Установка для опреснения морской воды и выработки электроэнергии



Установка для опреснения морской воды и выработки электроэнергии
Установка для опреснения морской воды и выработки электроэнергии
B01D1/00 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2687922:

Акционерное общество "Металлист-Самара" (RU)
федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" (RU)

Изобретение может быть использовано в теплоэнергетике и экологии. Установка для опреснения морской воды и выработки электроэнергии содержит газотурбинную установку 1 с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, паропровод перегретого пара 3, паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, электрогенератор 5, паровой котел-утилизатор 6, деаэратор 7, конденсатор паровой турбины 8, трубопровод морской воды 9, трубопровод (систему) рециркуляции с насосом 10, трубопровод подпиточной химочищенной воды 15, двухступенчатый пароструйный эжектор, включающий пароструйный эжектор высокого давления 16 и пароструйный эжектор низкого давления 17, трубопроводы перепуска паровоздушной смеси 20, внешний теплообменник 21, трубопровод подогретой морской воды 22, двухходовые кожухотрубные конденсаторы вторичного пара 24 адиабатного многоступенчатого испарителя, сборные камеры дистиллята 25 адиабатного многоступенчатого испарителя, трубопровод дистиллята 27, трубы дроссельно-распылительного устройства 28 адиабатного многоступенчатого испарителя, приемники рассола 29 адиабатного многоступенчатого испарителя, химводоочистку 30, трубопровод сброса рассола 31. Изобретение позволяет повысить тепловую экономичность установки и обеспечить экономичное опреснение морской воды и выработку электроэнергии для энергоснабжения установки и внешних потребителей. 1 ил.

 

Установка для опреснения морской воды и выработки электроэнергии относится к теплоэнергетике и экологии, а точнее к направлению опреснения морской воды и выработки электроэнергии.

Наибольшее распространение в мире получили установки опреснения морской воды в многоступенчатых испарителях со сжатием внешнего греющего пара в пароструйных эжекторах (MED - TVC).

Известна опреснительная установка с термоумягчителем, служащая для получения пресной воды путем обессоливания морской воды (Патент РФ №2554720, МПК B63J 1/00, C02F 1/04, C02F 5/00, B01D 1/00, опубл. 27.06.2015). Она содержит адиабатный многоступенчатый опреснитель (испаритель) морской воды, содержащий несколько корпусов ступеней вакуумного испарения морской воды нагретой паром от внешнего источника, в верхней зоне каждой ступени установлен двухходовой (по охлаждающей воде) кожухотрубный конденсатор вторичного пара, ступени имеют разделительную перегородку, в средней части каждой ступени установлены сепараторы вторичного пара жалюзийного типа и полости для сбора дистиллята не сконденсировавшейся паровой смеси. Нижние зоны соседних ступеней испарения последовательно связаны перепускными трубами, в ступенях, последующих за первой ступенью, размещены дроссельные распылители нагретой жидкости. Дистиллят отводится к потребителям по общему трубопроводу дистиллята из сборников дистиллята. В установке также применены трубопровод удаления рассола - не сконденсировавшейся морской воды с высоким солесодержанием, пароструйные эжекторы первой и второй ступеней; конденсаторы пара, вышедшего из пароструйных эжекторов. Сопло эжектора первой ступени подключено к трубопроводу подвода рабочего пара (греющего пара) подаваемого из внешнего источника при давлении 1,3 МПа, а сопло эжектора второй ступени подключено к трубопроводу греющего пара с давлением 1,25 МПа, подаваемого в первую ступень многоступенчатого испарителя. Эта установка также содержит термоумягчитель.

Недостатками этой опреснительной установки принятой в качестве прототипа предполагаемого изобретения, является ее невысокая тепловая экономичность и неспособность наряду с опреснением морской воды производить выработку электроэнергии. Целью изобретения является устранение отмеченных недостатков и создание установки обеспечивающей экономичное совместное производство обессоленной воды и выработку электроэнергии.

Техническим результатом является обеспечение экономичного опреснения морской воды и выработке электроэнергии для энергоснабжения этой установки и внешних потребителей.

