Способ обработки термовидеоинформации на борту космического аппарата и её отображения на наземной станции

Изобретение относится к вычислительной технике для измерения параметров и характеристик космических аппаратов. Технический результат заключается в оптимизации потоков телеметрической информации. Технический результат достигается за счет того, что для бортовых вычислительных средств задают пороговое значение температуры, получаемое на борту космического аппарата и/или ракеты-носителя, изображение представляют в виде матрицы из i, j зон поля изображения с присвоением каждой зоне идентификатора, для каждой из i, j зон поля изображения определяют откалиброванное среднее значение температуры, сравнивают пороговое значение температуры с откалиброванным средним значением температуры для каждой из i, j зон поля изображения и выявляют аномальные зоны поля изображения с температурой, превышающей заданное пороговое значение, данные о координатах аномальных зон поля изображения и значениях температуры для таких зон передают на наземную станцию, на наземной станции отображают поле изображения с визуальным выделением участков поля изображения с температурой, превышающей заданное пороговое значение, осуществляют необходимые корректирующие воздействия. 2 ил.

 

Предлагаемое изобретение относится к области космической техники, а именно к средствам измерения параметров и характеристик космических аппаратов и ракет-носителей посредством телеметрических систем.

Известен способ обработки и отображения термовидеоинформации, полученной на борту космического аппарата и/или ракеты-носителя, предусматривающий определение значений яркостной температуры поля изображения, связанной с термодинамической шкалой истинного значения температуры, и отображение поля изображения наземными компьютерными средствами (См. Климов Д.И., Благодырёв В.А., «Использование инфракрасного и ультрафиолетового диапазонов в видеотелеметрии для отслеживания температурных параметров КА и РН», Успехи современной радиоэлектроники, №12, 2012, стр. 22-26). В свою очередь, предложенный способ обработки и отображения термовидеонинформации с борта космического аппарата и/или ракеты-носителя представляет собой дальнейшее развитие описанного выше способа и является результатом поиска совокупности технологических решений, которые позволят оптимизировать информационные потоки телеметрической информации по линии «борт – Земля» и выбор компьютерных средств обработки информации на наземных станциях.

Для решения указанной выше технической проблемы в известном способе обработки и отображения термовидеоинформации, полученной на борту космического аппарата и/или ракеты-носителя, предусматривающим определение значений яркостной температуры поля изображения, связанной с термодинамической шкалой истинного значения температуры, и отображение поля изображения наземными компьютерными средствами, предложено выполнить обработку термовидеоизображения на борту, с последующим отображением на наземной станции. В соответствии с предложенным способом обработки и отображения термовидеоинформации, получаемое на борту космического аппарата и/или ракеты-носителя изображение представляют в виде матрицы из i,j двумерных зон поля изображения с присвоением каждой зоне идентификатора. Определяют на борту значение яркостной температуры в i,j-ой зоне поля изображения, связанной с термодинамической шкалой истинного значения температуры, и локализуют участки поля изображения с температурой, превышающей заданное пороговое значение. Данные об указанных аномальных участках поля изображения передают на наземную станцию для отображения компьютерными средствами изображения, разбитого на целое число i,j-зон поля изображения с визуальным выделением участков поля изображения с температурой, превышающей заданное пороговое значение.

Обработка и отображение термовидеоинформации согласно предложенному способу осуществляется следующим образом.

Информация об интегральном значении яркости в ij-ой зоне k-го кадра Yijk поступает на суммирующее по числу кадров устройство

(1)

и далее усредняется по общему числу кадров за секунду L

(2)

В результате, получаем усреднённое по общему числу кадров в секунду значение яркости в рассматриваемой зоне Yij. Известно, что исходя из физического смысла яркости, она численно равна интенсивности света I. Следовательно для i,j-ой зоны, Yij = Iij.

Применимо к яркостному (спектральному) пирометру последовательность обработки термовидеоинформации основана на планковском распределении в диапазоне длин волн, а именно

(3)

где Дж/К – постоянная Больцмана, Дж×с – постоянная Планка, м/с – скорость света, Т – яркостная
температура (К), λ – длина волны (м), ελ – интегральный коэффициент теплового излучения.

