Способ определения места короткого замыкания на линиях электропередач

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания (места повреждения) на линиях электропередач высокого и сверхвысокого напряжений в сетях с эффективно заземленной нейтралью. Сущность: способ определения места короткого замыкания (КЗ) на линиях электропередачи заключается в измерении переходного напряжения в конце линии и применении искусственной нейтронной сети (ИНС) для распознавания образа переходного процесса с последующим установлением расстояния до места КЗ. Для переходного фазного напряжения uав(t) вычисляют с помощью конечных разностей первого порядка производную где uав,k и uав,k +1 - напряжения на соседних (k-м и k+1-м) временных отсчетах; h - шаг дискретизации по времени. В производной напряжения u', начиная с момента ее появления (t0), оставляют запись длиной, равной двойному времени пробегу ЭМ волны (2τ) по контролируемой линии. Производную напряжения u'(t) ограничивают по амплитуде до значения ±0.1 max(|u'(t)|). Из ограниченной по амплитуде производной u*(t) удаляют низкочастотную компоненту путем ее аппроксимации полиномом четвертой степени вида и вычитания данной функции из производной u*(t), т.е. u**(t)=u*(t)-uап(t). Из полученного сигнала u**(t) получают сигнал-код uк(t), у которого единичное значение устанавливается тогда, когда модуль сигнала u**(t) превышает 0,05 от своего максимального значения, т.е. uk(t)=1, если |u**(t)|)>0.05 max(|u**(t)|) и uk(t)=0, если |u**(t)|≤0.05 max(|u**(t)|). Сигнал-код uк(t) подают на вход обученной ИНС, которая устанавливает расстояние до места КЗ. Технический результат: упрощение реализации алгоритма обработки измерительного переходного напряжения и повышение точности определения места КЗ. 2 ил.

 

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания (места повреждения) на линиях электропередач (ЛЭП) высокого и сверхвысокого напряжений в сетях с эффективно заземленной нейтралью.

Известен способ определения места короткого замыкания (КЗ) на линиях электропередач, основанный на анализе установившихся параметров аварийного режима короткого замыкания (как правило, тока в линии и напряжения на шинах питающей электрической системы) и данных пассивных параметров, контролируемых линий и примыкающих к ним электрических сетей (А.И. Айзенфельд, Шалыт Г.М. Определение мест короткого замыкания на линиях с ответвлениями. - 2-е изд. перераб. и доп., - М.: Энергоатомиздат, - 1988).

Наиболее сложными задачами этого способа являются: рациональный выбор измеряемых величин и мест установки устройств; составление и решение уравнений, позволяющих вычислить искомое расстояние. На погрешность определения расстояния до места КЗ влияет точность исходной информации по параметрам линий, оборудованию подстанций. Задача определения расстояния до места КЗ становится сложной для линий электропередачи с ответвлениями.

Известен также способ определения места КЗ на линиях электропередач (прототип) [М.М. Tawfik and М.М. Morcos. ANN-Based Techniques for Estimating Fault Location on Transmission Lines Using Prony Method. - IEEE Trans, on Power Delivery, vol. 16, No. 2, April, 2001], основанный на обработке переходного (аварийного) напряжения (uав(t)), измеряемого в конце линии после возникновения КЗ. При вариации расстояния до места КЗ (lКЗ) изменяется форма (образ) переходного напряжения, что можно рассматривать как изменение частот и амплитуд собственных колебаний в линии электропередачи и примыкающей электрической сети. Распознавание образов переходного процесса и установление их связи с расстоянием до места КЗ выполняется с помощью искусственных нейронных сетей (ИНС). В способе определения места короткого замыкания на линиях электропередачи, взятого в качестве прототипа, из измерительного сигнала-образа (uав(t)) на первом этапе выделяют частоты доминирующих режимов (т.е. доминантные частоты ) переходного процесса с помощью Прони-метода [О. Chaari, P. Bastard, and М. Meunier, "Prony's method: An efficient tool for the analysis of earth fault currents in Petersen-coil-protected networks," IEEE Trans. Power Delivery, vol. 10, no. 3, pp. 1234-1241, July 1995], которые на втором этапе используются в качестве входных величин для ИНС, устанавливающей набору доминантных частот соответствующее расстояние до места КЗ. ИНС предварительно обучается на наборах доминантных частот, извлекаемых посредством Прони-метода из расчетных осциллограмм переходных процессов, полученных для контролируемой линии в конкретной электрической сети.

