Способ моделирования процесса тепло- и массообмена при испарении жидкости и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении экспериментальных исследований при физическом моделировании процессов испарения остатков жидкого топлива в баках отделяющихся частей ступеней ракет-носителей. Раскрыт способ моделирования процесса тепло- и массообмена при испарении жидкости со свободной поверхностью в замкнутой емкости, основанный на воздействии давления парогазовой смеси, теплоты и ультразвука, измерении величин давления и температур парогазовой смеси, жидкости и стенок замкнутой емкости. При этом воздействие давления осуществляют путем откачивания парогазовой смеси из замкнутой емкости с фиксацией давления на значениях, при которых наблюдается интенсивное образование пузырьков жидкости; для повышения давления используют парогазовую смесь с заданной влажностью или нейтральный газ; воздействие теплового потока осуществляют с помощью изменения мощности электрического нагревателя и длительности его воздействия; влияние ультразвука на повышение температуры жидкости в замкнутой емкости определяют путем исключения из общей ультразвуковой мощности составляющей, затрачиваемой на перемешивание жидкости. Также раскрыто устройство для реализации способа моделирования процесса тепло- и массообмена. Группа изобретений позволяет получить экспериментальные данные, которые позволят исследовать параметры тепло- и массообмена, в частности получить регрессионное уравнение, описывающее скорость испарения жидкости как функции давления, температуры, параметров ультразвукового воздействия. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к ракетно-космической технике и может быть использовано при проведении экспериментальных исследований при физическом моделировании процессов испарения остатков жидкого топлива в баках отделяющихся частей ступеней ракет-носителей.

Известны способ и устройство для его реализации для испарения жидких остатков топлива в баке, описанный на стр. 163-174 в кн. «Снижение техногенного воздействия ракетных средств выведения на жидких токсичных компонентах ракетного топлива на окружающую среду» (Монография) под ред. В.И. Трушлякова, Омск: Изд-во ОмГТУ, 2004. 220 с. Однако предлагаемый способ предусматривает испарение на основе теплоты, поступающей в замкнутую емкость (ЗЕ), получающейся в результате химической реакции.

Наиболее близким по технической сущности является «Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя» по патенту РФ №2474816 G01N 29/02, B64G 7/00, основанный на введении в экспериментальную установку теплоносителя (ТН) с заданными параметрами, обеспечении заданных условий взаимодействия в зоне контакта ТН с поверхностью жидкого газифицируемого компонента ракетного топлива, проведении измерений температуры и давления в различных точках экспериментальной установки, отличающийся тем, что жидкий газифицируемый компонент ракетного топлива подвергают ультразвуковому воздействию, при этом параметры ТН и генерируемых ультразвуковых колебаний выбирают из условия минимизации критериев процесса газификации: времени процесса газификации, энергомассовых затрат и количества поданной в бак теплоты.

Недостатками этого способа при проведении экспериментальных исследований воздействия различных факторов, таких как: давление (ДВ) парогазовой смеси (ПГС), теплоты (ТВ) и ультразвука (УЗВ) на процессы испарения жидкостей со свободной поверхностью, находящейся в ЗЕ, являются:

а) известный способ предусматривает конвективный механизм подачи теплоты в ЗЕ и не применим для исследования влияния изменения ДВ ПГС, воздействия кондуктивной теплоты, т.е. для исследования термовакуумных технологий испарения жидкостей;

б) не предусматривает возможность ступенчатого изменения ДВ ПГС в ЗЕ.

