Способ контроля поражения цели крылатой ракетой

Изобретение относится к ракетной технике. В способе контроля поражения цели крылатой ракетой (КР) после выполнения пуска и полета КР по индивидуальной траектории, выбора цели и захода на цель, снятия ступеней предохранения боевого оснащения на заданном расстоянии до цели, задаваемом из условий неминуемого поражения цели, в бортовой аппаратуре КР производится по заданному алгоритму формирование массива данных. Массив содержит номер КР, тип боевой части, номер цели в ордере целей и координаты цели, расстояние до цели в момент завершения подготовки массива данных. Обеспечивается передача сформированного массива данных на носитель КР. Дополнительно может быть обеспечена передача массива данных перед командой на подрыв БЧ с заданным временным интервалом, в том числе, через не менее чем один ретранслятор. Техническим результатом изобретения является обеспечение автономности и оперативности доставки информации о поражении цели. 10 з.п. ф-лы, 1 ил.

 

Предлагаемое решение относится к ракетной технике, а именно к крылатым ракетам (КР), предназначенным для поражения морских и наземных целей.

К морским целям в первую очередь следует отнести авианосные и крейсерские группировки, обладающие высокими возможностями по отражению массированных ударов авиационных средств поражения.

В качестве наземных целей целесообразно рассматривать малоразмерные высокозащищенные объекты военного назначения. Объекты такого рода, как правило, вызывают трудности при поражении за счет своих малых размеров и рационально организованной системы обороны.

В настоящее время основным средством борьбы с такого рода целями в большинстве случаев являются крылатые ракеты, планирующие и свободнопадающие авиабомбы, оснащенные аппаратурой высокоточного наведения (радиолокационными, инфракрасными и лазерными головками самонаведения, аппаратурой высокоточной спутниковой навигации и наведения типа GPS).

Следует обратить внимание, что современные способы контроля результатов поражения цели, практически, не позволяют оперативно получать данные о результатах нанесенного ракетного удара по цели. Только при наличии оперативно развернутой группировки авиационно-космических средств мониторинга в зоне конфликта возможно получение некоторой информации о результатах проводимой операции. В случае же возникновения необходимости нанесения удара по оперативно назначенной цели, получение информации об эффективности примененных средств поражения потребует значительного времени (от нескольких часов до нескольких суток). Отсутствие оперативной информации о результатах применения авиационных средств поражения может привести к срыву выполнения всей поставленной боевой задачи, неоправданным потерям численного состава и материальной части, существенному замедлению перегруппировки вооруженных сил и медленному реагированию войск на новые угрозы.

Известно изобретение (патент РФ 2247312), предполагающий установку на ракету дополнительного автономного модуля (летательного аппарата) со средствами наблюдения на его борту с последующей передачей оператору изображения цели.

Практически, изобретение неосуществимо. Учитывая вес автономного модуля, потребные характеристики средств связи и энергетику, а также плотность компоновки современных ракет, доработка существующих КР или разработка новых КР с таким модулем маловероятна.

В качестве ближайшего аналога решения предлагается способ поражения наземных целей тактической крылатой ракетой авиационного базирования AGM - 142. Ракета была разработана израильской фирмой Rafael и американской Lockheed Martin Missiles and Fire Control. Используется в ВВС США для оснащения стратегических бомбардировщиков В-52Н.

По материалам сайта http://www.airwar.ru/weapon/avz/agm142.html основным целями КР AGM-142 являются электростанции, подстанции, башни крэкинга и дистилляции, коммуникационные узлы, подвижные и стационарные РЛС и т.п.

Ракета оснащена инерциальной навигационной системой, телевизионной или инфракрасной головкой самонаведения и цифровой линией связи с носителем.

Наведение ракеты на среднем участке траектории осуществляется инерциальной системой с возможной коррекцией от самолета-носителя, а на конечном участке траектории действует система теленаведения, при этом используется линия цифровой связи между ракетой и носителем.

Линия связи обеспечивает возможность контроля процесса нанесения удара ракетой AGM-142, обеспечивая высокую точность и эффективность поражения наземной цели.

Однако у данного способа есть серьезные недостатки:

- ракета не является автономной; самолет - носитель должен постоянно находиться в зоне атаки цели для контроля процесса поражения цели, подвергаясь при этом риску быть сбитым средствами ПВО цели,

- самолет-носитель должен быть оснащен дополнительным контейнером с оборудованием линии передачи данных и иметь антенны, практически, с круговой диаграммой направленности, что является дополнительным демаскирующим фактором, требует увеличения веса самолета и количества экипажа на борту ЛА. Также увеличивается время и возрастает сложность наземного обслуживания самолетов-носителей указанных средств поражения цели.

