Способ осаждения алмазных плёнок из термически активированной смеси газов и реактор для его реализации

Изобретение относится к области получения искусственных алмазов методом химического газофазного осаждения, в частности, связано с активацией потока смеси нейтральных газов нагретыми металлическими поверхностями и может быть использовано в электронике, приборостроении, на предприятиях, производящих алмазный инструмент. Способ осаждения алмазных пленок из термически активированной газовой смеси включает активирование газовой смеси, содержащей водород и метан, посредством металлического активатора и осаждение пленки на нагретой подложке. Активирование упомянутой газовой смеси проводят в металлическом активаторе, состоящем из медного охлаждаемого водой полированного изнутри корпуса и трубок, установленных с образованием двух соосных цилиндрических каналов. Внутренний цилиндрический канал образован стенками металлической трубки и кварцевой трубки, внешний цилиндрический канал образован стенками омически нагреваемой трубки, изготовленной из тугоплавкого металла, и молибденовой трубки, установленной с помощью керамического изолятора в упомянутом корпусе. В пространство между трубками, образующими внешний цилиндрический канал, и корпусом металлического активатора подают аргон, в пространство между трубками, образующими внутренний и внешний цилиндрические каналы, подают водород, а по трубкам, образующим внутренний цилиндрический канал, подают смесь водорода и метана. Активирование упомянутой смеси проводят путем нагрева стенки внешнего цилиндрического канала, образованной упомянутой омически нагреваемой трубкой. Реактор для осаждения алмазных пленок из термически активированной газовой смеси содержит вакуумную камеру и расположенные в ней металлический активатор и подложкодержатель. Металлический активатор состоит из медного охлаждаемого водой корпуса, внутренняя поверхность которого отполирована, и трубок, установленных с образованием двух соосных цилиндрических каналов. Внутренний цилиндрический канал образован стенками металлической трубки и кварцевой трубки, внешний цилиндрический канал образован стенками омически нагреваемой трубки, изготовленной из тугоплавкого металла, и молибденовой трубки, установленной с помощью керамического изолятора в медном корпусе активатора. Обеспечивается создание способа и устройства для осаждения алмазных пленок из термически активированной смеси газов, обеспечивающих высокую скорость осаждения, высокое качество получаемых алмазных пленок и максимальное сокращение теплопотерь. 2 н.п. ф-лы, 1ил., 1пр.

 

Изобретение относится к области получения искусственных алмазов методом химического газофазного осаждения, в частности, связано с активацией потока смеси нейтральных газов нагретыми металлическими поверхностями и может быть использовано в электронике, приборостроении, на предприятиях, производящих алмазный инструмент.

Известные способы получения алмазных покрытий методом газофазного осаждения с активацией нагретой нитью смеси водорода и углеродосодержащего газа можно рассматривать в качестве аналогов предлагаемого способа. Общий принцип их работы состоит в том, что газовая смесь претерпевает активацию в области нагретых до высокой температуры (2000-2300°C) проволок из тугоплавких металлов. Далее продукты активации диффундируют к нагреваемой подложке и осаждаются на ней.

Недостатками данных решений являются: относительно малые скорости осаждения и малая площадь воздействия металлического нагревателя при однократном столкновении углеводородных молекул, ввиду чего не обеспечивается высокая степень разложения газа.

Известен способ выращивания алмазных частиц из метан-водородной смеси (S. Matsumoto, Y. Sato, М. Tatsumi, N. Setaka, Growth of diamond particles from methane-hydrogen gas, J. Mater. Sci. 17 (1982) 3106-3112), включающий нагрев и активацию газовой смеси водорода и метана на поверхностях металлического активатора, состоящего из вольфрамовых проволочек. Характерные условия осаждения: концентрация метана 1% по объему; температура нагрева подложки - в диапазоне 700-1000°C, а проволочек - 2000°C; давление в камере осаждения 10-100 Торр.

Недостатками этого способа являются:

1) малая скорость объемных потоков смеси газов-предшественников, что ограничивает общее количество подводимых к подложке веществ, используемых при образовании алмазных частиц;

2) малая площадь воздействия металлического активатора.

Наиболее близким по технической сущности является способ, описанный в работе (Спицын Б.В. Химическая кристаллизация алмаза, дисс. д.х.н. М., 1993), в котором осуществляется подача водорода с объемным расходом 67 ст. см3/мин при давлении 750 Торр через металлический активатор, представляющий собой нагреваемую до 1900-2000°C вольфрамовую трубку, нагрев трубки производится внешним вольфрамовым нагревателем. На выходе из трубки добавляется метан через водоохлаждаемый питатель в таком количестве, чтобы в зоне кристаллизации его концентрация составляла 5% по объему. В способе потери тепла предотвращаются установкой молибденового экрана. Температура нагрева подложки примерно 1050°C.

