточная эффективность работы. В других случаях коронирующее острие может продолжать работать, в то время как получаются одно или несколько измерений результатов очистки.

[0032] Напряжение, необходимое для создания коронного разряда, также может измеряться, чтобы определять подходящее напряжение для операции очистки. Например, требуемое напряжение для создания коронного разряда может измеряться, и напряжение для работы разрядного острия во время очистки может устанавливаться равным измеренному напряжению или выше него. Следует отметить, что одна или несколько других рабочих характеристик, кроме напряжения или в дополнение к нему, могут использоваться для определения эффективности коронирующего острия и/или требуемой рабочей характеристики для работы коронирующего острия в режиме очистки. Например, эффективность коронирующего острия может контролироваться измерением тока, создаваемого вследствие коронного разряда у коронирующего острия (Блок 234). В некоторых случаях рабочие характеристики токового электрода и/или характеристики, связанные с работой предусилителя для токового электрода системы детектирования IMS, могут контролироваться, чтобы проверять эффективность операции очистки. Одна или несколько этих характеристик также могут использоваться, чтобы устанавливать рабочие характеристики коронирующего острия во время операции очистки. В других случаях отдельное оборудование детектирования может быть включено в реакционную область системы детектирования IMS (например, для измерения ионного тока вследствие коронного разряда).

[0033] Далее, компоненты системы детектирования IMS могут приводиться в действие в различных режимах, чтобы обеспечивать определение эффективности работы и/или эффективности очистки. Например, в некоторых случаях сеточный затвор может быть оставлен в открытой конфигурации во время операции очистки дольше, чем иначе он был бы открыт во время операции детектирования, чтобы собрать больше зависящей от времени информации относительно эффективности очистки. В других реализациях сеточный затвор может быть оставлен в закрытом положении, чтобы получить более точные измерения для коронного разряда. Регулярные периоды очистки могут планироваться как часть внутренней проверки состояния исправности устройства и/или технического обслуживания устройства. Операции очистки также могут выполняться как часть нормальной работы системы детектирования IMS. Например, один или несколько циклов очистки могут инициироваться каждый раз, когда устройство включается, выключается и т.д. В некоторых случаях операция очистки может инициироваться во время цикла зарядки аккумулятора. Дополнительно, очистка может инициироваться на основании рабочих параметров для системы детектирования IMS. Например, продолжительность операций очистки может увеличиваться с приращением (например, удлиняться по продолжительности, когда устройство работает непрерывно).

Контроллер может быть функционально связан с коронирующим острием, чтобы управлять его работой. Контроллер и коронирующее острие могут быть включены в состав, например, системы IMS. Контроллер может использоваться для управления коронирующим острием при рабочем напряжении в течение первого временного интервала, с дополнительным более высоким импульсным напряжением или без него, для создания коронного разряда и управления коронирующим острием при напряжении очистки, большем, чем рабочее напряжение, в течение второго временного интервала, следующего за первым временным интервалом для создания коронного разряда. Эффективность коронирующего острия может контролироваться, например, измерением напряжения, необходимого для создания коронного разряда у коронирующего острия, измерением тока, создаваемого коронирующим острием вследствие коронного разряда, и т.д.

[0034] Хотя предмет изобретения был описан в отношении конкретных конструктивных деталей и/или действий, должно быть понятно, что предмет, определяемый в прилагаемой формуле изобретения, необязательно ограничен конкретными особенностями или описанными действиями. Хотя рассмотрены различные конфигурации, устройство, системы, субсистемы, компоненты и т.д. могут быть сконструированы множеством способов без отступления от данного описания. Конкретные особенности и действия раскрываются как пример осуществления формулы изобретения.

1. Система спектрометра подвижности ионов (IMS), содержащая:

детектор спектрометра подвижности ионов (IMS), включающий коронирующее острие для создания коронного разряда, и

систему обработки, функционально связанную с детектором IMS для приведения в действие коронирующего острия, причем система обработки сконфигурирована для обеспечения работы коронирующего острия при рабочем напряжении в течение первого временного интервала для создания коронного разряда и для обеспечения работы коронирующего острия при напряжении очистки, большем, чем рабочее напряжение, в течение второго временного интервала, следующего за первым временным интервалом для создания коронного разряда.

