Ракета с воздушно-реактивным двигателем

Изобретение относится к области ракетной техники, а именно к ракетам с воздушно-реактивным двигателем - ВРД. Технический результат - увеличение скорости и дальности полета ракеты, расширение тягово-аэродинамических характеристик ВРД. Устройство содержит лобовое воздухозаборное устройство. Оно включает центральное тело с конусом внешне-внутреннего сжатия, обечайку с поднутрением, закрепленную на центральном теле посредством пилонов, равномерно расположенных в окружном направлении, камеру сгорания с инжекторами подачи топлива, кольцевое сверхзвуковое сопло на выходе из камеры сгорания, газогенератор, боевую часть, стартовый двигатель твердого топлива, стабилизатор. Согласно изобретению ВРД снабжен системой регулирования положения конуса. Она расположена в центральном теле и выполнена в виде гидроцилиндра с поршнем. Подпоршневая полость гидроцилиндра связана с инжекторами подачи топлива в камеру сгорания при запуске газогенератора. Надпоршневая полость гидроцилиндра связана с дифференциальным дросселем, обеспечивающим перемещение конуса вдоль оси на заданную величину относительно центрального тела и обечайки. Пилоны закреплены на центральном теле под углом атаки к продольной оси ракеты и повернуты в сторону ее вращения. Кольцевое сопло расположено на обечайке и выполнено в виде раскрывающегося веера, выходящего за мидель ракеты при ее полете. 5 ил.

 

Изобретение относится к области ракетной техники, а именно к ракетам с воздушно-реактивным двигателем (ВРД).

Ракета с ВРД содержит лобовое воздухозаборное устройство, включающее центральное тело и обечайку, камеру сгорания, газогенератор, боевую часть, стартовый двигатель твердого топлива (РДТТ) и стабилизатор с раскрывающимися лопастями.

Воздушно-реактивный двигатель, установленный в носовой части ракеты предназначен для поддержания или увеличения скорости ракеты с целью повышения дальности ее полета после окончания работы разгонного твердотопливного двигателя (РДТТ).

Одним из направлений повышения эффективности образцов ракетного вооружения является разработка ракет с увеличенной дальностью полета. Увеличение дальности полета ракет можно добиться путем применения комбинированных двигательных установок, а именно сочетание разгонного твердотопливного (РДТТ) и маршевого воздушно-реактивного двигателя (ВРД).

Совершенствование данных ракет развивается в направлении поиска рациональных конструктивных и технологических решений при разработки ВРД, обеспечивающих повышение надежности функционирования при различных скоростях полета, термостойкости изделия при длительной работе, стабильности внутрибаллистических характеристик в камере сгорания, а также реализации предельных или близких к ним тягово-экономических характеристик.

Предмет изобретения представляет собой ракету с многорежимным воздушно-реактивным двигателем с расширенными тягово-экономическими характеристиками за счет использования регулируемого воздухозаборника, веерного сопла, улучшенными внутрибаллистическими характеристиками в камере сгорания ВРД и повышенной надежностью функционирования газодинамического тракта двигателя при длительной работе.

Известна конструкция активно-реактивного снаряда с ВРД, расположенным в носовой части, обладающим профилированным центральным телом (Сорокин В. А., Яновский Л.С.И др. Ракетно-прямоточные двигатели на твердых и пастообразных топливах. Наука, М., 2010 г., с. 31), содержащего лобовое воздухозаборное устройство, включающее центральное тело и обечайку, камеру сгорания, пилоны, кольцевое сопло, газогенератор.

Стабилизация снаряда с ВРД в полете происходит за счет вращения вокруг продольной оси со скоростью ~ 170 об/с. Пилоны, которые жестко связывают центральное тело с обечайкой, параллельны продольной оси двигателя. При вращении ракеты из-за значительного скоса потока воздуха в газодинамическом тракте двигателя и из-за срыва потока смеси газов и пламени вращающимися пилонами существенно возрастает сопротивление двигательного тракта, растут потери полного давления, увеличивается разброс внутрибаллистических характеристик в камере сгорания ВРД. В итоге нарушаются аэробаллистические характеристики ракеты в целом, уменьшаются дальность и точность полета.

Наличие воздухозаборного устройства (ВЗУ) с фиксированным положением конуса смешанного сжатия на центральном теле предполагает наличие горла воздухозаборного устройства большой площади для успешного запуска ВЗУ при старте снаряда или ракеты. Это приводит к слабому сжатию набегающего воздуха в воздухозаборном устройстве и к существенному ограничению количества тепла, подводимому к камере сгорания, что приводит в целом к ухудшению тяговых характеристик двигателя.