Из (3) выразим яркостную температуру

(4)

(5)

Структурная схема решающего устройства и матрицы энергий световых излучений для осуществления предложенного способа обработки информации приведена на фиг. 1. Решающее устройство включает две схемы сравнения – 1-ю и 2-ю, относящиеся к текущему значению яркости Yij в рассматриваемой зоне поля изображения, по которому выдаётся соответствующее значение энергии светового излучения Wij (таблицы 8.27, 8.28, «Таблицы физических величин», ред. Акад. И.К. Кикоин, Москва, Атомиздат, 1976), по которой, в соответствии с законом Планка, вычисляется длина волны

, (6)

а также значения интегрального коэффициента излучения для заданного типа металла (или графита) при соответствующем значении (там же).

Спектральный пирометр калибруется по излучению (на той же длине волны) абсолютно черного тела в градусах яркостной температуры Tij, связанной с термодинамической шкалой соотношением

, (7)

где Тист_ij – истинное (откалиброванное) среднее значение температуры в контролируемой зоне поля изображения,

(8)

Отображение термовидеоинформации при её обработке и вычислении температуры по соотношению (5) на борту космических аппаратов и ракет-носителей будет осуществлено посредством использования процессоров, запрограммированных на алгоритм обработки информации согласно соотношениям (5), (8), а также алгоритма локализации отдельных участков (зон) поля изображения объекта с температурой, превышающей допустимую. Допустимый порог температуры либо вводится оператором при непосредственном отслеживании термообстановки объекта или однократно программируется при разработке программы функционирования процессора. Информация о температуре и координатах участков передается, как один из параметров телеметрической системы. Пороговое значение температуры и дискреты зоны обзора задаются при программировании бортового процессора на Земле. Информация об аномальных температурных зонах передаётся по каналу «борт – Земля» в автоматическом режиме и не требует передачи командной информации по радиолинии на борт космического аппарата или ракеты-носителя.

На компьютере наземной станции отображается фото полей изображения объекта от видеорегистрирующих систем, которое разбивается на целое число контролируемых зон, каждая из которых имеет свой идентификатор (номер), который задаётся программным способом на борту космического аппарата или ракеты-носителя. Принцип визуального отображения видеоинформации о термообстановке на борту (разбиения поля изображения на контролируемые зоны и порядок из нумерации) представлен на фиг. 2. В случае превышения заданного программным способом на борту космического аппарата или ракеты-носителя порогового значения температуры Тпор в контролируемой зоне поля изображения с заданным номером, указанная зона подсвечивается красным или иным цветом. Соответствующий компьютерный интерфейс включает в таком случае: опцию выбора зоны обзора с соответствующим обозначением; опцию изменения размера зон обзора; опцию выбора окна введения порогового значения температуры, если оно не было запрограммировано для процессора обработки заранее; опцию выбора окна выдачи информации о наиболее термонагруженных областях (зонах), в котором отображаются номер зоны обзора, величина превышения порогового значения температуры, текущее время регистрации системой соответствующей видеоинформации. В результате при наземной обработке оператор получает информацию о номере зоны обзора, координатах наиболее термонагруженных областей, относящихся к данной зоне обзора и уровень превышения допустимого температурного порога.

Информационный поток, передаваемый по каналу «борт – Земля», можно оценить следующим образом.

Исходный информационный поток (J0) определяется соотношением

, (9)

где m×n – разрешение фоторегистрирующего прибора (m – количество строк и n – столбцов пикселей) М – разрядность аналого-цифрового преобразователя.

Так как наблюдение термообстановки не требует детального (пиксельного) рассмотрения, разобьём поле изображения на контролируемые зоны в пределах 5×5 ≤ S ≤ 20×20 пикселей, что позволит существенно сократить информационный поток. При этом получение информации о температурах отдельных зон изображения объекта не ограничится несколькими точками, целостность картины термообстановки сохранится, и по-прежнему будет вестись областное наблюдение за температурой объекта.