Технический результат достигается за счет того, что в предлагаемой установке для опреснения морской воды и выработки электроэнергии, содержащей адиабатный многоступенчатый испаритель, двухступенчатый пароструйный эжектор, внешний теплообменник, при этом многоступенчатый испаритель состоит из ряда последовательно включенных испарительных ступеней (камер) с нагревательными элементами (конденсаторами), паропровод греющего пара соединен с первой ступенью испарителя, а корпус последней ступени многоступенчатого испарителя связан с камерой смешения первой ступени испарителя, причем в верхней зоне каждой из ступеней установлены двухходовые кожухотрубные конденсаторы вторичного пара, в их средней зоне размещены жалюзийные сепараторы вторичного пара, разделяющие корпуса ступеней на верхнюю конденсационную и нижнюю испарительную зоны с расположенными между ними полостями сбора (сборными камерами) дистиллята, в нижней зоне каждой ступени размещен приемник рассола с подключенными к нему перепускными трубами дроссельно-распылительного устройства, сборная камера дистиллята последней ступени испарителя соединена с трубопроводом дистиллята, а приемник рассола этой ступени соединен с трубопроводом сброса рассола, камеры смешения всех предыдущих ступеней многоступенчатого испарителя соединены между собой трубопроводами перепуска паровоздушной смеси из первой ступени испарения к последней, нижние зоны камер испарения соседних ступеней испарителя сообщены перепускными трубами - из приемников рассола данной ступени испарения к дроссельно-распылительным устройствам последующей ступени испарения, полость конденсатора вторичного пара последней ступени испарения связана с камерой смешения пароструйного эжектора, выходная часть эжектора связана с внешним теплообменником, сопловая часть пароструйного эжектора подключена к внешнему трубопроводу, причем в ней дополнительно применены: газотурбинная установка с компрессором, газовой турбиной и электрогенератором, паровой котел-утилизатор высокого давления, паровая турбина с регулируемыми отборами пара высокого и низкого давления и конденсатором, снабженным системой рециркуляции подогреваемой морской воды с насосом, при этом трубопровод морской воды соединен через конденсатор и трубопровод подогретой морской воды с входом кожухотрубного конденсатора вторичного пара последней ступени адиабатного многоступенчатого испарителя, ротор газовой турбины соединен с электрогенератором, а ротор паровой турбины соединен с электрогенератором, пароперегреватель соединен паропроводом перегретого пара с входом паровой турбины, регулируемый отбор высокого давления которой связан с соплом парового эжектора второй ступени, а регулируемый отбор низкого давления паровой турбины связан паропроводом с соплом эжектора первой ступени, камера смешения которого соединена паровоздушным трубопроводом с корпусом первой ступени многоступенчатого испарителя, сборная камера дистиллята последней ступени соединена через химводоочистку с трубопроводом подпиточной химочищенной воды.

Сущность изобретения поясняется чертежом, где приведена тепловая схема установки опреснения морской воды и выработки электроэнергии.

Установка содержит: 1 - газотурбинную установку с компрессором, камерой сгорания, газовой турбиной и электрогенератором 2, 3 - паропровод перегретого пара, 4 - паровую турбину с регулируемыми отборами пара высокого и низкого давления, 5 - электрогенератор, 6 - паровой котел-утилизатор с пароперегревателем, испарителем и экономайзером, 7 - деаэратор, 8 - конденсатор паровой турбины, 9 - трубопровод исходной морской воды, 10 - трубопровод рециркуляции с насосом, 11 - экономайзер, 12 - трубопровод питательной воды, 13 - паропровод отборного пара высокого давления, 14 - паропровод отборного пара низкого давления, 15 - трубопровод подпиточной химочищенной воды, 16 - пароструйный эжектор высокого давления, 17 - пароструйный эжектор низкого давления, 18 - паровоздушный трубопровод, 19 - трубопровод связи, 20 - трубопроводы перепуска паровоздушной смеси, 21 - внешний теплообменник, 22 - трубопровод подогретой морской воды, 23 - трубопровод горячей воды, 24 - двухходовые кожухотрубные конденсаторы вторичного пара, 25 - сборные камеры дистиллята, 26 - трубопровод конденсата пара, 27 - трубопровод дистиллята, 28 - трубы дроссельно-распылительного устройства, 29 - приемники рассола, 30 - химводоочистку, 31 - трубопровод сброса рассола.