Указанные недостатки устраняются за счет того, что в известном способе моделирования процесса тепло- и массообмена при испарении жидкости со свободной поверхностью в ЗЕ, основанном на воздействии различных факторов на процесс, в том числе, ДВ ПГС, теплоты и ультразвука, измерении величин давления ПГС, температур ПГС, жидкости, стенок ЗЕ, в качестве критерия эффективности воздействия каждого фактора и их совокупности на процесс испарения жидкости, использовании затраты энергии на испарения определенного количества жидкости в ЗЕ, вводят следующие действия:

а) воздействие ДВ в ПГС осуществляют путем откачивания ПГС из ЗЕ с фиксацией ДВ на значениях, при которых наблюдается интенсивное образование пузырьков газа в жидкости при одновременном воздействии ТВ и УЗВ, так и при воздействии каждого из них в отдельности,

б) воздействие изменения ДВ в ПГС в ЗЕ, в том числе и ступенчатого, на процесс испарения жидкости осуществляют при одновременном воздействии УЗВ, ТВ, так и при воздействии каждого в отдельности, при этом для повышения ДВ в ПГС используют ПГС с заданной влажностью или нейтральный газ типа азот, гелий,

в) воздействие теплоты, подаваемой в ЗЕ с помощью электрического нагревателя, осуществляют с помощью изменения мощности электрического нагревателя и длительности его воздействия, с учетом дополнительной теплоты за счет теплопередачи от стенок ЗЕ к ПГС,

г) влияние УЗВ на повышение температуры жидкости в ЗЕ определяют путем исключения из общей ультразвуковой мощности составляющей, затрачиваемой на перемешивание жидкости (вихревые течения и микропотоки),

д) влияние УЗВ на испарение жидкости за счет образования кавитационных пузырьков определяют при одновременном воздействии ТВ, ДВ, так и при воздействии каждого в отдельности, в том числе и ступенчатого изменения ДВ.

Реализация способа

Реализация способа поясняется чертежом.

В поддон 1 заливается исследуемая жидкость 2 и устанавливается в ЗЕ 3, которая заполняется газом, например, воздухом, азотом или гелием до заданного давления, которое определяется задачами и условиями проведения данного эксперимента, но не превышает 3 атм.

Для подачи в ЗЕ 3 воздуха, предварительно закрываются все вентили (4-9), кроме вентилей 10 и 11 и включаются все электроприборы и оборудование, газ (воздух) нагнетается компрессором 12. Через вентили 10 и 11 воздух заполняет ресивер, состоящий из двух баллонов 13.

После достижения в ресивере 13 определенного давления (до 10-16 атм.), измеряемого с помощью манометра 14, открываются последовательно вентили 4 и 5, и газ попадает во влагоотделитель 15, на котором установлен манометр. По нему устанавливается рабочее давление, которое определяется задачами и условиями проведения данного эксперимента, но не превышает 16 атм. Далее проходя через систему фильтрации 16, которая представляет собой блок фильтров, и предохранительный пневмоклапан 17, газ достигает расходомера 18, который состоит из регулятора расхода и датчика расхода.

С помощью расходомера 18 задается расход газа, который также определяется задачами и условиями проведения эксперимента. Далее газ поступает в нагреватель 19, на котором заданная температура поддерживается с помощью пропорционально-интегрально-дифференцирующего (ПИД) регулятора 20.

В нагревателе газ достигает заранее заданной температуры. Для обеспечения достижения заданной температуры открывают вентиль 6, и газ сбрасывается через теплообменник и открытый вентиль 8 в выхлопной патрубок (утилизатор).

После того как газ достигнет заданной температуры, закрывается вентиль 6 и открывается вентиль 7. Газ поступает в ЗЕ 3 через входной патрубок 21.

Датчиками температуры 22 и давления 23 контролируются входные параметры газа. Датчиками температуры 24 и давления 25 контролируются выходные параметры ПГС, которая сбрасывается через пневмоклапан 26 и открытый вентиль 8 в выхлопной патрубок (утилизатор).

Для подачи в ЗЕ 3 азота или гелия используется баллон 27. Для этого закрываются все вентили, кроме вентиля 9, и включаются все электроприборы. Далее, в соответствии с программой экспериментов, могут включаться: вакуумный насос 28, теплоэлектронагреватель 29, УЗВ через пьезоэлектрические излучатели 30.