Другим недостатком рассматриваемой системы является отсутствие эффективного кольцевого сопла, которое уменьшило бы поперечные нагрузки на снаряд из-за наличия короткой внешней стенки кольцевого сопла, возможной неоднородности течения в сопле и улучшило бы тяговые характеристики двигателя.

Приведенный артиллерийский снаряд характеризуется небольшой дальностью стрельбы, а следовательно, небольшой скоростью и продолжительностью полета.

Наиболее близким по технической сути является конструкция ракеты с ВРД, расположенным в носовой части ракеты (патент RU №2585211, МПК F42B 12/46, 2015 г.), принятая автором за прототип.

Общими признаками с предлагаемой ракетой с ВРД, является наличие в прототипе лобового воздухозаборного устройства, включающего центральное тело и обечайку с поднутрением, камеру сгорания, пилоны, сопла, газогенератор, боевую часть, стартовый двигатель твердого топлива (РДТТ), стабилизаторы.

ВРД содержит лобовое воздухозаборное устройство (ВЗУ), включающее центральное тело и обечайку, пилоны, жестко связывающие центральное тело с обечайкой, камеру сгорания, инжекторы, кольцевое сопло, газогенератор.

Конус внешне-внутреннего (смешанного) сжатия ВЗУ находится в фиксированном положении по отношению к центральному телу и к обечайке, обеспечивая жесткую связь между ними. При этом отношение минимальной площади проходного сечения (горла) воздухозаборного устройства к площади миделевого сечения ракеты составляет 0,3…0,5. При этих соотношениях происходит запуск ВЗУ при выходе ракеты из направляющей, обеспечивается его пропускная способность на участке разгона ракеты с помощью РДТТ и включение в работу ВРД при достижении оптимальной для работы скорости. Это приводит к слабому сжатию набегающего воздуха в воздухозаборном устройстве и к существенному ограничению количества тепла, подводимому в камере сгорания из-за роста давления и угрозы срыва втекания воздуха в воздухозаборное устройство, что приводит в целом к ухудшению тяговых характеристик двигателя.

Известно так же, что на аэробаллистические характеристики ракеты оказывают влияние процессы, происходящие в двигательном тракте ВРД (разброс внутрибаллистических характеристик двигательного тракта - неудовлетворительное смешение горючего и окислителя, переменная полнота сгорания по объему двигательного тракта, конструктивные особенности камеры сгорания и ВЗУ).

Стабильность аэробаллистических характеристик ракеты обеспечивается при старте закруткой ракеты в трубчатой направляющей с помощью П-образных спиральных пазов (как правило, величина угла проворота составляет 240° при длине направляющей ~ 7 метров), а в полете стабилизаторами, установленными в хвостовой части ракеты под небольшим углом атаки к продольной оси и задающими вращательное движение ракеты. Если считать, что стабилизаторы поддерживают начальную угловую скорость вращения ракеты при выходе из направляющей, то угловая скорость на заключительной стадии разгона с помощью РДТТ может составлять ~ (40-90) об/с.

Хотя угловая скорость вращения ракеты с размещенным ВРД в носовой части меньше, чем у снаряда, линейная скорость вращения пилонов камеры сгорания весьма существенна. Поэтому, из-за закрученного потока воздуха, входящего в камеру сгорания, пилоны должны быть повернуты на определенный угол в сторону вращения ракеты с ВРД, чтобы создавать меньшее сопротивление потоку воздуха в камере сгорания. Однозначно определить угол наклона пилонов по отношению к продольной оси ракеты не представляется возможным, поскольку скорости ракеты от старта до прекращения работы маршевого ВРД значительно отличаются. Также имеется зависимость скорости вращения ракеты от скорости полета. Но учитывать эту особенность необходимо для улучшения внутрибаллистических характеристик камеры сгорания и аэробаллистических характеристик изделия в целом. Скорее всего величина угла установки пилонов к продольной оси ракеты будет определяться из максимальной скорости полета ракеты в конце работы разгонного РДТТ и может составлять 3-6 градусов при скорости М=3.

В рассматриваемом прототипе пилоны расположены параллельно продольной оси ВРД и ракеты, что не лучшим образом сказывается на характеристиках изделия.