Установка опреснения морской воды и выработки электроэнергии работает следующим образом. Атмосферный воздух, сжатый в компрессоре газотурбинной установки 1, подают в камеру сгорания и сжигают в ней топливо, продукты сгорания расширяют в газовой турбине приводящей электрогенератор 2 и вырабатывающий электроэнергию. Выхлопные газы газовой турбины подают в паровой котел-утилизатор 6 для выработки перегретого пара высокого давления. По паропроводу перегретого пара 3 его подают на вход паровой турбины 4 с регулируемыми отборами пара высокого и низкого давления. Полезную работу паровой турбины 4 используют для выработки электроэнергии в электрогенераторе 5. Пар расширенный в паровой турбине 4 подают в конденсатор 8. Теплоту конденсации пара используют в теплообменной поверхности конденсатора 8 для подогрева морской воды подводимой по трубопроводу исходной морской воды 9 на вход насоса трубопровода рециркуляции 10 системы рециркуляции морской воды в конденсаторе. Система рециркуляции обеспечивает увеличение расхода воды через конденсатор 8 при постоянной величине расхода в трубопроводе исходной морской воды 9. При этом увеличивается величина нагрева воды в конденсаторе 8 за счет повышения расхода в конденсатор пара расширенного в паровой турбине 4. Это вызывает повышение ее мощности и увеличение выработки электроэнергии в электрогенераторе 5. Соответственно, при этом увеличивается паропроизводительность котла-утилизатора 6 и паропроизводительность парового котла-утилизатора 6 с увеличением расхода подводимых в него отработавших газов из газовой турбины газотурбинной установки 1, что связано с повышением выработки электроэнергии в электрогенераторе 2. Конденсат пара из конденсатора 8 по трубопроводу питательной воды 12 с питательным насосом подают через экономайзер 11 в первый вход деаэратора 7. Его второй вход связан по греющему пару с паропроводом отборного пара высокого давления 13. Выход деаэратора 7 связан с испарителем котла-утилизатора 6. Подогретая в конденсаторе 8 вода по трубопроводу подогретой морской воды 22 поступает на вход двухходового кожухотрубного конденсатора вторичного пара последней ступени испарителя где происходит ее подогрев теплотой паровоздушной смеси подводимой из предыдущей ступени по трубопроводу перепуска паровоздушной смеси 20. Поток этой воды проходит последовательно установленные по ее ходу двухходовые кожухотрубные конденсаторы вторичного пара 24 предыдущих ступеней многоступенчатого испарителя. В каждом из них производится подогрев воды теплотой паровоздушной смеси, подводимой по трубопроводам перепуска паровоздушной смеси 20. Морская вода вышедшая из кожухотрубного конденсатора первой ступени испарителя затем подается в теплообменную поверхность внешнего теплообменника 21, где подогревается теплом пара подводимого из выхода пароструйного эжектора 16 высокого давления. Конденсат по трубопроводу конденсата пара 26 подается в трубопровод подпиточной химочищенной воды 15. Вода подогретая во внешнем теплообменнике 21 по трубопроводу горячей воды 23 подается в трубу 28 дроссельно-распылительного устройства первой ступени испарителя. Распыленная горячая вода частично испаряется. Образовавшаяся пароводяная смесь проходит из нижней полости этой ступени испарения через разделительную перегородку в верхнюю полость ступени и частично конденсируется на внешней поверхности кожухотрубного конденсатора 24 первой ступени испарителя. Полученная при этом смесь конденсата и неиспарившейся воды поступает в находящийся в средней части этого корпуса сепаратор вторичного пара жалюзийного типа. В нем дистиллят отделяется от не сконденсировавшейся паровой смеси и поступает в полость 25 сбора дистиллята. Неиспарившаяся вода с высоким содержанием солей поступает в приемник рассола 29 первой ступени испарителя и отводится из испарительной установки по трубопроводу сброса рассола 31. Последующие ступени многоступенчатого испарителя работают аналогично вышеописанному. Из приемника рассола 29 предыдущей ступени рассол по трубам 28 дроссельно-распылительных устройств подается в нижнюю часть камеры последующей ступени, где распыляется. Образовавшийся в каждой ступени дистиллят из полостей 25 сбора дистиллята объединяется и подается в трубопровод дистиллята 27. Из этого трубопровода большая часть полученного дистиллята (опресненной воды) подается к потребителям пресной воды, а меньшая его часть подается через химводоочистку 30 в трубопровод 15 подпиточной химочищенной воды котла-утилизатора 6.

Предлагаемое изобретение за счет применения парогазового цикла с паровой турбиной позволяет увеличить электрическую мощность комбинированной установки, выработку электроэнергии и получение из морской воды большего количества питательной воды. Применение паровой турбины с регулируемыми отборами в использование теплоты отработавшего пара для подогрева морской воды (теплофикационное противодавление) позволяет значительно повысить тепловую экономичность установки. Применение системы рециркуляции воды в конденсаторе 8 позволяет увеличить расход пара через турбину, паропроизводительность котла-утилизатора, электрическую мощность газотурбинной установки, паровой турбины и выработку электроэнергии. Применение химводоочистки и системы подпитки котла-утилизатора химочищенной подпиточной водой позволяет повысить надежность установки.