С использованием мобильных (термопары) датчиков температуры 31 определяются температуры ПГС, жидкости и стенок ЗЕ 3. Давление в ЗЕ 3 контролируется с помощью датчика давления 32.

В процессе откачки ПГС из ЗЕ 3 с помощью вакуумного насоса 28 и подключении УЗВ 30 при определенном давлении происходит вскипание жидкости из-за интенсивного процесса кавитации. Для исследования этого режима испарения ДВ в ЗЕ 3 может фиксироваться и сохраняться на этом уровне, а тепловое воздействие и УЗВ продолжается, как одновременно, так и по отдельности.

Оценка повышения температуры жидкости при УЗВ проводится на основе разделения общей мощности УЗВ на 2 части: кавитация и перемешивание за счет микропотоков и вихревых течений (см. Виноградов Б.В., Федин Д.А. Влияние частоты и амплитуды ультразвуковых колебаний на интенсивность кавитации // Вопросы химии и химических технологий. - Днепропетровск: УДХТУ, 2003. - №4. - С. 141-144).

Количество испарившейся жидкости определяется взвешиванием остатка после проведения эксперимента.

Оценка величины теплопередачи от стенок ЗЕ к ПГС осуществляется на основе решения традиционных уравнений теплопроводности [см., например, Кутателадзе С.С., Боришанский В.М. Справочник по теплопередаче. - М.: ГЭИ, 1958. - 418 с.]

В рассматриваемом эксперименте параметры УЗВ являются постоянными, варьируемыми величинами является длительность интервала воздействия и его расположение на общем интервале процесса испарения.

Тепловое воздействие варьируется как по величине (например, от 20°C до 69°C), так и по длительности интервала воздействия (например, от 10 с до 30 с) и его расположение на общем интервале процесса испарения, который может достигать до 100-300 с.

В процессе проведения эксперимента давление ПГС в ЗЕ может изменяться как в сторону уменьшения за счет работы вакуумного насоса, так и повышаться за счет подачи ПГС (с заданной влажностью с использованием системы подачи воздуха из ресивера 13), или газов азота, гелия баллона 27, как в виде непрерывной функции, так и в виде скачков.

Полученная база данных экспериментов является основой для определения аналитического вида интенсивности испарения жидкости как функции от параметров ДВ, ТВ, УЗВ на основе регрессионного анализа.

Устройство для реализации способа

В качестве прототипа взято устройство по патенту РФ №2474816 G01N 29/02, B64G 7/00, включающее в свой состав экспериментальную установку в виде модельного бака, содержащего поддон для жидкости, датчики температуры, давления, входной и выходной патрубки, два дополнительных входных патрубка, причем в один из входных патрубков экспериментальной установки установлен газоструйный излучатель, съемный поддон механически связан с пьезоэлектрическим излучателем.

К недостаткам данного устройства при его применении для реализации предлагаемого способа являются:

а) отсутствует вакуумный насос и теплоэлектронагреватель для создания различных тепловакуумных режимов;

б) отсутствует система подачи газа для реализации ступенчатого изменения давления.

Указанные недостатки устраняются за счет того, что в известном устройстве, включающем в свой состав экспериментальную установку, содержащего поддон для жидкости, датчики температуры, давления, входной и выходной патрубки, съемный поддон механически связанный с пьезоэлектрическим излучателем дополнительно введены: вакуумный насос и баллон для подачи газа, соединенные с замкнутой емкостью трубопроводами с клапанами, и теплоэлектронагреватель для подогрева жидкости.

В процессе проведения экспериментов давление ПГС в ЗЕ может изменяться в диапазоне от 0,3 МПа до 0,001 МПа абсолютного.

Реализация предлагаемого способа и устройства позволит получить необходимые экспериментальные данные, которые позволят исследовать параметры тепло- и массообмена при воздействии указанных факторов, в частности, получить регрессионное уравнение, описывающее скорость испарения жидкости для рассматриваемых условий как функции давления, температуры, параметров ультразвукового воздействия.