Пусть площадь контролируемой зоны поля изображения S = a×a (a – сторона зоны в пикселях), тогда новый информационный поток будет

(10)

Максимальное число контролируемых зон поля изображения объекта

(11)

Точная площадь контролируемой зоны поля изображения и число актуальных зон K (наиболее подверженным изменениям температуры) определяется в техническом задании на изделие. Пусть число актуальных зон определяется соотношением (11) и составляет от 5 % до 30 % общей площади изображения, тогда представим (10) как

(12)

Кроме того, требуется передать информацию о номере зоны, уровне превышения порогового значения Tпор этой зоны. Учитывая число K актуальных зон, температуру будем передавать кратным числом (Q) значения точности измерения температуры, так как сама точность измерения ΔТ известна заранее, т.е.:

Q = T/ ΔТ (13)

При этом (14)

Для оценки информационного потока J1 – K, Q нужно представить в двоичном коде ((K)2 и (Q)2,). В этом случае:

, (15)

где – общее число разрядов для К, Q.

Таким образом, предложенный способ обработки и отображения термовидеоинформации позволяет существенно сократить информационный поток, предназначенный для видеоинформации (до нескольких кбит/с), так как отсутствует необходимость передачи видеоизображения с борта (на наземном компьютере имеется видеоизображение, на котором отображаются зоны с превышением температуры). К компьютеру (входящему в наземный комплекс обработки информации по термовидеотелеметрии) в данном случае не предъявляются высокие системные требования.

Способ обработки и отображения термовидеоинформации, полученной на борту космического аппарата и/или ракеты-носителя, предусматривающий

определение значений яркостной температуры поля изображения, связанной с термодинамической шкалой истинного значения температуры, и отображение поля изображения наземными компьютерными средствами, отличающийся тем что

для бортовых вычислительных средств задают пороговое значение температуры,

получаемое на борту космического аппарата и/или ракеты-носителя изображение представляют в виде матрицы из i, j зон поля изображения с присвоением каждой зоне идентификатора,

для каждой из i, j зон поля изображения при помощи бортовых вычислительных средств определяют откалиброванное среднее значение температуры,

сравнивают пороговое значение температуры с откалиброванным средним значением температуры для каждой из i, j зон поля изображения и

выявляют аномальные зоны поля изображения с температурой, превышающей заданное пороговое значение,

данные о координатах аномальных зон поля изображения и значениях температуры для таких зон передают на наземную станцию как один из параметров телеметрической системы,

на наземной станции отображают поле изображения, разбитое на целое число i, j зон, с визуальным выделением участков поля изображения с температурой, превышающей заданное пороговое значение,

осуществляют контроль термообстановки на борту космического аппарата или ракеты-носителя и осуществляют необходимые корректирующие воздействия.



 

Похожие патенты:

Патентуемый телевизионный прицел исключает наличие демаскирующих излучений в рабочем режиме без участия наблюдателя и может быть применен в качестве дневно-ночного прицела, используемого в самых разнообразных условиях эксплуатации.

Способ повышения разрешения изображения заключается в приеме оптического излучения матричным фотоприемником (МФПУ), измерении и запоминании параметров выходных сигналов фоточувствительных элементов (ФЧЭ) МФПУ и формировании по их значениям изображения.

Изобретение может быть использовано в системах наблюдения, выполненных на матричных фотоприемных устройствах (МФУ). Оптико-электронное устройство (ОЭУ) содержит оптическую систему, в фокальной плоскости которой расположено МФУ, выходы которого через многоканальное устройство аналоговой обработки (УАО) подключены к многоканальному аналого-цифровому преобразователю и далее через мультиплексор к видеовходу устройства видеообработки и управления (УВУ), а также блок управления, вход которого подключен к первому выходу УВУ, а соответствующие выходы подключены к управляющим входам многоканального УАО и МФУ, и устройство интерфейса, видеовход которого подключен к видеовыходу УВУ, а видеовыход является видеовыходом ОЭУ.

Изобретение относится к оптической технологии, в частности к устройству ночного видения. Устройство ночного видения содержит первую светочувствительную микросхему, первую линзовую группу (101), первый экран дисплея, систему обработки изображений и систему управления для регулирования диапазона формирования изображений первой светочувствительной микросхемы посредством регулирования изменения оптического масштабирования первой линзовой группы и/или цифрового масштабирования системы обработки изображений.