2. Система по п. 1, сконфигурированная так, чтобы заставлять коронирующее острие прекращать работу сразу после первого временного интервала.

3. Система по п. 1 или 2, сконфигурированная так, чтобы заставлять коронирующее острие прекращать работу сразу после второго временного интервала.

4. Система по п. 1 или 2, в которой система обработки сконфигурирована так, чтобы обеспечивать работу коронирующего острия для создания коронного разряда при втором рабочем напряжении, меньшем, чем напряжение очистки, в течение третьего временного интервала, следующего за вторым временным интервалом.

5. Система по п. 1, в которой система обработки сконфигурирована для определения эффективности коронирующего острия посредством приема напряжения, необходимого для создания коронного разряда у коронирующего острия.

6. Система по п. 1, которая сконфигурирована так, чтобы определять эффективность коронирующего острия, принимая ток, создаваемый коронирующим острием вследствие коронного разряда.

7. Система по п. 5 или 6, которая сконфигурирована для работы коронирующего острия при напряжении очистки в ответ на уменьшение эффективности коронирующего острия.

8. Способ работы коронирующего острия системы спектрометра подвижности ионов (IMS), включающий:

работу коронирующего острия системы IMS при рабочем напряжении в течение первого временного интервала для создания коронного разряда;

работу коронирующего острия при напряжении очистки, большем, чем рабочее напряжение, в течение второго временного интервала, следующего за первым временным интервалом для создания коронного разряда.

9. Способ по п. 8, дополнительно включающий прекращение работы коронирующего острия сразу после первого временного интервала.

10. Способ по п. 8 или 9, дополнительно включающий прекращение работы коронирующего острия сразу после второго временного интервала.

11. Способ по п. 8 или 9, дополнительно включающий работу коронирующего острия для создания коронного разряда при втором рабочем напряжении, меньшем, чем напряжение очистки, в течение третьего временного интервала, следующего за вторым временным интервалом.

12. Способ по п. 7, дополнительно включающий контроль эффективности коронирующего острия и регулирование напряжения очистки на основании контролируемой эффективности коронирующего острия.

13. Способ по п. 12, в котором контроль эффективности коронирующего острия включает измерение напряжения, необходимого для создания коронного разряда у коронирующего острия.

14. Способ по п. 12, в котором контроль эффективности коронирующего острия включает измерение тока, создаваемого у коронирующего острия вследствие коронного разряда.

15. Способ по п. 13 или 14, содержащий определение на основе контроля, когда необходима работа коронирующего острия при напряжении очистки.

16. Устройство для управления работой коронирующего острия системы спектрометра подвижности ионов (IMS), содержащее:

коронирующее острие системы IMS для создания коронного разряда; и

контроллер, функционально связанный с коронирующим острием, чтобы управлять коронным разрядом, причем контроллер сконфигурирован для обеспечения работы коронирующего острия при рабочем напряжении в течение первого временного интервала для создания коронного разряда и обеспечения работы коронирующего острия при напряжении очистки, большем, чем рабочее напряжение, в течение второго временного интервала, следующего за первым временным интервалом для создания коронного разряда.

17. Устройство по п. 16, в котором контроллер сконфигурирован для прекращения работы коронирующего острия сразу после первого временного интервала.

18. Устройство по п. 16 или 17, в котором контроллер сконфигурирован для прекращения работы коронирующего острия сразу после второго временного интервала.

19. Устройство по п. 16 или 17, в котором контроллер сконфигурирован так, чтобы обеспечивать работу коронирующего острия для создания коронного разряда при втором рабочем напряжении, меньшем, чем напряжение очистки, в течение третьего временного интервала, следующего за вторым временным интервалом.

20. Устройство по п. 16, в котором контроллер сконфигурирован для контроля эффективности коронирующего острия.

21. Устройство по п. 20, в котором контроллер сконфигурирован для контроля эффективности коронирующего острия посредством измерения напряжения, необходимого для создания коронного разряда у коронирующего острия.

22. Устройство по п. 20, в котором контроллер сконфигурирован для контроля эффективности коронирующего острия посредством измерения тока, создаваемого коронирующим острием вследствие коронного разряда.