Недостатком этого способа является то, что при боковой подаче углеродосодержащего газа в поток водорода возникает существенная зависимость характера смешения и взаимодействия метана с активированным водородом от параметров осаждения, которая приводит к случайному распределению продуктов синтеза и, как следствие, росту алмазного покрытия.

Известно устройство для получения алмазных пленок методом газофазного синтеза (патент РФ №2158037, 1996 г., H01J 9/02, Н01J 1/30), которое включает металлический активатор и подложку, расположенные внутри вакуумной камеры, изготовленной из кварцевой трубы. Металлический активатор включает металлическую нить, сетчатый металлический экран. Экран устанавливается между металлической нитью и подложкой. Металлическую нить нагревают до 1800-2800°C, подложку - до 600-1000°C, сетчатый экран - до 800-2000°C. Концентрация метана 2-8% по объему в газовом потоке. Давление газовой смеси 5-300 Торр.

Недостатком этого устройства является отсутствие защиты от теплопотерь.

Наиболее близким по технической сущности является устройство, описанное в работе (Спицын Б.В. Химическая кристаллизация алмаза, дисс. д.х.н. М., 1993), содержащее металлический активатор, представляющий собой нагреваемую вольфрамовую трубку, внешний вольфрамовый нагреватель, молибденовый экран, боковой водоохлаждаемый питатель для подачи метана. Осаждение производится при концентрации метана 5% по объему. Температура нагрева подложки примерно 1050°C. Температура активирующей вольфрамовой трубки до 2000°C.

Недостатком этого устройства является малая эффективность решений по сокращению теплопотерь.

Задачей заявляемого изобретения является создание способа и устройства для осаждения алмазных пленок из термически активированной смеси газов, обеспечивающих высокую скорость осаждения, высокое качество получаемых алмазных пленок и максимальное сокращение теплопотерь.

Поставленная задача решается тем, что в способе осаждения алмазных пленок из термически активированной газовой смеси, включающем активирование газовой смеси, содержащей водород и метан, посредством металлического активатора и осаждение пленки на нагретой подложке, согласно изобретению активирование упомянутой газовой смеси проводят в металлическом активаторе, состоящем из медного охлаждаемого водой полированного изнутри корпуса и трубок, установленных с образованием двух соосных цилиндрических каналов, при этом внутренний цилиндрический канал образован стенками металлической трубки и кварцевой трубки, внешний цилиндрический канал образован стенками омически нагреваемой трубки, изготовленной из тугоплавкого металла, и молибденовой трубки, установленной с помощью керамического изолятора в упомянутом корпусе, причем в пространство между трубками, образующими внешний цилиндрический канал, и корпусом металлического активатора подают аргон, в пространство между трубками, образующими внутренний и внешний цилиндрические каналы, подают водород, а по трубкам, образующим внутренний цилиндрический канал, подают смесь водорода и метана, причем активирование упомянутой газовой смеси проводят путем нагрева стенки внешнего цилиндрического канала, образованной упомянутой омически нагреваемой трубкой.

Поставленная задача решается тем, что в реакторе для осаждения алмазных пленок из термически активированной газовой смеси, содержащем вакуумную камеру и расположенные в ней металлический активатор и подложкодержатель, согласно изобретению металлический активатор состоит из медного охлаждаемого водой корпуса, внутренняя поверхность которого отполирована, и трубок, установленных с образованием двух соосных цилиндрических каналов, при этом внутренний цилиндрический канал образован стенками металлической трубки и кварцевой трубки, внешний цилиндрический канал образован стенками омически нагреваемой трубки, изготовленной из тугоплавкого металла, и молибденовой трубки, установленной с помощью керамического изолятора в медном корпусе активатора.

Для увеличения площади взаимодействия активирующей поверхности и смеси газов металлический активатор выполнен в виде двух соосных цилиндрических каналов с длиной, в три и более раз превышающей диаметр. При параметрах, используемых при осаждении алмазных пленок, происходит интенсивное воздействие металлического активатора на смесь газов. Объемные расходы газов таковы, что скорость газового потока на выходе из каналов является околозвуковой. Высокая скорость потока газов и большая площадь воздействия металлического активатора обеспечивают высокую скорость осаждения и глубокое разложение газов, что, в свою очередь, повышает качество получаемых алмазных пленок. На качество пленок также влияет дополнительная подача водорода. Сокращение теплопотерь осуществляется за счет полировки внутренней поверхности медного корпуса активатора и использования аргона, который подается в пространство между трубками, образующими внешний цилиндрический канал, и корпусом активатора для предотвращения избыточного проникновения водорода и метана в эту область.

