Дифференциальная система измерения температуры газов газотурбинного двигателя



Дифференциальная система измерения температуры газов газотурбинного двигателя
Дифференциальная система измерения температуры газов газотурбинного двигателя
Дифференциальная система измерения температуры газов газотурбинного двигателя
Дифференциальная система измерения температуры газов газотурбинного двигателя
Дифференциальная система измерения температуры газов газотурбинного двигателя
Дифференциальная система измерения температуры газов газотурбинного двигателя
Дифференциальная система измерения температуры газов газотурбинного двигателя
Дифференциальная система измерения температуры газов газотурбинного двигателя
Дифференциальная система измерения температуры газов газотурбинного двигателя
Дифференциальная система измерения температуры газов газотурбинного двигателя
G01K2013/024 - Измерение температуры; измерение количества тепла; термочувствительные элементы, не отнесенные к другим классам ( измерение температурных колебаний с целью компенсации их влияния на измерение других переменных величин или для компенсации ошибок в показаниях приборов для измерения температуры, см. G01D или подклассы, к которым отнесены эти переменные величины; радиационная пирометрия G01J; определение физических или химических свойств материалов с использованием тепловых средств G01N 25/00; составные термочувствительные элементы, например биметаллические G12B 1/02)

Владельцы патента RU 2659612:

Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") (RU)

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры газов газотурбинного двигателя. Предложена дифференциальная система измерения температуры газов газотурбинного двигателя, содержащая блок обработки информации 3 и два канала измерения 1 и 2, каждый из которых имеет струйный генератор 4, пьезоэлектрический преобразователь 5, электронно-перестраиваемый фильтр 6 с переключателем типа датчика 12, компаратор фаз 7, ключ 8, одновибратор 10, преобразователь напряжение-код 13, генератор пилообразного напряжения 9, выход которого соединен с управляющим входом электронно-перестраиваемого фильтра 6 и преобразователя напряжение-код 13 через инвертор 11. Технический результат - повышение точности и надежности устройства. 1 табл., 2 ил.

 

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры газов газотурбинного двигателя.

Известно устройство для измерения температуры газового потока, содержащее два блока фильтров, при этом выходы каждого преобразователя акустического сигнала в электрический подключены к входу схемы выделения разностной частоты через соответствующий блок фильтров, каждый из которых содержит группу полосовых фильтров, выходы которых подключены соответственно к входам ключей и входам формирователей, выходы которых, за исключением последнего формирователя, подключены через инверторы соответственно к первым входам схем совпадения, выходы которых соединены соответственно с управляющими входами ключей с второго по последний, причем управляющий вход первого ключа соединен с выходом первого формирователя, выход второго формирователя соединен с вторым входом первой схемы совпадения, а каждый второй, с второго по k-й, вход k-й схемы совпадения, начиная с второй, подключен соответственно к выходам инверторов с первого по k-й, при этом выход последнего формирователя соединен с дополнительным входом последней схемы совпадения (А.с. 1093911 СССР, МКИ G01K 13/02. Опубл. 23.05.1984. Бюл. №19).

Недостатками аналога являются сложная система выделения информативного параметра из полигармонического выходного сигнала с использованием множества полосовых фильтров, недостаточные быстродействие, точность и надежность.

Наиболее близким по технической сущности является быстродействующее устройство измерения температуры газового потока, содержащее два канала измерения, каждый из которых состоит из струйного генератора, пьезоэлектрического преобразователя, электронно-перестраиваемого фильтра, соединенного с первым входом компаратора фаз для осуществления фазовой подстройки частоты фильтра до равенства фаз с первой гармоники полигармонического сигнала, поступающей непосредственно с выхода пьезоэлектрического преобразователя на второй вход компаратора, выход которого через ключ соединен с первым управляющим входом генератора пилообразного напряжения, второй вход которого соединен с одновибратором, а выход соединен с управляющим входом электронно-перестраиваемого фильтра и преобразователем напряжение-код; и блок обработки информации, в котором выходы преобразователей напряжение-код обоих каналов измерения соединены входами вычитателя кодов, реализующим дифференциальную схему измерения температуры, выход которого через третий вход первой схемы «И», первый и второй входы которой соединены с выходами генераторов пилообразного напряжения каналов измерения, и элемент «ИЛИ» поступает на выход. При этом в случае выхода из строя одного из каналов измерения, например второго, потенциал на выходе соответствующего генератора пилообразного напряжения отсутствует и блокирует первую схему «И», а через второй инвертор открывает третью схему «И» для прохождения информации от первого преобразователя напряжение-код через первый делитель кодов на элемент «ИЛИ» и выход (Пат. №2604573 РФ, МПК G01K 11/22. Опубл. 10.12.2016. Бюл. №34).

