Конструкционно-теплоизоляционный материал



Владельцы патента RU 2653192:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный архитектурно-строительный университет" (ТГАСУ) (RU)

Изобретение относится к гипсовым строительным материалам, обладающим теплоизоляционными свойствами, которые могут найти применение в строительстве малоэтажных зданий при изготовлении межквартирных и межкомнатных перегородок. Предложен конструкционно-теплоизоляционный материал, полученный из смеси, включающей, мас.%: строительный гипс 32,0-34,7, фторангидрит 13,2-20,0, жидкое стекло 4,5-7,6, 25%-ную водную дисперсию нановолокна оксида алюминия, стабилизированную 0,5% гидроксидом натрия 1,8-2,59, карбонат натрия 0,2-0,4, воду - остальное. Технический результат – улучшение теплоизоляционных качеств конструкционно-теплоизоляционного материала при сохранении высоких прочностных свойств, снижение коэффициента теплопроводности. 1 табл.

 

Изобретение относится к гипсовым строительным материалам, обладающим теплоизоляционными свойствами, которые могут найти применение в строительстве малоэтажных зданий при изготовлении межквартирных и межкомнатных перегородок.

Известно листовое строительное изделие на основе сульфата кальция по патенту РФ на полезную модель №43496. Это изделие выполнено из материала, который является продуктом твердения сырьевой смеси, содержащей вяжущее на основе сульфата кальция, ускоритель схватывания (смесь отработанных электролитов кислотных и щелочных аккумуляторов), пластификатор (сульфанол), пористый заполнитель (молотый золошлак ТЭС) и воду. Это изделие используется для облицовки стен, потолков жилых помещений и обладает повышенной механической прочностью, но низкими тепло- и звукоизоляционными свойствами.

Известно пористое строительное изделие (патент РФ на полезную модель №59658), материалом которого является продукт твердения смеси из модифицированного техногенного ангидрита (серного ангидрита), ускорителя схватывания и пластификатора. В состав материала строительного изделия входит также измельченный или гранулированный пенополистирол. За счет введения пенополистирола тепло- и звукоизоляционные свойства изделия повышаются. Однако, однородность такого материала снижается, что приводит к снижению прочности и неоднородности теплосопротивления.

Известно строительное изделие из поризованного гипсобетона (патент РФ на полезную модель №74385), в котором в качестве порообразующего компонента использован фторангидрит совместно с карбонатным наполнителем. При взаимодействии остаточной кислоты и карбонатной муки в процессе протекания химической реакции выделяется углекислый газ, который образует поры в строительном изделии. Компоненты, входящие в состав материала строительного изделия, находятся в следующем соотношении:

- строительный гипс - 29,4-29,6%;

- фторангидрит - 14,7-18,5%;

- карбонатная мука - 11,5-24,5%;

- технический крахмал - 2-2,9%;

- вода - 29,4-34,4%.

Материал этого известного строительного изделия обладает высокими прочностными и теплоизоляционными свойствами. Недостатком полученного материала является наличие неровностей, появление которых обусловлено увеличением объема формовочной поромассы в 2-3 раза. В процессе изготовления изделий образующиеся «горбушки» срезают, что ведет к перерасходу материала и дополнительным трудовым затратам. Изделие является теплоизоляционным, однако обладает низкой прочностью.

Прототипом заявляемого конструкционно-теплоизоляционного материала является строительный материал из гипсовой смеси, который содержит мас. %: фторангидрит 13,0; строительный гипс 34, 8; жидкое стекло 4,3; 25% водную дисперсию нановолокна оксида алюминия, стабилизированную 0,5% гидроксидом натрия, - 1,7 или 2,6 и воду - 46,1 или 45,2 (О.В. Никитина, Л.А. Аниканова, А.И. Курмангалиева, О.В. Малчиева. Влияние нанодобавок на свойства гипсовых смесей. Перспективные материалы в строительстве и технике (ПМСТ-2014). Материалы Международной научной конференции молодых ученых. Издательство ТГАСУ, Томск, 15-17 октября 2014, с. 113). Материал по прототипу обладает повышенными прочностными свойствами при низкой плотности, однако имеет пористую структуру с неравномерным распределением мезапор, что оказывает влияние на величину теплопроводности, составляющую 0,25 Вт/м°С. Как известно, чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Поэтому в строительстве лучше и экономичнее применять материалы с более низким показателем этой величины.