На фиг. 1 представлен общий вид реактора для осаждения алмазных пленок из термически активированной газовой смеси.

Реактор содержит вакуумную камеру 15 и расположенные в ней металлический активатор и подложкодержатель 13. Металлический активатор состоит из медного корпуса 7 и трубок, установленных с образованием двух соосных цилиндрических каналов. Внутренний цилиндрический канал образован стенками металлической трубки 1 с рабочим диаметром 2-3 мм и кварцевой трубки 2. Внешний цилиндрический канал образован стенками омически нагреваемой трубки 12 с рабочим диаметром 6 мм, изготовленной из тугоплавкого металла, и молибденовой трубки 3. Кварцевая трубка 2 установлена внутри молибденовой трубки 3 с помощью гибкого силиконового изолятора 4. По внутреннему цилиндрическому каналу через вход 16 предусмотрена подача смеси водорода и метана, по внешнему через вход 10 - водорода. Питание осуществляется посредством молибденовых контактных проводов 5, присоединенных к источнику питания. Молибденовая трубка 3 с помощью керамического изолятора 6 установлена в медном полированном изнутри корпусе 7, который охлаждается водой, поступающей по входам 8. В медном корпусе 7 установлен вход 9 для подачи теплоизолирующего аргона. В корпусе 7 в керамической соломке установлена вольфрам-рениевая термопара 11. В варианте раздельной подачи смесь водорода и метана подается по внутреннему цилиндрическому каналу, а водород - по внешнему. В варианте совместной подачи внутренний цилиндрический канал может быть удален (тем самым можно получать пленки с различными характеристиками). Осаждение производится на подложку 14, закрепленную на подложкодержателе 13.

Способ осуществляется следующим образом.

Вакуумная камера 15, в которой располагается металлический активатор и подложкодержатель 13, откачивается до давления 0,01 Торр. Затем подается питание на металлический активатор и подложкодержатель 13. Выставляются необходимые температуры подложки 14 (от 450 до 1100°С) и трубок 1 и 12 (от 1900 до 2300°С). Далее в пространство между трубками, образующими внешний цилиндрический канал, и корпусом 7 через вход 9 подают теплоизолирующий аргон (300 ст. см3/мин). Далее при требуемых значениях и соотношениях объемных расходов (общий расход до 3000 ст. см3/мин) в металлический активатор подают через входы 16 и 10, соответственно, по внутреннему и внешнему цилиндрическим каналам водород. Затем устанавливается необходимое давление в камере (до 50 Торр).

По достижении стационарных значений температур и давления во внутренний цилиндрический канал дополнительно подают метан при значениях концентрации до 5% по объему к расходу смеси газов в канале. Это служит началом процесса осаждения алмазной пленки. По завершении осаждения подача метана прекращается. Производится отжиг пленки в водороде при тех же параметрах, что использовались в эксперименте. Далее производится последовательное отключение питания металлического активатора и подложкодержателя 13. Камера откачивается до минимального значения давления 0,01 Торр. После установления комнатной температуры на подложке 14 и в металлическом активаторе подложка 14 извлекается.

Пример реализации способа при осаждении алмазной пленки.

Омически нагреваемая трубка выполнялась из вольфрамовой фольги толщиной 0,03 мм и длиной 30 мм. Ее нагрев производился до температуры 2300°С током порядка 110 А при напряжении порядка 5 В. Медный корпус охлаждался водой с расходом 5000 ст. см3/мин. В пространство между трубками, образующими внешний цилиндрический канал и корпусом подавался аргон с расходом 300 ст. см3/мин. Температура омически нагреваемой трубки оценивалась предварительной тарировкой при установке вольфрам-рениевой термопары с диаметром проводов 0,1 мм. В качестве подложки использовалась молибденовая шайба диаметром 25 мм и толщиной 2 мм. Температура подложки при осаждении - 1000°С. Расстояние от выхода канала до поверхности подложки 10 мм. Расход водорода по внешнему цилиндрическому каналу составлял 1500 ст. см3/мин, по внутреннему - 1500 ст. см3/мин. Концентрация метана в смеси - 1% по объему. Давление в камере 20 Торр.

В результате образовалась микро- и нанокристаллическая алмазная пленка. Данные по структуре пленки были получены методами электронной микроскопии, комбинационного рассеяния света и рентгеновской спектрометрии.