Качественная работа сопла предполагает равномерное поле давлений в критическом сечении. В случае использования кольцевого сопла получение равномерного поля давлений становится малореальным из-за сложности процессов в камере сгорания, конструкции камеры, не смотря на дозвуковой режим течения перед критическим сечением сопла. Поэтому взаимодействие неоднородной струи на выходе из критического сечения с конусом ракеты создает реакцию практически направленную нормально к продольной оси ракеты и когда длина внешней части сопла, принадлежащего обечайке, значительно короче внутренней части, принадлежащей центральному телу, либо ракете.

Дальнейшее развитие воздушно-реактивных двигателей для ракет с носовым расположением ВРД приводит к необходимости поиска технических решений, направленных на улучшение тягово-экономических характеристик двигателей, внутрибаллистических и эксплуатационных характеристик в условиях воздействия высоких температур торможения.

Задачей предлагаемого технического решения является увеличение скорости и дальности полета ракеты, расширение тягово-экономических характеристик ВРД, улучшение тягово-аэродинамических изделия в целом.

Поставленная задача решается благодаря тому, что ракета с воздушно-реактивным двигателем (ВРД) содержит лобовое воздухозаборное устройство, включающее центральное тело с конусом внешне-внутреннего сжатия, обечайку с поднутрением, закрепленную на центральном теле посредством пилонов, равномерно расположенных в окружном направлении, камеру сгорания с инжекторами подачи топлива, кольцевое сверхзвуковое сопло на выходе из камеры сгорания, газогенератор, боевую часть, стартовый двигатель твердого топлива (РДТТ), стабилизатор. Согласно изобретению ВРД снабжен системой регулирования положения конуса, расположенной в центральном теле и выполненной в виде гидроцилиндра с поршнем, подпоршневая полость которого связана с инжекторами подачи топлива в камеру сгорания при запуске газогенератора, а надпоршневая с дифференциальным дросселем, обеспечивающим перемещение конуса вдоль оси на заданную величину относительно центрального тела и обечайки, пилоны закреплены на центральном теле под углом не равном нулю (угол атаки) к продольной оси ракеты, и повернуты в сторону ее вращения, а кольцевое сопло, расположенное на обечайке выполнено в виде раскрывающегося веера, выходящего за мидель ракеты при ее полете.

Положительный результат достигается благодаря комплексу мероприятий по улучшению характеристик прямоточного воздушно-реактивного двигателя.

В отличие от прототипа в предлагаемой ракете с ВРД воздухозаборник выполнен регулируемым, путем перемещения конуса внешне-внутреннего сжатия вдоль оси центрального тела двигателя и обечайки. В предстартовом положении конус участка внешне-внутреннего сжатия двигателя находится в крайнем правом положении, увеличивая площадь горла воздухозаборника до максимального значения, обеспечивая штатный запуск воздухозаборника при работе РДТТ.

Пилоны, обеспечивающие жесткую связь между центральным телом и обечайкой повернуты по отношению продольной оси двигателя на угол (в сторону вращения ракеты), обеспечивающий безотрывное обтекание их потоком при вращении ракеты, тем самым уменьшая сопротивление газодинамического тракта двигателя и потерю полного давления в камере сгорания двигателя.

Отличительным признаком предлагаемого ВРД от прототипа так же является наличие на выходе из камеры сгорания веерного сопла, которое в предстартовом состоянии ракеты сложено. При пуске ракеты (выходе из трубной направляющей) под воздействием скоростного напора воздуха, проходящего через двигатель, веерное сопло раскрывается и готово к работе в комплексе с камерой сгорания.

На фиг. 1 показан общий вид ракеты с ВРД; на фиг. 2 и 3 - система, обеспечивающая перемещение конуса относительно центрального тела и обечайки; на фиг. 4 - угол наклона пилонов относительно продольной оси ракеты сечение по Е-Е на фиг. 3; на фиг. 5 схема ВРД (в изометрии).

Ракета с воздушно-реактивным двигателем содержит лобовое воздухозаборное устройство 1, включающее конус 2 внешне-внутреннего сжатия и обечайку 3 с поднутрением, пилоны 4, равномерно расположенные в окружном направлении, установлены (см. фиг. 4) под углом α≠0 к продольной оси ракеты и повернуты в сторону ее вращения, инжекторы 5, равномерно расположенные в окружном направлении, камеру сгорания 6, газогенератор 7 с программным режимом горения, центральное тело 8, веерное кольцевое сопло 9, боевую часть 10, ракетный двигатель на твердом топливе 11, стабилизаторы 12.