1. Способ моделирования процесса тепло- и массообмена при испарении жидкости со свободной поверхностью в замкнутой емкости, основанный на воздействии различных факторов на процесс испарения жидкости, в том числе давления парогазовой смеси, теплоты и ультразвука, измерении величин давления парогазовой смеси, температур парогазовой смеси, жидкости, стенок замкнутой емкости, в качестве критерия эффективности воздействия каждого фактора и их совокупности на процесс испарения жидкости используют затраты энергии на испарение определенного количества жидкости в замкнутой емкости, отличающийся тем, что воздействие давления в парогазовой смеси осуществляют путем откачивания парогазовой смеси из замкнутой емкости с фиксацией давления на значениях, при которых наблюдается интенсивное образование пузырьков жидкости при одновременном воздействии ультразвука, теплоты, так и при воздействии каждого в отдельности, воздействие ступенчатого снижения или повышения давления в парогазовой смеси в замкнутой емкости на процесс испарения жидкости осуществляют при одновременном воздействии ультразвука, теплоты, так и при воздействии каждого в отдельности, при этом для повышения давления используют парогазовую смесь с заданной влажностью или нейтральный газ, а воздействие теплового потока, подаваемого в замкнутую емкость с помощью электрического нагревателя, осуществляют с помощью изменения мощности электрического нагревателя и длительности его воздействия, с учетом дополнительной теплоты за счет теплопередачи от стенок замкнутой емкости к парогазовой смеси, влияние ультразвука на повышение температуры жидкости в замкнутой емкости определяют путем исключения из общей ультразвуковой мощности составляющей, затрачиваемой на перемешивание жидкости, а именно вихревые течения и микропотоки, влияние ультразвука на испарение жидкости за счет образования кавитационных пузырьков определяют при одновременном воздействии теплоты, давления, так и при воздействии каждого в отдельности, в том числе и ступенчатого изменения давления.

2. Устройство для реализации способа по п. 1, включающее в свой состав замкнутую емкость, содержащую съемный поддон для жидкости, механически связанный с пьезоэлектрическим излучателем, датчики температуры, давления, входной и выходной патрубки, компрессор для нагнетания воздуха, отличающееся тем, что в его состав дополнительно введены вакуумный насос и баллон для подачи газа, соединенные с замкнутой емкостью трубопроводами с клапанами, и теплоэлектронагреватель для подогрева жидкости.



 

Похожие патенты:

Изобретение относится к технологии производства нитратов целлюлозы (НЦ), а именно к оценке качества промышленного измельчения пироксилинов на различных измельчительных аппаратах.

Изобретение относится к области испытательной и измерительной техники, а именно к испытаниям и проверке боеприпасов. Заявляемый способ включает получение при помощи высокоскоростной видеокамеры серии изображений распространения воздушной ударной волны (ВУВ), созданной движением объекта испытания (ОИ) со сверхзвуковой скоростью и ВУВ, образовавшейся от взаимодействия ОИ с преградой.

Изобретение относится к экологии и может быть использовано для мониторинга состояния нарушенных земель в районах освоения газовых месторождений Крайнего Севера. Для этого, после проведения рекультивации нарушенных земель, проводят комплексное исследование проб почвы рекультивированного и незагрязненного фонового участков.

Группа изобретений относится к устройству и способу отбора пробы жидкости, предпочтительно для топлива, предназначенного для двигателя (2) внутреннего сгорания. Устройство пробоотборника (100) содержит стеночную секцию (104), частично окружающую полость (101), которая может принимать пробу жидкости, и отверстие (103), через которое жидкость в полости может вытекать из полости (101), и через это отверстие (103) жидкость в системе может течь в полость (101).

Заявленное изобретение относится к устройству детекторных блоков, используемых в средах, содержащих взрывоопасные, и/или горючие газы, и/или пары. Блок детекторной головки датчика включает в себя корпус детектора, содержащий внутренний канал, продолжающийся вдоль продольной длины.