Использование данного изобретения позволяет обеспечить высокую скорость осаждения, высокое качество получаемых алмазных пленок и максимальное сокращение теплопотерь.

1. Способ осаждения алмазных пленок из термически активированной газовой смеси, включающий активирование газовой смеси, содержащей водород и метан, посредством металлического активатора и осаждение пленки на нагретой подложке, отличающийся тем, что активирование упомянутой газовой смеси проводят в металлическом активаторе, состоящем из медного охлаждаемого водой полированного изнутри корпуса и трубок, установленных с образованием двух соосных цилиндрических каналов, при этом внутренний цилиндрический канал образован стенками металлической трубки и кварцевой трубки, внешний цилиндрический канал образован стенками омически нагреваемой трубки, изготовленной из тугоплавкого металла, и молибденовой трубки, установленной с помощью керамического изолятора в упомянутом корпусе, причем в пространство между трубками, образующими внешний цилиндрический канал, и корпусом металлического активатора подают аргон, в пространство между трубками, образующими внутренний и внешний цилиндрические каналы, подают водород, а по трубкам, образующим внутренний цилиндрический канал, подают смесь водорода и метана, причем активирование упомянутой смеси проводят путем нагрева стенки, образованной упомянутой омически нагреваемой трубкой.

2. Реактор для осаждения алмазных пленок из термически активированной газовой смеси, содержащий вакуумную камеру и расположенные в ней металлический активатор и подложкодержатель, отличающийся тем, что металлический активатор состоит из медного охлаждаемого водой корпуса, внутренняя поверхность которого отполирована, и трубок, установленных с образованием двух соосных цилиндрических каналов, при этом внутренний цилиндрический канал образован стенками металлической трубки и кварцевой трубки, внешний цилиндрический канал образован стенками омически нагреваемой трубки, изготовленной из тугоплавкого металла, и молибденовой трубки, установленной с помощью керамического изолятора в медном корпусе активатора.



 

Похожие патенты:

Изобретение относится к СВЧ плазменному реактору с объемно-резонаторной передачей энергии в область над подложкой, ограниченной формой плазменного образования в виде полуэллипса, создающей косвенный нагрев при осаждении покрытия на низкоаспектной подложке или одновременно на группе подложек.

Изобретение относится к технологиям получения микро- и/или наноструктурированных защитных и функциональных покрытий на поверхностях деталей машин и механизмов, трубопроводов и насосов, в частности к устройству для получения высокотвердых покрытий.

Изобретение относится к средствам защиты, в частности к устройствам защиты нижнего электрода реактора плазмохимического осаждения из газовой фазы. Защитный экран для электрода реактора плазмохимического осаждения, который выполнен металлическим, толщиной от 10 до 1000 микрометров с габаритными размерами, соответствующими размерам электрода плазмохимического реактора, и имеющего отверстия в местах расположения отверстий на электроде реактора плазмохимического осаждения.

Изобретение относится к плазменным СВЧ реакторам для химического осаждения из газовой фазы материалов, в частности для получения углеродных (алмазных) пленок. Плазменный СВЧ реактор для газофазного осаждения на подложку алмазной пленки содержит волноводную линию для подвода излучения от СВЧ генератора к реактору, цилиндрический резонатор, реакционную камеру с системой напуска и откачки газовой смеси, содержащей водород и углеводород, и подложку, установленную на подложкодержателе в реакционной камере.

Изобретение относится к области химической инфильтрации в паровой фазе, используемой, в частности, при изготовлении изделий из термоструктурных композитных материалов, а именно к установке (600) для химической инфильтрации в паровой фазе пористых преформ (20) трехмерной формы, вытянутых в продольном направлении.

Настоящее изобретение относится к загрузочному устройству (100) реакционной камеры печи для инфильтрации для уплотнения штабелируемых пористых преформ (160-163), имеющих форму усеченного конуса, методом химической инфильтрации в газовой фазе направленным потоком и печи (200) для инфильтрации для уплотнения штабелируемых пористых упомянутых преформ (160-163).

Изобретение относится к способу защиты внутренних поверхностей насоса путем атомно-слоевого осаждения (АСО) покрытия и к устройству для защиты внутренних поверхностей насоса путем атомно-слоевого осаждения (АСО) покрытия.

Изобретение относится к устройству и способу химического осаждения материала последовательными самонасыщающимися поверхностными реакциями. Упомянутое устройство содержит источник исходного продукта, выполненный с возможностью осаждения материала на нагретую подложку в реакторе осаждения последовательными самонасыщающимися поверхностными реакциями, и пульсирующий клапан, внедренный в источник исходного продукта и выполненный с возможностью управления подачей пара исходного продукта из источника исходного продукта в содержащуюся в реакторе реакционную камеру, в которой размещена подложка.