ВРД снабжен системой регулирования положения конуса 2 относительно обечайки 3. Система регулирования положения конуса (фиг. 2) содержит дифференциальный дроссель 13, гидроцилиндр 14, поршень 15. Полость А и подпоршневая полость Б (фиг. 3) гидроцилиндра 14 обеспечивают открытие инжекторов 5 подачи топлива в камеру сгорания 6 при запуске газогенератора 7. Полость В и надпоршневая полость Г гидроцилиндра 14 связаны с дифференциальным дросселем 13, обеспечивающим заданный режим перемещения конуса 2 вдоль продольной оси ракеты на заданную величину относительно центрального тела 8 и обечайки 3.

При хранении ракеты и в предстартовом положении поршень 15 и конус 2 находятся в крайнем правом положении (см. фиг. 2). При этом жидкость полностью заполняет надпоршневую полость Г гидроцилиндра 14, а поршень 15 полностью перекрывает входные отверстия инжекторов 5 подачи топлива в камеру сгорания 6. Веерная часть кольцевого сопла 9 сложена (положение Д), закреплена на корпусе ракеты и не выступает за габариты корпуса ракеты.

Ракета с ВРД работает следующим образом (на фиг. 2 и 3).

При запуске ракеты включают стартовый двигатель твердого топлива 11, (фиг. 1), при этом поршень 15 и конус 2 находятся в крайнем правом положении, инжекторы 5 подачи топлива в камеру сгорания 6 ВРД закрыты (см. фиг. 2), а горло воздухозаборника между обечайкой 3 и конусом 2 максимально открыто. После выхода ракеты из трубчатой направляющей (на фиг. не показано) и увеличения скорости, начинает функционировать воздухозаборное устройство 1 (ВЗУ). Под воздействием скоростного напора, раскрывается веерная часть кольцевого сопла 9. Для непрерывного разгона ракеты непосредственно перед завершением работы РДТТ подается команда на запуск газогенератора 7. Давление в полости А быстро увеличивается и вытесняет поршень 15 влево, образуя подпоршневую полость Б и открывая при этом инжекторы 5 впрыска топлива в камеру сгорания 6. Одновременно рост давления в подпоршневой полости Б резко растет и поршень 15 вытесняет жидкость из полости Г через дифференциальный дроссель 13 (см. фиг. 2 и 3) в полость В. При этом конус 2 центрального тела 8 смещается влево, в положение, оптимальное для работы ВЗУ на скорости, которую обеспечил стартовый РДТТ ракеты. Одновременно с этим происходит впрыск продуктов сгорания газогенератора 7 через открытые инжекторы 5 в камеру сгорания 6 ВРД.

Далее дифференциальный дроссель 13 обеспечивает перемещение конуса 2 вперед со штатной скоростью (на фиг. 3) вдоль продольной оси по мере разгона ракеты. При перемещении конуса 2 влево относительная площадь горла ВЗУ (отношение площади горла к площади захвата струи) непрерывно уменьшается, обеспечивая работу ВЗУ на расчетных или близких к ним режимах, зависящих от чисел Маха набегающего потока.

В соответствии с программой полета должен быть организован и расход продуктов сгорания газогенератора 7 с программным режимом горения.

Применение веерной части кольцевого сопла 9 удлиняет его внешнюю часть, принадлежащую обечайке и способствует получению равномерного поля давлений по всему тракту камеры сгорания 6.

Положительный результат обеспечивается предложенными конструктивными решениями ракеты с ВРД, которые улучшают тактико-технические характеристики заявленного объекта.

Источники информации

1. Сорокин В.А., Яновский Л.С. И др. Ракетно-прямоточные двигатели на твердых и пастообразных топливах. Наука, М., 2010 г., с. 31

2. Патент RU №2585211, МПК F42B 12/46, 2015 г. – прототип.