Техническая проблема, решаемая изобретением, направлена на улучшение теплоизоляционных качеств конструкционно-теплоизоляционного строительного материала при сохранении высоких прочностных свойств прототипа.

Технический результат заключается в снижении коэффициента теплопроводности.

Техническая проблема с достижением указанного технического результата решается следующим образом.

Заявляемый в качестве изобретения конструкционно-теплоизоляционный материал, как и материал по прототипу, включает строительный гипс, фторангидрит, жидкое стекло, 25% водную дисперсию нановолокна оксида алюминия, стабилизированную 0,5% гидроксидом натрия, и воду.

В отличие от прототипа заявляемый материал дополнительно содержит карбонат натрия при следующем соотношении компонентов, мас.%:

- строительный гипс - 32,0-34,7

- фторангидрит - 13,2-20,0

- жидкое стекло - 4,5-7,6

- карбонат натрия - 0,2-0,4

- стабилизированная дисперсия нановолокна оксида алюминия - 1,8-2,59

- вода - остальное.

Высокая прочность материала, как и в прототипе, обеспечивается гидратацией строительного гипса и фторангидрита с образующимся в результате реакции активатором твердения, а достаточные (как у прототипа) теплоизоляционные свойства формируются за счет пористости изделия, полученной выделением углекислого газа и водорода при взаимодействии «кислого» фторангидрита с карбонатом натрия и дисперсией нановолокна оксида алюминия, сопровождающегося процессом порообразования.

Соотношение количества компонентов при изготовлении заявляемого строительного изделия получено экспериментальным путем. Именно в таком соотношении достигаются высокие прочностные характеристики материала. Важную роль в ингредиентном составе играет жидкое стекло и водная дисперсия алюминиевого волокна. Повышение прочности при наличии указанных компонентов связана с образованием силикатов кальция различной основности и их гидратов, за счет добавки нановолокна на основе стабилизированного гидроксидом натрия оксида алюминия, которая представляет на самом деле смесь оксида алюминия и AlOOH в определенных соотношениях. Итогом взаимодействия наночастиц с ионами кальция является образование алюминатов и гидроалюминатов кальция. Силикаты (гидросиликаты) и алюминаты (гидроалюминаты) кальция формируют основной пространственный каркас структуры гипсового камня. Кроме того, в процессе взаимодействия компонентов предлагаемой строительной смеси образуются ускорители твердения (Na2SO4), т.е система способна к автокатализу, а также образуются нерастворимые и малорастворимые продукты, которые наряду с волокнами армируют структуру камня настолько, что обильное газовыделение на ранних стадиях, обеспечивающее низкую плотность и порообразование, не приводит к резкому снижению прочности и обеспечивает должное качество материала. При нарушении оксидной пленки волокон металлического алюминия, последний бурно реагирует с водосодержащими компонентами сырьевой смеси с выделением водорода. Однако, учитывая невысокую концентрацию нановолокна, объем выделенного водорода будет незначительным. Основной вклад в газовыделение системы вносит реакция взаимодействия карбоната натрия с кислотным компонентом фторангидрита. Происходит химическое взаимодействие карбоната натрия с адсорбированной на зернах фторангидрита серной кислотой с выделением углекислого газа в достаточно большом объеме, который обеспечивает дополнительное образование в системе ускорителя твердения в виде Na2SO4 и обеспечивает образование материала с мелкопористой однородной ячеистой структурой, с низкой теплопроводностью. Введение карбоната натрия приводит к снижению коэффициента теплопроводности до 0,14-0,16 Вт/м°С.

Изготовление конструкционно-теплоизоляционного материала включает следующие стадии:

- предварительное дозирование исходных компонентов: фторангидрита, жидкого стекла, стабилизированной дисперсии нановолокна оксида алюминия, карбоната натрия и воды. В качестве дозаторов для сыпучих компонентов могут использоваться типовые дозаторы бункерного типа для гипсовых вяжущих, для жидких - типовые дозаторы воды;

- перемешивание указанных компонентов в типовом смесителе с водой в течение 1-2 мин;

- затем совместное перемешивание со строительным гипсом;

- заливку готовой смеси бетоноукладчиком в разъемные формы согласно размерам требуемого изделия;

- твердение в камерах при температуре 40-60°С в течение 24 часов.