Изобретение относится к контрольно-измерительной технике. Установка содержит замкнутый гидравлический контур, включающий емкость с топливом, напорный насос с пневмоприводом, пневмогидравлический аккумулятор, установленный после насоса, теплоизолированный рабочий участок, теплообменник-охладитель, установленный после рабочего участка и перед емкостью с топливом, и нагреватель, представляющий собой источник постоянного тока с измерителями силы тока и напряжения и с силовыми шинами, подсоединенными к концам рабочего участка.

Изобретение может быть использовано в химической промышленности. Стандартные образцы для метрологического обеспечения методик выполнения измерений используются при оценке склонности автомобильных бензинов к образованию отложений в системах впрыска двигателя внутреннего сгорания и используют при контроле качества автомобильных бензинов в процессе их производства и эксплуатации.

Устройство для определения импульса взрыва заряда взрывчатого вещества/боеприпаса (ВВ) в ближней зоне содержит опорную конструкцию, состоящую из полки с горизонтальной поверхностью и вертикальной стойки/стоек для ее крепления и размещенную на полке совокупность подвергаемых воздействию поражающих факторов взрыва призматических метаемых тел.

Изобретение относится к области определения показателей жидкостей, характеризующих степень их химической стабильности для использования в течение срока годности.

Изобретение относится к пробоотборнику для отбора проб жидкости, приспособленному для установки в систему с вариациями давления, причем эта система содержит в себе или транспортирует жидкость.

Имитатор может быть применен для фотометрической градуировки крупногабаритных оптико-электронных каналов космических спутников. Имитатор содержит дуговой источник света, вокруг которого равномерно установлены одинаковые каналы, каждый из которых содержит конденсор с апертурной диафрагмой, зеркало, установленное под углом к оптической оси, полевую диафрагму и коллимирующий объектив.

Изобретение относится к радиотехническому испытательному оборудованию, предназначенному для проведения стендовых испытаний ракетных двигателей космических аппаратов, в частности для измерения электромагнитного излучения.

Способ сборки оптико-механического блока космического аппарата относится к области космического оптического приборостроения и может быть использован при сборке, юстировке и калибровке крупногабаритных оптико-механических блоков, предназначенных для работы в космосе.

Изобретение относится к испытательной технике и может быть использовано при экспериментальной отработке системы электропитания КА. Автоматизированное рабочее место для исследований и испытания систем электропитания КА содержит имитатор батареи солнечной, имитатор аккумуляторной батареи, имитатор нагрузки, систему управления и аппаратуру регулирования и контроля.

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения параметров текущих координат космонавтов, используя излучатели и детекторы инфракрасного излучения, с заданными значениями, Система контроля готовности экипажа содержит средства отображения визуальной информации, блок моделей систем КА, блок управления тренировкой, блок задания внештатных ситуаций, блок задания параметров эталонных действий, блок определения уровня подготовки, блоки излучателей инфракрасных импульсных сигналов, радиоприемные устройства, позиционно-чувствительные детекторы инфракрасного излучения, оптические системы, блоки формирования данных приема инфракрасных сигналов, радиоприемо-передающие устройства, блок формирования команд управления излучением и приемом инфракрасных сигналов, синхронизатор, блок задания расположения детекторов инфракрасного излучения, блок задания параметров оптических систем, блок определения параметров направлений от детекторов на излучатели, блок определения координат местоположений излучателей, блок индикации фиксированных положений космонавтов и блок определения параметров относительного положения излучателей при фиксированном положении, блок определения параметров положения космонавтов, блок анализа и регистрации информации о выполненных действиях космонавтов, блок задания эталонных положений космонавтов, блок моделирования параметров событий нештатных ситуаций, блоки аудиовоспроизведения, блоки аудиозаписей, средства сопряжения радиоустройства с экраном и блоками аудиозаписи и воспроизведения, система обмена данными, соединенные определенным образом.