Основными существенными недостатками прототипа являются фиксированный диапазон электронно-перестраиваемого фильтра, ограничивающий возможности использования в устройстве различных видов струйных генераторов, и недостаточные точность и надежность, так как поиск первой гармоники информативного сигнала происходит с максимальной частоты диапазона, что приводит к ложному "захвату" второй или третьей гармоники.

Заявляемое изобретение направлено на расширение диапазона электронно-перестраиваемого фильтра под различные виды струйных генераторов и повышение точности и надежности устройства за счет поиска первой гармоники информативного сигнала с минимальной частоты диапазона.

Поставленная задача решается использованием дифференциальной системы измерения температуры газов газотурбинного двигателя, содержащей блок обработки информации и два канала измерения, каждый из которых имеет струйный генератор, пьезоэлектрический преобразователь, электронно-перестраиваемый фильтр с переключателем типа датчика, компаратор фаз, ключ, одновибратор, преобразователь напряжение-код, генератор пилообразного напряжения, выход которого соединен с управляющим с входом электронно-перестраиваемого фильтра и преобразователя напряжение-код через инвертор.

На фиг. 1 показана принципиальная схема электронно-перестраиваемого фильтра; на фиг. 2 - функциональная схема дифференциальной системы измерения температуры газов газотурбинного двигателя.

Для дискретного регулирования диапазона электронно-перестраиваемого фильтра (ЭПФ) под различные виды струйных генераторов применяется переключатель SA цепной трехполюсной структуры (ЦТС), состоящей из n/2 RC-звеньев, где роль емкостей С выполняют варикапы (фиг. 1).

Частота квазирезонанса f0 при произвольном количестве звеньев n/2, где n число плеч структуры, определяется (см. Гулин А.И. Проектирование многозвенных RC-генераторов // Изв. вузов Приборостроение. - 2012. - Т. 56. - №3. - С. 14-18) по формуле

где коэффициент kn определяется из выражения

где р=0,25n-1.

Из всех вещественных положительных корней уравнения (2) необходимо использовать наименьший (для шестиплечей ЦТС он равен ), так как использование других значений, удовлетворяющих условию (2), приведет к сдвигу фаз на 2π радиан и более. В таблице для примера приведены значения коэффициентов kn для числа плеч ЦТС n от 6 до 40.

Емкость варикапа определяется из выражения (см. Берман Л.С. Введение в физику варикапов. - Л.: Наука, 1968. - С. 30) как

где СВ, UB - емкость и напряжение смещения варикапа, соответствующие верхней частоте перестройки;

Uупр - напряжение управления смещением варикапов;

ϕk - контактная разность потенциалов р-n перехода, лежащая в пределах 0,4÷0,7 В;

b - коэффициент, зависящий от распределения примесей в переходе, равный 0,5 для варикапов с резким р-n переходом.

Следовательно, выражение (1) при использовании варикапов примет вид

Зная диапазон изменения первой гармоники выходной частоты одного из видов струйного генератора Δƒ, равный

где Cmax - максимальная емкость варикапа, соответствующая нижней частоте перестройки фильтра, получим выражение для определения коэффициента kn

Из таблицы находим соответствующее значение коэффициента kn, по которому определяем число звеньев (варикапов) ЭПФ. В случае несовпадения вычисленного коэффициента с табличным значением выбираем ближайшее меньшее значение kn и по нему определяем число плеч ЭПФ, т.е. положение переключателя SA, соответствующее данному виду струйного генератора. Аналогично рассчитывается число звеньев ЭПФ для других видов генераторов, имеющих отличный частотный диапазон генерации.