Целью предлагаемого решения является устранение указанных недостатков и разработка такого способа контроля поражения цели, реализация которого позволила бы: во-первых, обеспечить оперативность доставки информации о результатах поражения любого типа цели; во-вторых, обеспечить автономность контроля поражения цели крылатой ракеты (одиночно или в составе залпа).

Предлагаемое решение заключается в следующем.

В способе контроля поражения цели крылатой ракетой, заключающемся в обеспечении пуска и полета не менее одной крылатой ракеты (КР), введены следующие отличия.

После выполнения полета КР по индивидуальной траектории, выбора цели КР, захода на цель, обеспечения снятия ступеней предохранения боевого оснащения на заданном расстоянии до цели, в бортовой аппаратуре КР производится по заданному алгоритму формирование массива данных, содержащих номер КР, тип боевой части (БЧ), номер цели в ордере целей и координаты цели, расстояние до цели в момент завершения подготовки массива данных и обеспечивается передача массива данных на носитель КР.

В указанном выше способе контроля поражения цели крылатой ракетой дополнительно может быть осуществлено следующее:

- обеспечивается передача массива данных перед командой на подрыв БЧ с заданным временным интервалом;

- передача массива данных на носитель КР обеспечивается через не менее чем один ретранслятор;

- в качестве ретранслятора используется КР, совершающая полет в составе залпа КР с заданным интервалом от первой КР в залпе;

- в качестве ретранслятора используется космический аппарат и/или летательный аппарат;

- в состав передаваемых данных включается фотографическое изображение поражаемой цели;

- в состав передаваемых данных включается изображение поражаемой цели, выполненное в инфракрасном диапазоне электромагнитного спектра;

- - в состав передаваемых данных включается изображение поражаемой цели, выполненное в радиолокационном диапазоне;

- после завершения атаки (в том числе поражения цели) одной из КР в залпе на борту ретранслятора формируется дополнительное фотографическое изображение цели с последующей его передачей на носитель КР;

- после завершения атаки (в том числе поражения цели) одной из КР в залпе на борту ретранслятора формируется дополнительное изображение цели, выполненное в инфракрасном диапазоне электромагнитного спектра, с последующей его передачей на носитель КР;

- после завершения атаки (в том числе поражения цели) одной из КР в залпе на борту ретранслятора формируется дополнительное изображение цели, выполненное в радиолокационном диапазоне, с последующей его передачей на носитель КР.

На иллюстрации (Фигура 1) показана общая схема полета КР с вариантами формирования массива данных и передачи информации (в т.ч. трансляции) о результатах контроля поражения цели.

На Фигуре 1 позициями обозначены следующие компоненты решения:

1 - носитель КР;

2 - траектория полета КР к цели;

3 - рубеж завершения распределения цели;

4 - рубеж снятия ступеней предохранения боевого оснащения (боевой части);

5 - рубеж завершения подготовки массива данных;

6 - КР;

7 - КР - ретранслятор;

8 - КА - ретранслятор;

9 - ЛА - ретранслятор;

10 - наземный узел связи - ретранслятор;

11 - канал передачи данных с КР;

12 - цель.

Решение реализуется следующим образом.

После старта (пуска) КР (6) с носителя (1) осуществляется полет КР по заданной траектории (2). По достижении КР области нахождения цели (12) обеспечивается наведение КР непосредственно на цель, а в случае залпового огня КР по групповой цели обеспечивается распределение КР по целям в группе (ордере целей), где каждой КР соответствует определенная цель. На рубеже (3) - заданное расстояние до цели L1, при одиночной атаке на цель, - захват цели должен быть завершен (при осуществлении залпа КР - распределение КР по целям должно быть завершено), должен быть обеспечен заход КР на цель. Данная последовательность выполняется с помощью головки самонаведения (иных средств наведения) и бортовой аппаратуры КР, что технически реализовано многократно в образцах техники.

По мере приближения КР к цели на заданном расстоянии L2 снимаются ступени предохранения с боевого оснащения. Фактически, после рубежа (4), КР продолжает полет на «боевом взводе».

Расстояние L2 задается из условий, фактически, неминуемого достижения КР цели, после преодоления абсолютного большинства противоракетных средств обороны, захвата цели и расчета ухода подвижной цели.