Однако выделение доминантных частот встречает большие сложности. Ввиду значительного затухания свободных колебаний определение их частот становится невозможным. Наибольшей информативностью для определения места повреждения обладают колебания высшей частоты, но они затухают наиболее быстро и исчезают из спектра. Даже при возможности их выделения точность вычисления высших доминантных частот входного сигнала сильно ограничена, что, соответственно, приводит к высокой погрешности определения места КЗ, т.е. к низкой точности его локации. Обучение ИНС на большом наборе доминантных частот встречает большие трудности, поэтому ИНС вносит дополнительную погрешность распознавания образов переходного процесса и, соответственно, дополнительно снижает точность определения места КЗ на линии.

Задачей изобретения является разработка простого в реализации и точного способа определения места КЗ на линиях электропередач.

Эта задача достигается тем, что в известном способе определения места КЗ на линии электропередачи, основанном на измерении переходного напряжения в конце линии (uав(t)) и применении ИНС для распознавания образа переходного процесса с последующим установлением в соответствии с ним расстояния до места КЗ, приближенно находят производную входного измерительного напряжения uав(t), используя конечные разности где k - номер отсчета, h - шаг дискретизации по времени (t), и из нее выделяют для обработки фрагмент, соответствующий двойному времени пробега электромагнитной (ЭМ) волны по контролируемой линии (2τ), начиная с момента времени (t0) появления максимальной по модулю производной. Колебания обеих полярностей производной напряжения u'(t) ограничивают по амплитуде до значения 0.1 mах(|u'(t)|), т.е.

Для ограниченной по амплитуде производной u*(t) находят аппроксимирующую функцию в виде полинома четвертой степени где ai (i=0…4) - коэффициенты полинома, и вычитают из ограниченной производной ее аппроксимирующую функцию u**(t)=u*(t)-uап(t). Из сигнала u**(t) получают сигнал-код uk(t), в котором единичному по амплитуде сигналу соответствует напряжение u**(t), модуль которого превышает 0.05 max(|u**(t)|), т.е. uk(t)=1, если |u**(t)|>0.05 max(|u**(t)|) и uk(t)=0, если |u**(t)|≤0.05 mах(|u**(t)|). Сигнал-код uk(t) подают для распознавания на вход ИНС, обученной на аналогичных расчетных сигналах, полученных для контролируемой линии электропередачи в рассматриваемой электрической сети. ИНС распознает сигнал-код и в соответствии с ним указывает расстояние до места КЗ на линии электропередачи.

На фиг. 1 показана схема электрической сети, на которой осуществляется предлагаемый способ определения места короткого замыкания. На фиг. 2 представлены расчетные осциллограммы переходного процесса, возникающего при однофазном КЗ, и этапы обработки входного измерительного напряжения, необходимые для определения расстояния до места КЗ.

Электрическая схема сети (фиг. 1) содержит четыре электрические системы, представленные источниками ЭДС Е14 ((1)…(4)) и соответствующими внутренними индуктивными сопротивлениями XS1…XS4 (5)…(8). Между электрическими системами (1) и (2) включена ЛЭП1, между (3) и (4) - ЛЭП3, между (2) и (3) – ЛЭП2, которая представлена двумя участками (11) и (12) - слева от места КЗ (11) и справа - (12).