Из смеси конструкционно-теплоизоляционного материала были изготовлены образцы - кубики с ребром 2 см методом заливки в формы с последующим твердением в формах и распалубкой образцов. Было использовано жидкое стекло плотностью 1,16 г/см2 и стабилизированная дисперсия нановолокна оксида алюминия производства ООО «Новосибирские наноматериалы».

После затвердевания образцов определены основные свойства образцов по показателям предела прочности при сжатии, средней плотности и коэффициенту теплопроводности.

В таблице приведены лучшие результаты по заявляемому материалу (образцы 2, 3) и результаты материала, значения которых находятся за пределами значений входящих компонентов (образцы 1, 4).

По результатам, представленным в таблице, образцы 1, 4 не достигают соответствующего результата по прочности на сжатие.

Образцы №2 и №3 имеют высокую прочность на сжатие и низкие коэффициенты теплопроводности.

Результаты испытаний свидетельствуют, что предложенные строительные материалы могут быть использованы при возведении стен в строительстве жилых зданий для межкомнатных и межквартирных перегородок и обладают высокими прочностными и теплоизоляционными свойствами. Снижение коэффициента теплопроводности строительных материалов при сохранении прочностных характеристик прототипа позволяет экономить минеральное сырье за счет снижения толщины стен и массы квадратного метра изделия. Из полученного материала изготавливают стеновые блоки, плиты и панели для воздушно-сухих условий эксплуатации.

Конструкционно-теплоизоляционный материал, включающий строительный гипс, фторангидрит, жидкое стекло, 25% водную дисперсию нановолокна оксида алюминия, стабилизированную 0,5% гидроксидом натрия, и воду, отличающийся тем, что он дополнительно содержит карбонат натрия при следующем соотношении компонентов, мас.%:

строительный гипс 32,0-34,7
фторангидрит 13,2-20,0
жидкое стекло 4,5-7,6
карбонат натрия 0,2-0,4
стабилизированная дисперсия нановолокна оксида алюминия 1,8-2,59
вода остальное



 

Похожие патенты:

Изобретение относится к промышленности строительных материалов, в частности к производству мелкозернистых бетонов. Сырьевая смесь для изготовления мелкозернистого бетона содержит, мас.ч.: портландцемент 24-26, кварцевый песок 74-76, водоудерживающую добавку – замоченный до набухания в 3%-ном водном растворе перекиси водорода и измельченный до образования гелевидной массы желатин 0,1-1,0, воду 12-14.

Изобретение относится к промышленности строительных материалов, в частности к производству мелкозернистых бетонов. Сырьевая смесь для изготовления мелкозернистого бетона содержит, мас.ч: портландцемент 24-26, кварцевый песок 74-76, замоченный до набухания в 3% водном растворе перекиси водорода и измельченный до образования гелевидной массы полиакрилат натрия 0,1-1,5, воду 12-14.

Изобретение относится к промышленности строительных материалов, в частности к производству ячеистых бетонов, используемых в малоэтажном строительстве. Сырьевая смесь для изготовления газобетона включает, вес.ч: портландцемент 270-290, кварцевый песок 270-290, алюминиевую пудру 2-2,5, метасиликат натрия 0,1-0,15, 1 н.

Изобретение относится к производству изделий из газобетона и может быть использовано в домостроении для изготовления строительных блоков, а также в дорожном строительстве для изготовления бордюров, ограждений и плиток.

Изобретение относится к составам сырьевых смесей, используемых в производстве газобетона. Сырьевая смесь для изготовления газобетона содержит, мас.%: портландцемент 25,0-32,0, каустическую соду 0,1-0,2, ферросилиций 0,05-0,1, молотую до прохождения через сито №2,5 пемзу 28,0-32,0, алюминиевую пудру 0,006-0,01, воду - остальное.

Изобретение относится к производству строительных материалов и изделий, в частности к известковым штукатурным или кладочным сухим смесям, и может быть использовано для устройства кирпичной или бутовой кладки, а также для выравнивания стен и потолков по кирпичным и деревянным основаниям, известковым и известково-гипсовым штукатуркам.