23. Устройство по п. 21 или 22, в котором контроллер сконфигурирован для работы коронирующего острия при напряжении очистки в ответ на уменьшение эффективности коронирующего острия.



 

Похожие патенты:

Изобретение относится к способу и приспособлению для выработки положительно и/или отрицательно ионизированных анализируемых газов для анализа газов в спектрометре ионной подвижности или в масс-спектрометре.

Изобретение относится к области масс-спектрометрии и может быть использовано для изотопного анализа твердых материалов. .
Изобретение относится к получению ионных пучков и может быть использовано в ускорительной технике, масс-спектрометрии и т.п. .

Изобретение относится к области масс-спектрометрии вторичных ионов. .

Гигрометр // 2652656
Изобретение относится к области аналитического приборостроения и может быть использовано в кулонометрических гигрометрах. Заявленный гигрометр, состоящий из кулонометрической ячейки, выполненной секционно, из двух частей - рабочей и контрольной, расположенных во внутреннем канале корпуса ячейки последовательно одна за другой, стабилизатора расхода газа, микроамперметра, кнопки «Контроль», источника постоянного тока.

Изобретение относится к устройствам для измерения влажности сыпучих материалов, например почвы, зерна, минеральных удобрений и т.п. Измеритель содержит измерительный генератор, измеритель тока и процессор, а также содержит несколько электродов, подключаемых попарно или все к одному и расположенных на разной глубине в сыпучем материале, причем процессор запрограммирован на определение влажности в каждом уровне сыпучего материала по корреляции проводимость-влажность и/или емкость-влажность и на осуществление суммирования влажности в каждом уровне сыпучего материала.

Группа изобретений относится к способам и устройствам для бесконтактного контроля качества протяженных объектов из электропроводящих материалов при производстве и эксплуатации, а также в других отраслях промышленности, где требуется контроль протяженных электропроводящих объектов бесконтактным методом.

Группа изобретений относится к медицине. Группа изобретений представлена системами измерения глюкозы и способом отображения информации о статусе глюкозы в крови пациента.

Согласно изобретению чувствительный элемент для определения физического свойства газа, в первую очередь для определения концентрации газового компонента, или температуры, или твердого компонента, или жидкого компонента отработавших газов двигателя внутреннего сгорания, содержит твердоэлектролитную пластинку (21) и расположенные друг против друга в его продольном направлении первый концевой участок и второй концевой участок, при этом чувствительный элемент содержит функциональный элемент, который расположен вне второго концевого участка (202), который на первом концевом участке электрически соединен с контактной площадкой (43, 44), расположенной на втором концевом участке (202) чувствительного элемента (20) на его наружной поверхности.
Предложены способ и устройство для распознавания жидкости, содержащей положительно заряженные частицы и/или отрицательно заряженные частицы. Согласно изобретению электрическое поле прикладывается к жидкости посредством приложения напряжения к положительному электроду и отрицательному электроду, расположенным в жидкости, для притягивания отрицательно заряженных частиц к положительному электроду, чтобы сконцентрировать отрицательно заряженные частицы в первой части жидкости, и притягивания положительно заряженных частиц к отрицательному электроду, чтобы сконцентрировать положительно заряженные частицы во второй части жидкости, причем напряжение регулируется на основании по меньшей мере одного из веса заряженных частиц и величины заряда заряженных частиц.

Группа изобретений относится к медицинской технике, а именно к средствам визуализации методом магнитоиндукционной томографии. Способ включает в себя получение доступа к множеству результатов измерения характеристик катушки, полученных для образца с помощью одной катушки, которую возбуждают радиочастотной (РЧ) энергией от источника РЧ-энергии, при этом каждый из множества результатов измерения характеристик катушки получен с помощью одной катушки в одном из множества отдельных местоположений относительно образца и соотнесения данных о положении катушки с каждым из множества результатов измерения характеристик катушки.

Изобретение относится к устройствам и материалам для обнаружения и определения концентрации паров гидразина в атмосфере или пробе воздуха (химическим сенсорам) и может быть использовано в медицине, биологии, экологии и различных отраслях промышленности.