Изобретение относится к области тепловидения, к тепловизионным системам, преобразующим инфракрасное излучение наблюдаемого объекта в видеоизображение, выполненным на основе неохлаждаемых микроболометрических матриц.

Изобретение относится к области визуализации спектральных изображений и касается системы, содержащей систему гиперспектральной визуализации. Система включает в себя систему гиперспектральной визуализации, вторичную систему визуализации и процессор.

Изобретение относится к области визуализации спектральных изображений и касается системы, содержащей систему гиперспектральной визуализации. Система включает в себя систему гиперспектральной визуализации, вторичную систему визуализации и процессор.

Способ получения оптических изображений объектов заключается в том, что, используя заранее полученные параметры о движении наблюдаемого объекта, проводят его предварительные наблюдения, по результатам которых уточняют параметры движения объекта относительно наблюдателя, рассчитывают координаты точки пролета и время пролета объекта на допустимом расстоянии от наблюдателя с учетом ограничений по предельно допустимой угловой скорости и освещенности объекта, к расчетному времени наводят устройство регистрации на расчетную точку пролета объекта, обеспечивают движение изображения объекта вдоль столбцов фоточувствительных матриц, осуществляют синхронное накопление электрических зарядов, их электронное умножение, получают цифровое изображение объекта и по окончании сеанса наблюдения формируют выходное изображение объекта путем сложения с учетом временной задержки цифровых изображений.

Изобретение относится к области получения изображений и касается системы регистрации изображений. Система включает в себя объектив, датчик и контроллер датчика.

Однозрачковая мультиспектральная оптическая система со встроенным лазерным дальномером содержит общий входной канал, спектроделительную пластинку, отражающую спектральный диапазон оптического канала и пропускающую спектральный диапазон тепловизионного канала.

Изобретение относится к области кодирования/декодирования изображений. Технический результат – обеспечение улучшенного кодирования/декодирования изображения с широким динамическим диапазоном.

Изобретение относится к вычислительной технике. Техническим результатом является расширение арсенала технических средств, направленных на генерацию примитивов и/или сегментов изображений.

Изобретение относится к области рендеринга двумерных изображений из трехмерных моделей. Технический результат – уменьшение требований к обработке шейдинга видимых примитивов при рендеринге 2D изображения экрана из 3D модели путем шейдинга пикселей при одновременной минимизации визуальных артефактов.

Изобретение относится к области обработки изображений. Технический результат – повышение эффективности кодирования изображений.

Изобретение относится к области конфигурирования осветительного прибора в виртуальной среде. Технический результат – обеспечение эффективного нахождения производимого осветительного прибора, обеспечивающего требуемый эффект освещения.

Изобретение относится к области формирования изображения. Технический результат заключается в формировании изображения высокого качества и устранении конфликтов вергенции и аккомодации.

Группа изобретений относится к вычислительной области техники, в частности к визуальным маркерам и способам их продуцирования, которые могут использоваться в робототехнике, виртуальной и дополненной реальности.

Изобретение относится к области обработки изображений. Технический результат – улучшение кластеризации изображений человеческих лиц для получения альбома человеческих лиц.

Изобретение относится к области обмена данными изображения. Технический результат – обеспечение улучшенного обмена данными изображения на основе нелинейности восприятия между устройствами с разными возможностями отображения.

Изобретение относится к области геофизики и может быть использовано для автоматического получения тектонического строения из данных потенциального поля. Способ включает предварительную обработку данных гравитационного потенциального поля и/или данных магнитного потенциального поля из зоны, подлежащей исследованию, многоуровневое и многонаправленное обнаружение краев в отношении предварительно обработанных данных гравитационного потенциального поля и/или данных магнитного потенциального поля и получение краев на всех уровнях по отдельности, утончение вычисленного края каждого уровня до однопиксельной ширины посредством алгоритма определения морфологического скелета.
Изобретение относится к способам формирования температурной карты местности путем регистрации электромагнитного излучения, испущенного находящимися на местности объектами.
Наверх