Изобретение относится к области испытаний оптико-электронных и оптико-механических устройств и касается вакуумно-криогенного стенда. Стенд включает в себя вакуумно-криогенную камеру, охлаждаемые радиационные экраны, универсальный и динамический источники излучения, коллиматор, поворотное и ломающие зеркала, спектрорадиометр, систему криогенного обеспечения, систему вакуумирования, модуль канала оптического фона и интерферометр сдвига.
Тренажер для отработки комплекса задач по исследованию астрономического объекта участниками космической экспедиции содержит рабочее место оператора, средства имитации и визуализации реальных условий проведения исследований, графическую станцию, джойстики интерактивного управления объектами, соединенные определенным образом.

Изобретение относится к космической технике и может быть использовано при проектировании стендов для наземных испытаний трансформируемых конструкций космических аппаратов, раскрывающихся в двух плоскостях, типа батареи солнечной (БС), с максимальным приближением к условиям невесомости.

Изобретение относится к области космической техники. Устройство для тепловакуумных испытаний содержит стационарный цилиндрический криогенный экран, расположенный в вакуумной камере, пространственно позиционируемый экран (ППКЭ) с размероизменяемым кронштейном и приводом трехмерной дислокации.

Изобретение относится к области космической техники, а именно к наземной отработке теплового режима космических аппаратов. Способ тепловакуумных испытаний космического аппарата заключается в вакуумировании камеры с размещенным в ней КА до давления, исключающего конвективный теплообмен в камере, и воздействии на КА натурных тепловых потоков с помощью имитатора внешних тепловых потоков.

Группа изобретений относится к наземным испытаниям многозвенных нежестких космических конструкций, работающих в невесомости. При испытаниях совмещают операции по компенсации веса и покоординатному возбуждению - с помощью электродинамических силовозбудителей (ЭС) - вынужденных колебаний обезвешиваемого звена конструкции. Для кинематического сопровождения точки приложения возбуждающей силы используют три независимых кинематических платформы, на подвижных частях которых установлены указанные ЭС. Контроллер по показаниям датчиков относительного смещения якорей и статоров ЭС управляет перемещениями платформ так, чтобы указанное смещение практически отсутствовало (было минимальным). В обмотку статора ЭС вертикального направления, помимо переменного тока (для возбуждения вертикальных колебаний), подают дополнительный постоянный ток (для обезвешивания звена). Технический результат состоит в обеспечении статического обезвешивания и ослаблении ограничений по степеням свободы при возбуждении трехмерных колебаний испытуемых конструкций. 2 н. и 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении экспериментальных исследований при физическом моделировании процессов испарения остатков жидкого топлива в баках отделяющихся частей ступеней ракет-носителей. Раскрыт способ моделирования процесса тепло- и массообмена при испарении жидкости со свободной поверхностью в замкнутой емкости, основанный на воздействии давления парогазовой смеси, теплоты и ультразвука, измерении величин давления и температур парогазовой смеси, жидкости и стенок замкнутой емкости. При этом воздействие давления осуществляют путем откачивания парогазовой смеси из замкнутой емкости с фиксацией давления на значениях, при которых наблюдается интенсивное образование пузырьков жидкости; для повышения давления используют парогазовую смесь с заданной влажностью или нейтральный газ; воздействие теплового потока осуществляют с помощью изменения мощности электрического нагревателя и длительности его воздействия; влияние ультразвука на повышение температуры жидкости в замкнутой емкости определяют путем исключения из общей ультразвуковой мощности составляющей, затрачиваемой на перемешивание жидкости. Также раскрыто устройство для реализации способа моделирования процесса тепло- и массообмена. Группа изобретений позволяет получить экспериментальные данные, которые позволят исследовать параметры тепло- и массообмена, в частности получить регрессионное уравнение, описывающее скорость испарения жидкости как функции давления, температуры, параметров ультразвукового воздействия. 2 н.п. ф-лы, 1 ил.

Наверх