Из (3) видно, что для поиска первой гармоники информативного сигнала струйного генератора с минимальной частоты диапазона, с целью предотвращения ложного «захвата» высших гармоник, необходимо развертку пилообразного управляющего напряжения варикапами начинать с максимального до минимального. Для реализации этого процесса следует произвести инвертирование пилообразного напряжения перед его подачей на управляющий вход ЭПФ. Таким образом, поиск первой гармоники информативного сигнала с минимальной частоты диапазона позволяет предотвратить «ложный захват» высших гармоник информативного сигнала и тем самым повысить точность и надежность дифференциальной системы.

Дифференциальная система измерения температуры газов газотурбинного двигателя (фиг. 2) состоит из двух каналов измерения 1 и 2 для реализации дифференциальной схемы и блока обработки информации (БОИ) 3. Каждый канал измерения, например 1, содержит струйный генератор (СГ) 4, пьезоэлектрический преобразователь (ПЭП) 5 для преобразования акустического сигнала в электрический, электронно-перестраиваемый фильтр (ЭПФ) 6, компаратор фаз (КФ) 7, ключ 8, генератор пилообразного напряжения (ГПН) 9, одновибратор (ОВ) 10, инвертор 11, переключатель типа датчика 12, преобразователь напряжение-код (ПНК) 13. Поскольку состав элементов канала измерения 2 идентичен составу элементов канала 1, на схеме дифференциальной системы (фиг. 2) элементы канала измерения 2 не показаны.

Система работает следующим образом. При помещении СГ 4 первого канала измерения 1, расположенного в одном корпусе, что и струйный генератор второго канала измерения 2, в газовый поток, абсолютную температуру θ которого измеряют, в нем возбуждаются акустические колебания с частотами nf1, преобразуемые с помощью ПЭП 5 в соответствующие электрические колебания, которые в свою очередь поступают через первый вход ЭУФ 6 на первый вход КФ 7, на второй вход которого частота nf1 поступает непосредственно с выходов ПЭП 5. Выход КФ через ключ 8 и первый вход ГПН 9, запускаемый ОВ 10 через его второй вход, управляет временем развертки линейно изменяющегося напряжения, поступающего через инвертор 11 на второй управляющий вход ЭПФ 6. ЭПФ, предварительно адаптированный переключателем 12 на соответствующий тип датчика, под воздействием инвертированного пилообразного напряжения автоматически настраивается с начала диапазона на первую гармонику до совпадения фаз на компараторе 7. При этом компаратор через ключ 8 фиксирует напряжения U1 с выхода инвертора 11, поступающее на БОИ 3 и ПНК 13, который формируют код N1, пропорциональный измеряемой температуре газового потока θ и также поступающий на БОИ 3.

БОИ 3, как и в прототипе, реализует дифференциальный принцип измерения, т.е. вычисляет разницу кодов ΔN=N1-N2, пропорциональную температуре газового потока, которая поступает на выход. Напряжения U1 и U2 обеспечивают работоспособность БОИ и системы в целом при выходе из строя одного из каналов измерения, реализуя алгоритм вычисления ΔN

где коэффициенты деления k1 и k2 кодов N1 и N2.

Итак, заявляемое изобретение позволяет расширить диапазон электронно-перестраиваемого фильтра под различные виды струйных генераторов и предотвратить ложный "захват" высших гармоник информативного сигнала, что позволяет повысить точность и надежность дифференциальной системы.

Дифференциальная система измерения температуры газов газотурбинного двигателя, характеризующаяся тем, что содержит блок обработки информации и два канала измерения, каждый из которых имеет струйный генератор, пьезоэлектрический преобразователь, электронно-перестраиваемый фильтр с переключателем типа датчика, компаратор фаз, ключ, одновибратор, преобразователь напряжение-код, генератор пилообразного напряжения, выход которого соединен с управляющим входом электронно-перестраиваемого фильтра и преобразователя напряжение-код через инвертор.



 

Похожие патенты:
Изобретение относится к способам формирования температурной карты местности путем регистрации электромагнитного излучения, испущенного находящимися на местности объектами.

Изобретение относится к области термометрии и направлено на исследование различных теплозащитных и эрозионно стойких материалов, обеспечивающих защиту трубопроводов высокого давления, работающих на продуктах сгорания, имеющих высокую температуру от 1000°С.

Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах.