Способ осуществляется следующим образом. На конце контролируемой линии электропередачи устанавливают автоматические устройства измерения (регистрации) фазных напряжений, возникающих на линии в моменты КЗ. Во время короткого замыкания записывают аварийную осциллограмму переходного фазного напряжения uав(t) (фиг. 2) и вычисляют для него производную путем нахождения конечных разностей первого порядка где uав,k и uав,k+1 - напряжения на соседних (k-м и k+1-м) временных отсчетах соответственно. В производной напряжения u'(t), начиная с момента времени ее максимума (t0), оставляют запись длиной, равной двойному времени пробегу ЭМ волны по линии (2τ): τ=lЛЭП2/ν, где lЛЭП2 - геометрическая длина ЛЭП2, ν - скорость ЭМ волны в ЛЭП2. Производную напряжения u'(t), ограничивают по амплитуде до значения ±0.1 max(u'(t)|), т.е.:

Коэффициент ограничения производной входного напряжения до уровня ±0.1 от ее максимального значения, присутствующий в (1), выбирается исходя из того, что наибольший (по модулю) первый всплеск производной напряжения не имеет принципиального значения, но на его фоне теряются последующие. Для исключения нивелирования отраженных и преломленных волн от узлов сети вводится указанная нормировка. Из ограниченной по амплитуде производной u*(t) удаляют низкочастотную компоненту. Для этого ее аппроксимируют (например, с помощью метода наименьших квадратов) полиномом четвертой степени вида и из самой ограниченной производной вычитают эту функцию, т.е. u**(t)=u*(t)-uап(t). Полином относительно низкой (четвертой) степени обладает требуемой гладкостью аппроксимирующей функции на всем временном интервале аппроксимации 2τ, обеспечивает хорошее приближение к ограниченной производной входного напряжения, а алгоритм нахождения его коэффициентов аi прост. Из сигнала u*(t) получают сигнал-код uк(t), у которого единичное значение устанавливается тогда, когда модуль сигнала u**(t) превышает 0,05 от своего максимального значения, т.е.

Пороговый коэффициент 0,05 в (2) определяет чувствительность способа к обработке отраженных и преломленных волн и точность определения места КЗ. При низкой чувствительности (высоком значении этого коэффициента) точность определения места КЗ может снижаться. Приведенное значение порогового коэффициента обеспечивает высокую точность определения места КЗ.

На основе таких же сигналов uк(t), получаемых расчетным путем, например, с помощью программы ЕМТР (Н. W. Dommel, Digital Computer Solution of Electromagnetic Transients in Single and Multiphase Networks, IEEE Transactions on Power Apparatus and Systems, PAS-88, #4, pp. 388-399, April 1969) или других программ расчета переходных электромагнитных процессов в электрических цепях, для различных мест короткого замыкания на контролируемой линии в рассматриваемой сети обучают ИНС на их распознавание. ИНС после подачи на ее вход сигнала-кода uк(t), полученного из измерительного сигнала uав(t),ставит ему в соответствие расстояние до места КЗ - lКЗ.

Таким образом, расстояние до места короткого замыкания на линии электропередачи определяется путем выполнения простых действий по обработке входного аварийного (переходного) напряжения u(t): элементарных арифметических (сложения/вычитания, умножения/деления) и логических операций, и стандартного алгоритма метода наименьших квадратов. Взамен сложного способа нахождения широкого набора доминантных частот, при котором теряются высшие наиболее информативные частоты, предварительно обученная ИНС, анализируя простейший бинарный штрихкод, фактически «измеряет» временные задержки распространения фронта аварийного сигнала по поврежденной и примыкающим линиям. В силу того что искусственной нейронной сетью анализируется входной сигнал с полным частотным спектром, обеспечивается высокая точность определения места КЗ.

Способ определения места короткого замыкания на линиях электропередач, заключающийся в измерении переходного напряжения в конце линии (uав(t)) и применении искусственной нейронной сети для распознавания образа переходного процесса с последующим установлением в соответствии с ним расстояния до места короткого замыкания, отличающийся тем, что для переходного напряжения uав(t) приближенно находят производную напряжения, используя конечные разности

где k - номер отсчета,

h - шаг дискретизации по времени,

из нее выделяют фрагмент, соответствующий двойному времени пробега электромагнитной волны по контролируемой линии (2τ), начиная с момента времени (t0) появления максимальной по модулю производной; колебания обеих полярностей производной напряжения u'(t) ограничивают по амплитуде до значения ±0.1max(|u'(t)|), т.е.