Учитывая, что на заданном расстоянии L2 вероятность поражения цели существенно высокая (много выше, чем в момент старта или на любом ином расстоянии до цели), вполне допустимо принять расчетную вероятность для проведения дальнейшего анализа и получения выводов о судьбе цели. Для этого необходимо передать определенный и ограниченный набор данных. А именно: номер КР (требуется для уточнения расчетов), тип боевого оснащения (или боевой части (БЧ)) - требуется для расчета и уточнения возможности нанесения повреждения цели, номер цели в ордере целей (при групповой цели) и координаты цели (требуется для исключения возможности дублирования применения КР по одним целям, как и наоборот, точная информация о количестве применяемых против одной цели КР позволяет сделать уточненные выводы о возможности ее поражения, расстояние до цели (L3) в момент завершения подготовки массива данных (сведения и завершении подготовки и передачи необходимых данных на более близком расстоянии КР до цели повышает вероятность достижения цели КР с последующим подрывом боевого оснащения).

После завершения подготовки массива данных на расстоянии L3 обеспечивается немедленная их отправка на носитель предусмотренными средствами связи КР.

Даже в случае повреждения или уничтожения КР на этом расстоянии (L3) до цели могут долететь либо неуправляемая КР с остатками топлива, либо ее обломки. Удар частей КР по цели может нанести ей некоторые повреждения.

Вероятность поражения цели может быть повышена, если предложенное решение дополнить следующим: обеспечить передачу массива данных (изложен выше) на носитель непосредственно перед командой на подрыв БЧ.

Подрыв БЧ осуществляется, фактически, в момент столкновения КР с целью. Наличие сведений о неминуемом столкновении КР с целью позволит сделать выводы о повреждении цели даже без учета подрыва БЧ (вследствие высокой скорости КР, ее массы и жесткости конструктивных элементов).

Для однозначной идентификации цели целесообразно в массив данных включить фотографическое изображение цели, получаемое на борту КР (при адекватных погодных условиях и в светлое время суток) или изображение, выполненное в инфракрасном или радиолокационном диапазоне электромагнитного спектра (или изображения, выполненные во всех вариантах).

Для фотографического изображения в оптическом диапазоне необходимо дополнительно установить на КР фотокамеру, преобразовать полученный снимок под возможности канала связи или доработать канал передачи информации.

Изображение, выполненное в инфракрасном или радиолокационном диапазоне электромагнитного спектра, требует доработки бортовой аппаратуры. Наличие головки самонаведения, работающей в радиолокационном диапазоне, требует наличие преобразователя принимаемых от цели сигналов, установка на КР инфракрасной матрицы с последующим преобразованием принимаемых сигналов в инфракрасном диапазоне электромагнитного спектра позволит получить требуемое изображение.

Учитывая наличие кривизны поверхности планеты и радиус действия КР, обеспечить передачу данных (по каналам 11) на носитель возможно лишь с помощью ретранслятора (8 и/или 9, и/или 10), что может быть предусмотрено при подготовки залпа КР для поражения цели.

Количество ретрансляторов может быть несколько, это технически осуществимо.

В качестве ретранслятора могут быть использованы другие КР в залпе, совершающие полет на заданной дистанции от первой (первых) КР в залпе, и на заданной высоте. В боевой обстановке, при удалении от жизненно важных центров, носителя, мест дислокации войск, использование КР предполагается наиболее оправданным.

Тем не менее, учитывая стоимость КР, а также для получения информации о результативности всех использованных КР, в качестве ретранслятора могут быть применены иные типы летательных аппаратов (самолеты, вертолеты, космические аппараты) или даже наземные комплексы при наличии возможности осуществлять связь между КР и указанными объектами. Технически это осуществимо.

Учитывая, что переданный массив данных является лишь исходными сведениями для расчета вероятности поражении цели, целесообразно по завершении атаки на цель обеспечить получение и передачу на носитель фотографического изображения цели (при благоприятных климатических условиях, в светлое время суток и на допустимом для фотоснимка удалении от цели получение фотоизображения вполне возможно) или изображение, выполненного в инфракрасном или радиолокационном диапазоне.

Фотоизображение (инфракрасное, радиолокационное изображение) состояния цели после атаки на нее может быть получено на борту ретранслятора и передано на носитель КР. Изображения могут быть получены и переданы на носитель КР многократно, что зависит от времени нахождения ретранслятора в зоне цели и возможной передачи данных.