Ракета с воздушно-реактивным двигателем, содержащая лобовое воздухозаборное устройство, включающее центральное тело с конусом внешне-внутреннего сжатия, обечайку с поднутрением, закрепленную на центральном теле посредством продольных пилонов, равномерно расположенных в окружном направлении, камеру сгорания с инжекторами подачи топлива, кольцевое сверхзвуковое сопло, находящееся на выходе из камеры сгорания, газогенератор, боевую часть, стартовый двигатель твердого топлива, стабилизатор, отличающаяся тем, что воздушно-реактивный двигатель снабжен системой регулирования положения конуса, расположенной в центральном теле, выполненной в виде гидроцилиндра с поршнем, подпоршневая полость которого связана с инжекторами подачи топлива в камеру сгорания при запуске газогенератора, а надпоршневая - с дифференциальным дросселем, обеспечивающим перемещение конуса вдоль оси на заданную величину относительно центрального тела и обечайки, пилоны закреплены на центральном теле под углом установки, не равным нулю, к продольной оси ракеты и повернуты в сторону ее вращения, а кольцевое сверхзвуковое сопло выполнено в виде раскрывающегося веера, выходящего за мидель ракеты при ее полете.



 

Похожие патенты:

Изобретение относится к области ракетной техники, а именно к ракетам и способам стрельбы ими, и может найти применение в реактивных системах залпового огня. Объект изобретения представляет собой способ стрельбы ракетой, снабженной ракетным двигателем на твердом топливе.

Изобретение относится к области ракетной техники и, в частности, к аэродинамическим поверхностям для авиационных средств поражения и может быть использовано в различных типах и классах управляемых авиационных средств поражения.

Изобретение относится к ракетной технике и может быть использовано при разработке ракет с воздушно-реактивным двигателем. Технический результат - увеличение дальности полета ракеты.

Изобретение относится к боеприпасам, а именно к устройствам ствольного сверхзвукового разгона реактивных снарядов кинетического действия. Технический результат - обеспечение разгона снаряда кинетического действия в стволе реактивного метательного устройства за счет полного сгорания заряда реактивного двигателя Устройство содержит цилиндрический ствол.

Изобретение относится к средствам активного воздействия на атмосферные явления и, в частности, к реактивным снарядам. Технический результат – повышение эффективности действия.

Изобретение относится к боеприпасам и, в частности, к артиллерийским снарядам. Технический результат - увеличение дальности полета артиллерийского снаряда.

Изобретение относится к боеприпасам и, в частности, к артиллерийскому снаряду. Технический результат – повышение дальности полета артиллерийского снаряда.

Изобретение относится к боеприпасам и, в частности, к артиллерийским снарядам. Технический результат - увеличение дальности полета артиллерийского снаряда.

Изобретение относится к боеприпасам, в частности к артиллерийскому снаряду. Технический результат – повышение дальности полета артиллерийского снаряда.

Группа изобретений относится к ракетно-космической технике. В способе отделения от ракеты-носителя (РН) 4 группы космических аппаратов (КА) 7 в случае неотделения одного КА 7 выполняют отделение последующих КА 7, после подают команду на отделение неотделившегося КА 7 с использованием пиротехнического устройства 13, обеспечивающего отделение КА 7 совместно с разрушившейся при срабатывании пиротехнического устройства 13 частью корпуса 8 системы отделения 6 с одновременным приданием им скорости относительно адаптера 1.

Изобретение относится к области военной техники, в частности к баллистическим ракетам. Технический результат – повышение точности стрельбы. Баллистическая ракета содержит головную часть, корпус, двигательную установку, систему управления на активном участке. Согласно изобретению ракета дополнительно содержит блок управления на конечном участке траектории, установленный при подготовке ракеты к пуску. Этот блок включает несущий корпус и аппаратуру спутниковой навигации. Эта аппаратура предназначена для определения текущих координат полета ракеты. Она имеет расположенную на внешней поверхности блока управления приемную антенну, бесплатформенную инерциальную навигационную систему. Эта система предназначена для формирования команд по стабилизации крена ракеты, демпфирования продольных и поперечных ее колебаний и наведения в соответствии с положением в пространстве, определяемом аппаратурой спутниковой навигации. Имеются также бортовой вычислитель для запуска выполнения циклограммы, рулевые приводы, аэродинамические рули, источник питания. Предусмотрена бортовая аппаратура дистанционного приема полетного задания от наземной аппаратуры подготовки и передачи полетного задания посредством приема координат цели и циклограммы работы ракеты в полете. Для обеспечения электрической связи головной части с системой управления предусмотрен транзитный электрический кабель. 5 з.п. ф-лы, 7 ил.