Группа изобретений относится к области регистрации электропроводных частиц в жидкости, текущей в трубе со скоростью. Сущность изобретений заключается в том, что устройство для регистрации электропроводных частиц в жидкости, текущей в трубе со скоростью, дополнительно содержит блок самотестирования, предназначенный для осуществления автоматически или по внешнему запросу систематического количественного контроля функций обработки сигналов блока обработки сигналов и/или систематического количественного контроля передающих катушек и/или улавливающих катушек и/или для осуществления по внешнему запросу калибровки блока обработки сигналов посредством калибровочного эталона, устанавливаемого вместо передающих и/или улавливающих катушек.

Изобретение относится к способу определения частиц сажи в выхлопной струе газотурбинного двигателя (ГТД) в полете. Для осуществления способа измеряют в полете ток нейтрализации с электростатических разрядников самолета электрических зарядов, генерируемых частицами сажи в выхлопной струе газа ГТД, определяют расход газа через сопло двигателя, измеряют значение электризации аэрозолей атмосферы за счет соприкосновения их с поверхностями самолета, определяют среднее значение плотности электрического заряда струи газа на всех режимах полета, определяют содержание частиц сажи в струе по градуированным зависимостям «чисел дымности» от среднего значения плотности электрического заряда и влияния аэрозолей атмосферы.

Изобретение относится к измерительному устройству и к способу отбора образцов. Способ содержит следующие этапы: а) добавление образца в камеру, в которой обеспечены магнитные частицы, при этом образец содержит целевой компонент, и камера имеет поверхность обнаружения; b) приложение силы магнитного поля к магнитным частицам, чтобы притянуть магнитные частицы к поверхности обнаружения. Cвязанные магнитные частицы, которые захватывают целевой компонент в магнитных частицах, удерживаются на поверхности обнаружения, и несвязанные магнитные частицы, которые не захватывают целевой компонент в магнитных частицах, также удерживаются на поверхности обнаружения; c) сбрасывание части образца из камеры и добавление нового образца в камеру; d) изменение силы магнитного поля, прилагаемого к магнитным частицам, чтобы высвободить несвязанные магнитные частицы с поверхности обнаружения; e) повторение этапов b-d в течение определенного числа циклов, при этом перед этапом приложения этап b дополнительно содержит этап, на котором смешивают магнитные частицы и целевой компонент посредством формирования переменного магнитного поля в течение заданного периода времени. Изобретение позволяет увеличить чувствительность измерительного устройства. 4 н. и 6 з.п. ф-лы, 6 ил.

Представленные изобретения касаются способа детектирования наличия аналита в жидком образце, способа детектирования наличия патогена в образце цельной крови, способа детектирования наличия вируса в образце цельной крови, способа детектирования присутствия нуклеиновой кислоты-мишени в образце цельной крови, способа детектирования наличия организмов, относящихся к видам Candida в жидком образце, системы для детектирования одного или более аналитов нуклеиновой кислоты в жидком образце и сменного картриджа для размещения реагентов для анализа и расходных материалов в указанной системе. Представленные изобретения характеризуются тем, что при своем осуществлении используют магнитные частицы, имеющие средний диаметр в интервале от 700 нм до 950 нм, значение релаксивности Т2 на одну частицу, составляющее от 1х109 до 1х1012 ммоль-1сек-1, и имеют связывающие остатки на своей поверхности, причем данные связывающие остатки действуют, изменяя агрегацию магнитных частиц в присутствии аналита. Изобретения обеспечивают мультиплексное детектирование нескольких типов различных молекул и могут быть использованы в клинической практике. 9 н. и 22 з.п. ф-лы, 29 ил., 13 табл., 19 пр.

Изобретение относится к области технологий, предназначенных для контроля механических деталей. Устройство для контроля поверхности электропроводной детали содержит множество вихретоковых датчиков, размещенных на выпуклой поверхности устройства вместе со средством прикладывания для прикладывания зондов к контролируемой поверхности, в которую вставляется устройство, при этом зонды закреплены на гибких полосках, продолжающихся рядом друг с другом в продольном направлении устройства, средство прикладывания содержит деформируемый материал, который при сжатии вдоль продольного направления приводит к расширению в поперечном направлении относительно продольного направления, при этом расширение деформирует полоски таким образом, чтобы зонды прикладывались к поверхности. Технический результат – упрощение конструкции устройства контроля, упрощение способа контроля детали. 2 н. и 9 з.п. ф-лы, 6 ил.
Наверх