Изобретение относится к источнику исходного продукта для реактора химического осаждения материала последовательными самонасыщающимися поверхностными реакциями и к картриджу исходного продукта для источника исходного продукта.

Изобретение относится к реакторам атомно-слоевого осаждения, в которых материал наносят на поверхности при последовательном осуществлении самоограниченных поверхностных реакций.

Изобретение относится к металлургии, а именно к фторидной технологии получения сложных по пространственной конфигурации вольфрамовых изделий. Способ получения вольфрамового изделия послойным нанесением вольфрама характеризуется тем, что проводят сканирование изотермически нагретой горизонтальной плоскости формируемого изделия, соответствующей сечению 3D модели, осуществляют дозированную дискретно-точечную струйную подачу газообразного гексафторида вольфрама и газообразного водорода на указанную плоскость, последующее вертикальное перемещение отсканированной плоскости с нанесенной на нее за счет взаимодействия указанных исходных компонентов твердой поверхностью вниз на заданный шаг и сканирование в соответствии с последующей конфигурацией сечения 3D модели.

Изобретение относится к металлургии, а именно к фторидной технологии получения сложных по пространственной конфигурации вольфрамовых изделий. Способ получения вольфрамового изделия послойным нанесением вольфрама характеризуется тем, что проводят сканирование изотермически нагретой горизонтальной плоскости формируемого изделия, соответствующей сечению 3D модели, осуществляют дозированную дискретно-точечную струйную подачу газообразного гексафторида вольфрама и газообразного водорода на указанную плоскость, последующее вертикальное перемещение отсканированной плоскости с нанесенной на нее за счет взаимодействия указанных исходных компонентов твердой поверхностью вниз на заданный шаг и сканирование в соответствии с последующей конфигурацией сечения 3D модели.

Изобретение относится к области дозирования реагентов в поток газа-носителя с раздельной подачей реагентов в реакционную камеру. Дозатор-смеситель содержит корпус, испарители и нагреватели, поддерживающие заданную температуру для испарения реагентов, и два испарителя, установленные друг над другом и закрытые через прокладки крышками с отверстиями для подачи газа-носителя.

Изобретение относится к области дозирования реагентов в поток газа-носителя с раздельной подачей реагентов в реакционную камеру. Дозатор-смеситель содержит корпус, испарители и нагреватели, поддерживающие заданную температуру для испарения реагентов, и два испарителя, установленные друг над другом и закрытые через прокладки крышками с отверстиями для подачи газа-носителя.
Изобретение относится к технологии получения пленок аморфного кремния и может быть использовано в современной микроэлектронике, оптоэлектронике и интегральной оптике для создания интегральных схем, тонкопленочных солнечных элементов и транзисторных матриц большой площади для жидкокристаллических дисплеев.

Изобретение относится к способу и оснастке для осаждения из паровой фазы металлического покрытия на детали из жаропрочного сплава и может быть использовано для нанесения такого покрытия на детали турбомашин, подвижные лопатки или лопатки статора газотурбинного двигателя.
Изобретение относится к металлургической промышленности, в частности к металлургии полупроводников, и предназначено для изготовления кварцевых контейнеров с покрытием из диоксида кремния рабочей поверхности.

Изобретение относится к способу защиты внутренних поверхностей насоса путем атомно-слоевого осаждения (АСО) покрытия и к устройству для защиты внутренних поверхностей насоса путем атомно-слоевого осаждения (АСО) покрытия.

Изобретение относится к устройству и способу химического осаждения материала последовательными самонасыщающимися поверхностными реакциями. Упомянутое устройство содержит источник исходного продукта, выполненный с возможностью осаждения материала на нагретую подложку в реакторе осаждения последовательными самонасыщающимися поверхностными реакциями, и пульсирующий клапан, внедренный в источник исходного продукта и выполненный с возможностью управления подачей пара исходного продукта из источника исходного продукта в содержащуюся в реакторе реакционную камеру, в которой размещена подложка.

Изобретение относится к источнику исходного продукта для реактора химического осаждения материала последовательными самонасыщающимися поверхностными реакциями и к картриджу исходного продукта для источника исходного продукта.

Изобретение относится к СВЧ плазменному реактору с объемно-резонаторной передачей энергии в область над подложкой, ограниченной формой плазменного образования в виде полуэллипса, создающей косвенный нагрев при осаждении покрытия на низкоаспектной подложке или одновременно на группе подложек.
Наверх