Изобретение относится к средствам противоздушной обороны и конкретно к способу перехвата летательных аппаратов - ЛА самонаводящейся электроракетой - ЭР. Технический результат - повышение вероятности поражения ЛА за счет возможности повторной атаки ЭР. По способу осуществляют развертывание пусковых установок ЭР на территории обороняемого объекта. Рассчитывают множество допустимых траекторий полетов ЭР для перехвата опасных ЛА с требуемой вероятностью их поражения. Активируют аккумуляторные батареи ЭР, выбранных для перехвата ЛА. Вводят в память бортовой электронно-вычислительной машины - ЭВМ ЭР массив данных о траектории полета ЭР, старт ЭР и вывод их в зону видимости ЛА головкой самонаведения - ГСН ЭР. Включают режим самонаведения ЭР и обеспечивают безогневое поражение ЛА. При этом траекторию полета ЭР в зону повторной видимости ГСН рассчитывают на борту ЭР. Предусматривают разворот ЭР путем снижения ее путевой скорости и перекладки струйных рулей в угловое положение, соответствующее максимальному аэродинамическому качеству струйного руля. Угловое рассогласование оси ЭР с заданным направлением траектории ее движения измеряют блоком флюгарок. Отработку измеренного рассогласования, выдачу корректирующего сигнала на рули управления, сведение к нулю величины рассогласования и поддержание оси ЭР с направлением траектории ее движения производят с помощью управляющего вычислительного модуля ЭР. 6 з.п. ф-лы, 12 ил.

Изобретение относится к крылатым и аэробаллистическим ракетам с прямоточными воздушно-реактивными двигателями (ПВРД). Сверхзвуковая ракета (СР) включает фюзеляж в составе головного, центральных и хвостового отсеков, ПВРД и нерегулируемый воздухозаборник, бортовую аппаратуру системы управления в составе системы инерциальной навигации, системы конечного наведения, высотомера и обеспечивающих систем, аэродинамические рули, утопленную в камере сгорания ПВРД твердотопливную стартово-разгонную ступень. Передняя панель головного отсека фюзеляжа выполнена в виде клина с углом развала плоскостей 60°…170° в тангажной плоскости и с аэродинамической иглой по продольной оси CP. В плоскостях клина заподлицо с внешней поверхностью выполнено не менее двух плоских иллюминаторов СКН, которая выполнена комбинированной в виде радиолокационных и оптико-электронных каналов. Воздухозаборник выполнен подфюзеляжным с полуконусом сверхзвукового диффузора, складным в калибр CP. CP снабжена бугелями под направляющие торпедного аппарата либо обтюраторами под транспортно-пусковой контейнер, сгруппированными не менее чем в два пояса. Техническим результатом изобретения является повышение эффективности селекции целей в сложной помеховой обстановке. 12 з.п. ф-лы, 5 ил.

Изобретение относится к области вооружения и может быть использовано при определении точности комплексов ракетного оружия длительных сроков хранения. Технический результат - повышение эффективности применения комплексов ракетного оружия при стрельбе по заданной цели. По способу предусматривают определение основных летных характеристик управляемых морских ракет с учетом сроков его хранения. При длительных сроках хранения ракеты, до 40 лет и более, учитывают степень истощения порохового заряда стартового двигателя - неполноту его горения. По этому параметру определяют изменение основных летных характеристик в конце стартового участка траектории. При этом для зенитной управляемой ракеты летные характеристики определяют по одному аналитическому выражению, а для крылатой ракеты – по другому аналитическому выражению. 15 ил.

Изобретение относится к вооружению и военной технике и может быть использовано во взрывателях к боеприпасам для поражения воздушных целей. Способ поражения воздушной цели боеприпасом с неконтактным датчиком цели заключается в том, что боеприпас выстреливают в зону его встречи с целью. С помощью неконтактного датчика цели излучают и принимают радиосигналы, анализируют параметры излучения и приема сигналов в процессе полета боеприпаса и на основе этого анализа снимают ступени предохранения взрывателя по мере сближения боеприпаса с целью. При этом с помощью неконтактного датчика цели регистрируют инфракрасное излучение впереди боеприпаса в диапазоне длин волн выше двух микрометров. В момент возрастания уровня излучения выше значения в начальный момент полета снимают очередную ступень предохранения боеприпаса. Фиксируют момент достижения уровнем излучения максимального значения. Выдают команду в вычислительное устройство неконтактного датчика цели о нахождении боеприпаса на минимальном расстоянии от цели. По заданному алгоритму выбирают оптимальный момент для подрыва боеприпаса. Изобретение позволяет надежно идентифицировать цель, летящую со сверхзвуковой скоростью, и повысить помехозащищенность неконтактного датчика цели от воздействия различных радиопомех. 3 ил.
Наверх