для ограниченной по амплитуде производной u*(t) находят аппроксимирующую функцию в виде полинома четвертой степени

где ai (i=0…4) - коэффициенты полинома,

и вычитают из ограниченной производной ее аппроксимирующую функцию u**(t)=u*(t)-uап(t); из сигнала u**(t) получают сигнал-код uk(t), в котором единичному по амплитуде сигналу соответствует напряжение u**(t), модуль которого превышает 0.05mах(|u**(t)|), т.е. uk(t)=1, если |u**(t)|>0.05mах(|u**(t)|) и uk(t)=0, если |u**(t)|≤0.05mах(|u**(t)|); сигнал-код uk(t) подают для распознавания на вход искусственной нейронной сети, обученной на аналогичных расчетных сигналах, полученных для контролируемой линии электропередачи в рассматриваемой электрической сети; искусственная нейронная сеть распознает сигнал-код и в соответствии с ним указывает расстояние до места КЗ на контролируемой линии электропередачи.



 

Похожие патенты:

Изобретение относится к измерению сопротивления изоляции в незаземленной электрической сети постоянного тока и локализации замыкания на землю. Сущность: двухполюсное устройство (12) ввода тока включают между отрицательным выводом (2) сети и заземляющим выводом (8) или между заземляющим выводом (8) и положительным выводом (3) сети.

Изобретение относится к электроэнергетике и может быть использовано для определения мест повреждения при двойных замыканиях на землю на одной линии электропередачи распределительной сети 6-35 кВ с малыми токами замыкания на землю.

Изобретение относится к электроэнергетике и предназначено для использования при поиске места замыкания на землю (ЗНЗ) в высоковольтной линии (ВЛ) в рабочем режиме сети.

Изобретение относится к области электротехники. Технический результат, заключающийся в обеспечении селективной работы сети, достигается за счет того, что способ содержит этап измерения DC-напряжения смещения Ud, имеющего полярность и значение, этап определения того, существует ли неисправность короткого замыкания, путем сравнения DC-напряжения смещения Ud с пороговым напряжением смещения Ut и этап идентификации типа неисправности на основании полярности и значения DC-напряжения смещения Ud.

Изобретение относится к области электротехники. Технический результат, заключающийся в обеспечении селективной работы сети, достигается за счет того, что способ содержит этап измерения DC-напряжения смещения Ud, имеющего полярность и значение, этап определения того, существует ли неисправность короткого замыкания, путем сравнения DC-напряжения смещения Ud с пороговым напряжением смещения Ut и этап идентификации типа неисправности на основании полярности и значения DC-напряжения смещения Ud.

Изобретение относится к распределенной системе защиты для сегментированной сети питания на электрифицированной железной дороге. Воздушная контактная система тяговой сети разделена на несколько сегментов, соответствующих железнодорожным перегонам, при этом добавлены перегонные разделители воздушной контактной системы и субперегонные посты между сегментами.

Изобретение относится к распределенной системе защиты для сегментированной сети питания на электрифицированной железной дороге. Воздушная контактная система тяговой сети разделена на несколько сегментов, соответствующих железнодорожным перегонам, при этом добавлены перегонные разделители воздушной контактной системы и субперегонные посты между сегментами.

Изобретение относится к измерительной технике и может быть использовано для дистанционного поиска трасс подземных коммуникаций и определения их поперечного размера и глубины залегания в грунте.