Изобретение относится к линиям электроснабжения. Определитель температуры провода контактной сети и воздушных линий электропередачи содержит датчик тока, датчик скорости ветра, датчик температуры окружающей среды, первый и второй функциональные преобразователи, блок вычисления перегрева, первый и второй сумматоры, источник стабилизированного напряжения, первый, второй, третий и четвертый задатчики постоянных параметров коэффициента теплоотдачи конвенцией, задатчик периметра провода, задатчик степени черноты поверхности провода и исполнительный орган, а также датчик направления ветра, датчик относительной влажности воздуха, первое, второе и третье программируемые многофункциональные средства, первый и второй переключатели с управляемым входом, первый, второй и третий пороговые элементы, первый и второй умножители, схему совпадения, задатчики массы, удельной теплоемкости, сопротивления единицы длины провода, задатчик температурного коэффициента сопротивления провода и блок масштабного коэффициента тока.

Изобретение относится к области технической физики, а именно к способам определения температуры торможения газового потока, и может быть использовано при длительном локальном измерение полной температуры набегающего потока в элементах газотурбинных двигателей, например в переходных каналах, на выходе из камеры сгорания, с числом Маха от 0.1 до 0.7 набегающего потока и температурой, превышающей 2000K.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры раскаленных газовых потоков, включая пламена.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры потока неоднородных, химически агрессивных и абразивосодержащих газов.

Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца, а также структуры и свойств его поверхности дает возможность проведения экспериментов с одновременным использованием данных методов, что позволяет проводить in-situ исследования структуры и свойств поверхности, а также теплофизических свойств материалов различного типа с возможностью одновременного снятия базовой линии.

Изобретение относится к области приборостроения и может быть использовано в системах контроля технологических процессов. Система датчиков содержит технологический измерительный преобразователь, вибродатчик без внешнего питания и технологический трансмиттер.

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его возникновения.

Изобретение относится к области термометрии и направлено на исследование различных теплозащитных и эрозионно стойких материалов, обеспечивающих защиту трубопроводов высокого давления, работающих на продуктах сгорания, имеющих высокую температуру от 1000°С.

Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах.

Изобретение относится к области технической физики, а именно к способам определения температуры торможения газового потока, и может быть использовано при длительном локальном измерение полной температуры набегающего потока в элементах газотурбинных двигателей, например в переходных каналах, на выходе из камеры сгорания, с числом Маха от 0.1 до 0.7 набегающего потока и температурой, превышающей 2000K.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры раскаленных газовых потоков, включая пламена.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры потока неоднородных, химически агрессивных и абразивосодержащих газов.

Измерительный преобразователь (260) технологической переменной для восприятия технологической переменной технологической текучей среды в промышленном процессе включает в себя технологическую прокладку (200), имеющую поверхность, выполненную с возможностью образования уплотнения с поверхностью технологического резервуара.

Изобретение относится к ультразвуковому расходомеру для измерения скорости потока и/или расхода текучей среды. Ультразвуковой расходомер содержит: измерительный преобразователь, имеющий соединительные фланцы для присоединения трубопроводов текучей среды и среднюю часть, выполненную с возможностью пропускания текучей среды, по меньшей мере два помещенных в среднюю часть ультразвуковых преобразователя, которые образуют пару ультразвуковых преобразователей и между которыми установлена измерительная цепь, проходящая через поток, датчик давления, удерживаемый в средней части в гнезде датчика давления и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, калибровочный вывод, удерживаемый в средней части в гнезде калибровочного вывода и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, причем поршень в гнезде поршня выполнен с возможностью приведения в два положения, при этом в первом положении датчик давления имеет сообщение по текучей среде с внутренностью средней части, а во втором положении датчик давления через гнездо поршня имеет сообщение по текучей среде с калибровочным выводом.

Изобретение относится к области приборостроения и может быть использовано в системах контроля технологических процессов. Система датчиков содержит технологический измерительный преобразователь, вибродатчик без внешнего питания и технологический трансмиттер.

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его возникновения.

Изобретение относится к энергетике, в частности к датчикам температуры универсальным, используемым в газогорелочных устройствах для сжигания газа в котлах наружного размещения, и может быть использовано в бытовых газовых аппаратах для автоматического поддержания температуры теплоносителя.

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры.
Наверх