Изобретение относится к промышленности строительных материалов и может быть использовано для производства конструкционно-теплоизоляционных изделий и конструкций из ячеистого бетона.
Изобретение относится к производству газобетонов, используемых в малоэтажном строительстве. В способе изготовления газобетона, включающем дозирование и смешивание молотой извести, кварцевого песка, муки из известняка, алюминиевой пудры, воды, укладку полученной смеси в формы, затвердевание, извлечение массива из форм, тепловлажностную обработку, карбонизацию в среде углекислого газа, используют молотую негашеную известь, тепловлажностную обработку массива осуществляют в пропарочных камерах, а его карбонизацию - в течение 3 или 4 ч в среде углекислого газа в герметичных камерах, причем перед карбонизацией массива на решетчатых или сетчатых поверхностях в тех же герметичных камерах проводят его вакуумирование.

Изобретение относится к производству строительных материалов и изделий из ячеистых бетонов и может быть использовано для утепления ограждающих конструкций зданий и сооружений различного назначения.

Группа изобретений относится к промышленности строительных материалов и может быть использована для изготовления теплоизоляционных ячеистых бетонов неавтоклавного твердения различного назначения.

Изобретение относится к изоляционным композитным материалам, содержащим неорганический аэрогель и меламиновую пену, способу их изготовления их использованию. Композитный материал содержит панель из монолитного неорганического аэрогеля, армированную предварительно сформированной меламиновой пеной с открытыми ячейками, указанный материал имеет теплопроводность λ в пределах между 10 и 20 мВт/(м⋅K), измеренную в соответствии со способом защитных горячих пластин NF EN 12667 при 20°C и при атмосферном давлении, и имеет макропористость меньше чем 5%, причем панель из монолитного неорганического аэрогеля не содержит никакого связующего и имеет сплошную трехмерную пористую структуру.
Изобретение относится к области создания пористых строительных материалов с защитно-декоративным покрытием. Способ получения пенокерамического блока включает увлажнение глинистого сырья, введение в него выгорающей добавки, гомогенизацию смеси, формование заготовки, сушку и обжиг.

Изобретение относится к строительным материалам и может быть использовано в качестве комплексной добавки в растворную смесь при производстве пенобетонов. Комплексная добавка для пенобетонной смеси включает, мас.%: карбонат кальция с тонкостью помола 3000 см2/г 90-95, метакаолин, предварительно обработанный потоком ускоренных электронов при энергии электронов 900 кэВ и токе 1 мА с величиной поглощенной дозы 300 кГр, 5-10.

Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 80,0-85,0, доломит 2,0-3,0, кварцевый песок 11,75-17,8, 70%-ную уксусную кислоту, введенную в воду для увлажнения шихты, 0,2-0,25.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок.

Изобретение относится к области технологии силикатов и касается составов керамических масс для производства кирпича. Керамическая масса для производства кирпича содержит, мас.%: глину тугоплавкую 72,5-78,5, кварциты 20,0-26,0, сухой торф 0,5-1,0; деготь 0,5-1,0.

Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков для малоэтажного строительства. Бетонная смесь включает, мас.%: портландцемент 23,0-25,0, керамзит фракции 10-20 мм 46,7-53,7, керамзитовый песок 5,0-7,0, омыленную канифоль 0,1-0,2, мылонафт 0,1-0,2, воду 18,0-21,0.

Группа изобретений относится к гипсовым панелям с пониженной массой и плотностью, с улучшенными теплоизоляционными свойствами. Гипсовый средний слой для панели, сформированный из смеси, содержащей: строительный гипс в количестве от примерно 1162 фунтов/тыс.

Изобретение относится к области строительных материалов и может быть использовано для изготовления изделий в промышленном и транспортном строительстве. Автоклавный золопенобетон получен из смеси, включающей, мас.%: портландцемент 24,50-28,60, известь 10,10-11,20, золу от сжигания осадка сточных вод с удельной поверхностью Sуд.=200-300 м2/кг 23,80-25,60, пенообразующую добавку "Неопор" 0,34-0,35, воду 37,16-38,35.

Изобретение относится к строительным материалам и может быть использовано в качестве комплексной добавки в растворную смесь при производстве пенобетонов. Комплексная добавка для пенобетонной смеси содержит, мас.%: пенообразующую добавку на протеиновой основе 94,2-94,8, поливинилацетат 5,2-5,8.

Изобретение относится к промышленности строительных материалов, а именно к строительным материалам на основе гипсовых вяжущих, и может быть использовано при производстве строительных смесей для оштукатуривания стен и потолков внутри зданий различного назначения, в том числе помещений с повышенной влажностью (более 60%).
Наверх