Изобретение относится к обнаружению обрыва провода в распределительной системе. Сущность: устройство включает в себя модуль (502) измерения, используемый для измерения, в узле (120-1, 120-2, 120-3) распределительной системы (10), значения напряжения каждого распределительного фидера (110-1, 110-2, 110-3) распределительной системы (10); модуль (504) проверки, используемый для проверки, является ли измеренное значение напряжения каждого распределительного фидера T (110-1, 110-2, 110-3) распределительной системы (10) меньшим, чем порог напряжения, используемый для распределительного фидера T (110-1, 110-2, 110-3), причем порог напряжения, используемый для распределительного фидера T (110-1, 110-2, 110-3), вычисляется на основе среднего значения измеренных значений напряжения других распределительных фидеров (110-1, 110-2, 110-3) в распределительной системе (10); модуль (506) генерации, используемый, чтобы, если результат проверки указывает, что измеренное значение напряжения распределительного фидера (110-1, 110-2, 110-3) распределительной системы (10) меньше, чем порог напряжения, используемый для упомянутого распределительного фидера (110-1, 110-2, 110-3), генерировать сигнал, указывающий, что распределительный фидер (110-1, 110-2, 110-3) распределительной системы (10) имеет обрыв провода; и модуль (508) передачи, используемый для передачи сгенерированного сигнала.

Изобретение относится к измерительной технике и может быть использовано для определения трассы прокладки и локализации мест повреждений кабелей со сложной конфигурацией прокладки.

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной источниками геомагнитно-индуцированных блуждающих токов. Сущность: по максимальным колебаниям разности потенциала «труба-земля» определяется начальная точка на трассе трубопровода, где устанавливаются самопищущие устройства для измерения потенциала «труба-земля». Последовательно в нескольких точках трубопровода, расположенных по ходу движения продукта и против хода относительно начальной, также производятся синхронные с начальной точкой измерения разности потенциалов «труба-земля» и определяется коэффициент корреляции между показаниями потенциала «труба-земля», измеренными в начальной и текущей точках. По графику зависимости «коэффициент корреляции - координата трассы трубопровода» измерения выполняются с постепенным удалением текущей точки измерения от начальной до тех пор, пока коэффициент корреляции на станет менее ±0,3 и на указанной зависимости не обнаружатся два экстремума более 0,9 и менее минус 0,9. Участок трубопровода, подверженный влиянию геомагнитных блуждающих токов, локализуется с помощью построенного графика зависимости: начало участка определяется по коэффициенту корреляции порядка |0,4|, предшествующему первому по ходу движения продукта экстремуму, конец участка - по коэффициенту корреляции порядка |0,4|, наблюдающемуся после второго экстремума по ходу движения продукта. Технический результат: повышение достоверности в определении границ локализации участков трубопроводов, подверженных влиянию геомагнитно-индуцированных блуждающих токов. 1 ил.

Изобретение относится к измерениям на электрифицированных железных дорогах для точного определения места короткого замыкания (КЗ) в тяговой сети (ТС) переменного тока. Технический результат: повышение точности определения места КЗ в ТС переменного тока. Сущность: поиск осуществляется ремонтной бригадой при движении вдоль поврежденного участка ТС переменного тока путем измерения тока, протекающего в КС участка. При срабатывании релейной защиты и безуспешного автоматического повторного включения или его запрета ТС поврежденного пути остается отключенной и заземленной в точке КЗ. Путем оперативных переключений или завешивания заземляющей штанги ТС заземляется с одной стороны от места КЗ. Таким образом образуется замкнутый контур «Заземлитель - ТС - КЗ - Рельс - Заземлитель». В замкнутом контуре индуктируется ток за счет магнитной составляющей электромагнитных влияний токов, протекающих в ТС смежного пути и линиях «два провода - рельс». Ремонтная бригада, двигаясь вдоль ТС отключенного участка, производит регистрацию наличия тока в ТС. Так как ТС с противоположной стороны от места КЗ не заземляется, и замкнутый контур для протекания тока отсутствует, то после проследования места КЗ регистрируемый ток в ТС изменяется скачкообразно и становится пренебрежимо мал, что свидетельствует об обнаружении места КЗ. 1 ил.
Наверх