Для обеспечения способа контроля поражения цели КР требуется решить следующие задачи:

- разработать бортовую аппаратуру, алгоритмы и программное обеспечение контроля и передачи данных о результатах применения КР по целям;

- обеспечить узлы связи, летательные и космические аппараты соответствующей приемо-передающей аппаратурой для выполнения функций ретрансляторов.

Данные задачи являются технически реализуемыми и не вызывают непреодолимых трудностей у специалистов в соответствующей области. Т.е. предполагаемое изобретение является промышленно применимым при решении исключительно организационных вопросов о целесообразности его использования.

Таким образом, можно обоснованно сформулировать преимущества, которые обеспечивает предлагаемое решение:

- автономность применения КР по любому типу цели;

- оперативность получения информации о результатах применения КР;

- достоверность результатов о воздействии КР по цели;

- эффективность применения КР по цели;

Технический результат изобретения состоит в том, что при минимальном объеме переоборудования как материальной части, так и программного обеспечения системы управления КР, экипаж носителя, использующий КР, для принятия решения о дальнейших действиях, может получить следующие сведения: уточненную информацию о цели (т.е., провести доразведку цели по предварительным данным о цели), исходные данные (с высокой достоверностью), для расчета повреждения цели, состоянии цели и ее возможности выполнять значимые действия (поставленные цели задачи) после проведения атаки, точную информацию о типе цели и ее состоянии (при наличии дополнительного оборудования).

Своевременное наличие указанных сведений позволяет рационально использовать боекомплект как носителя КР, так и иных видов вооружения, более эффективно выполнять поставленные задачи, быстро переключиться на иные, новые задачи, в итоге, сократить потери личного состава и материальной части. Получаемые исходные данные также полезны для доработки (модернизации) эксплуатируемых образцов ракетной техники.

1. Способ контроля поражения цели крылатой ракетой, заключающийся в обеспечении пуска и полета не менее одной крылатой ракеты (КР), отличающийся тем, что после выполнения полета КР по индивидуальной траектории, выбора цели КР, захода на цель, обеспечения снятия ступеней предохранения боевого оснащения на заданном расстоянии до цели, в бортовой аппаратуре КР производится по заданному алгоритму формирование массива данных, содержащих номер КР, тип боевой части (БЧ), номер цели в ордере целей и координаты цели, расстояние до цели в момент завершения подготовки массива данных и обеспечивается передача массива данных на носитель КР.

2. Способ контроля поражения цели по п. 1, отличающийся тем, что обеспечивается передача массива данных перед командой на подрыв БЧ с заданным временным интервалом.

3. Способ контроля поражения цели по п. 1, отличающийся тем, что передача массива данных на носитель КР обеспечивается через не менее чем один ретранслятор.

4. Способ контроля поражения цели по п. 3, отличающийся тем, что в качестве ретранслятора используется КР, совершающая полет в составе залпа КР с заданным интервалом от первой КР в залпе.

5. Способ контроля поражения цели по п. 3, отличающийся тем, что в качестве ретранслятора используется космический аппарат и/или летательный аппарат.

6. Способ контроля поражения цели по п. 1, отличающийся тем, что в состав массива данных включается фотографическое изображение цели.

7. Способ контроля поражения цели по п. 1, отличающийся тем, что в состав массива данных включается изображение цели, выполненное в инфракрасном диапазоне электромагнитного спектра.

8. Способ контроля поражения цели по п. 1, отличающийся тем, что в состав массива данных включается изображение цели, выполненное в радиолокационном диапазоне электромагнитного спектра.

9. Способ контроля поражения цели по п. 3, отличающийся тем, что после поражения цели одной из КР в залпе на борту ретранслятора формируется фотографическое изображение цели с последующей его передачей на носитель КР.

10. Способ контроля поражения цели по п. 3, отличающийся тем, что после поражения цели одной из КР в залпе на борту ретранслятора формируется изображение цели, выполненное в инфракрасном диапазоне электромагнитного спектра, с последующей его передачей на носитель КР.

11. Способ контроля поражения цели по п. 3, отличающийся тем, что после поражения цели одной из КР в залпе на борту ретранслятора формируется изображение цели, выполненное в радиолокационном диапазоне электромагнитного спектра, с последующей его передачей на носитель КР.



 

Похожие патенты:

Устройство управляемого артиллерийского снаряда (УАС) предназначено для снаряжения артиллерийских орудий, входящих в состав комплекса контрбатарейной борьбы с подразделениями ствольной и реактивной артиллерии, а также с подразделениями минометов противника, находящихся на огневых позициях и ведущих стрельбу.

Изобретение относится к области управления движением летательных аппаратов и, в частности, к электрогидравлическим и электропневматическим рулевым приводам управляемых ракет и снарядов.

Изобретение относится к ракетам класса «воздух-воздух». Ракета содержит фюзеляж, двигатель и головку самонаведения, а также отцепляемый парашют, уложенный в сбрасываемый обтекатель, расположенный перед носовой частью ракеты.

Изобретение относится к ракетно-космической технике. Адаптер для установки космических аппаратов состоит из ряда конструктивно идентичных платформ, последовательно связанных между собой посредством несущих штанг.

Ракета // 2660968
Изобретение относится к области ракетной техники и может быть применено в ракетах с отделяемой стартовой ступенью. Ракета содержит маршевую ступень и отделяемую стартовую ступень с двигателем и механизмом разделения.

Изобретение относится к ракетной технике, а именно к устройствам, обеспечивающим сохранность ракеты при ее размещении в транспортно-пусковом контейнере (ТПК) на носителях, транспортно-заряжающих машинах, базах долговременного хранения.

Изобретение относится к зенитным и к авиационным ракетам класса «воздух-воздух». Технический результат - улучшение маневренности ракет.

Предлагаемая группа изобретений относится к военной технике, в частности к системам управляемого оружия с лазерными полуактивными головками самонаведения (ЛПГСН).

Изобретение относится к области ракетной техники и может быть использовано в конструкциях малогабаритных ракет. Бикалиберная ракета содержит отделяемый стартовый двигатель с посадочным гнездом, в которое установлена кормовая часть маршевой ступени с кольцевым насадком, расположенным перед торцом двигателя.

Изобретение относится к области ракетной техники. Самоприцеливающийся боевой элемент содержит корпус с боевой частью, вращающийся парашют с полюсным отверстием, при этом внутри корпуса элемента перпендикулярно его продольной оси установлены выдвижные подпружиненные тормозные щитки.

Настоящее изобретение относится к авиации. Способ вертикального перемещения и зависания самолета в воздухе заключается в том, что воздушный поток от винтовых двигателей (3,4) обдувает крыло.

Изобретение относится к области электроэнергетики, в частности к способам управления стабилизацией устройств для диагностики состояния воздушных линий электропередач.

Дистанционная резервированная система автоматизированного модального управления в продольном канале маневренных пилотируемых и беспилотных летательных аппаратов содержит ручку пилота/задатчик тангажа, вычислитель автопилота угла тангажа, сервопривод, датчик угла тангажа, ограничитель предельных режимов, датчик угловой скорости тангажа, блок балансировки, вычислитель алгоритма модального управления (ВАМУ), систему воздушных сигналов, датчик линейных ускорений, идентификатор угла атаки, соединенные определенным образом.

Группа изобретений относится к ракетной технике, а именно к сверхзвуковым крылатым ракетам, предназначенным для поражения наземных целей, включая легкоуязвимые площадные наземные объекты, в том числе критичные по времени мобильные цели.

Группа изобретений относится к области систем рулевых приводов летательных аппаратов, а именно к системам комбинированных рулевых приводов, содержащих рулевую машину с аэродинамическими рулями и газодинамическое устройство управления со сверхзвуковыми соплами.
Самолет снабжен конусообразным воздуховодом, расположенным по верху фюзеляжа самолета от кабины до хвоста и являющимся его неотъемлемой частью, выполненным с возможностью подачи в воздуховод части воздуха, выходящего из работающих двигателей.

Изобретение относится к управлению летательным аппаратом (ЛА) снабженным двигательной установкой с реактивными соплами. Способ управления заключается в размещении не менее трех реактивных сопел на донном срезе корпуса летательного аппарата вокруг продольной оси и периодическом введении интерцепторов реверсным приводом в газовую струю соседнего с интерцептором реактивного сопла.

Изобретение относится к управлению летательным аппаратом (ЛА), снабженным двигательной установкой с реактивными соплами. Способ заключается в размещении реактивных сопел снаружи вдоль корпуса летательного аппарата и периодическом введении интерцепторов реверсным приводом в газовую струю соответствующего реактивного сопла.

Изобретение относится к ракетной технике и может быть использовано для управления направлением полета ракеты. Забирают воздушный поток в зоне повышенного давления, направляют воздушный поток с помощью распределительного устройства в выходящие на боковую поверхность корпуса ракеты сопла.
Изобретение относится к области авиации, в частности к топливным системам. Способ управления самолетом с двумя двигателями и больше заключается в дифференциальном управлении подачей топлива в двигатели.
Наверх