Установка опреснения морской воды и выработки электроэнергии, содержащая адиабатный многоступенчатый испаритель, двухступенчатый пароструйный эжектор, внешний теплообменник, при этом многоступенчатый испаритель состоит из ряда последовательно включенных испарительных ступеней (камер) с нагревательными элементами (конденсаторами), паропровод греющего пара соединен с первой ступенью испарителя, а корпус последней ступени многоступенчатого испарителя связан с камерой смешения первой ступени испарителя, причем в верхней зоне каждой из ступеней установлены двухходовые кожухотрубные конденсаторы вторичного пара, в их средней зоне размещены жалюзийные сепараторы вторичного пара, разделяющие корпуса ступеней на верхнюю конденсационную и нижнюю испарительную зоны с расположенными между ними полостями сбора (сборными камерами) дистиллята, в нижней зоне каждой ступени размещен приемник рассола с подключенными к нему перепускными трубами дроссельно-распылительного устройства, сборная камера дистиллята последней ступени испарителя соединена с трубопроводом дистиллята, а приемник рассола этой ступени соединен с трубопроводом сброса рассола, камеры смешения всех предыдущих ступеней многоступенчатого испарителя соединены между собой трубопроводами перепуска паровоздушной смеси из первой ступени испарения к последней, нижние зоны камер испарения соседних ступеней испарителя сообщены перепускными трубами из приемников рассола данной ступени испарения к дроссельно-распылительным устройствам последующей ступени испарения, полость конденсатора вторичного пара последней ступени испарения связана с камерой смешения пароструйного эжектора, выходная часть эжектора связана с внешним теплообменником, сопловая часть пароструйного эжектора подключена к внешнему трубопроводу, отличающаяся тем, что в ней дополнительно применены газотурбинная установка с компрессором, газовой турбиной и электрогенератором, паровой котел-утилизатор высокого давления, паровая турбина с регулируемыми отборами пара высокого и низкого давления и конденсатором, снабженным системой рециркуляции подогреваемой морской воды с насосом, при этом трубопровод морской воды соединен через конденсатор и трубопровод подогретой морской воды с входом кожухотрубного конденсатора вторичного пара последней ступени адиабатного многоступенчатого испарителя, ротор газовой турбины соединен с электрогенератором, а ротор паровой турбины соединен с электрогенератором, пароперегреватель соединен паропроводом перегретого пара с входом паровой турбины, регулируемый отбор высокого давления которой связан с соплом парового эжектора второй ступени, а регулируемый отбор низкого давления паровой турбины связан паропроводом с соплом эжектора первой ступени, камера смешения которого соединена паровоздушным трубопроводом с корпусом первой ступени многоступенчатого испарителя, сборная камера дистиллята последней ступени соединена через химводоочистку с трубопроводом подпиточной химочищенной воды.



 

Похожие патенты:

Изобретение относится к теплоэнергетике и экологии и может быть использовано для опреснения морской воды и выработки электроэнергии. Комплексная установка для опреснения морской воды и выработки электроэнергии содержит трубопровод 9 холодной морской воды, адиабатный многоступенчатый испаритель, внешний теплообменник 20, трубопровод отвода дистиллята 30, трубопровод отвода рассола 32, газотурбинную установку 1, паровой котел-утилизатор 6, противодавленческую паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, деаэратор 7, паропровод 3 перегретого пара, химводоочистку 33, трубопровод конденсата 27, трубопроводы подпиточной 16 и подогретой 18 морской воды, теплообменник 22 предварительного подогрева морской воды, конденсатор 26 вторичного пара, пароструйную эжекторную установку 19.

Изобретение может быть использовано в энергетике, водоочистке, топливной промышленности. Система для производства электроэнергии и очищенной воды включает в себя: i) оборудование для получения электроэнергии, преобразованной из солнечного излучения; ii) оборудование для получения электроэнергии из биотоплива; iii) оборудование для очистки воды; iv) оборудование для орошения и выращивания сельскохозяйственных культур; v) оборудование для производства биотоплива, в которой по меньшей мере один выходной продукт от оборудования для производства электроэнергии питает оборудование для очистки воды, которая используется в оборудовании для орошения и выращивания сельскохозяйственных культур, по крайней мере некоторые из которых или их остатки используются в оборудовании для производства биотоплива, служащего сырьем оборудования для производства электроэнергии из биотоплива, а компост для выращивания сельскохозяйственных культур получен из побочного продукта от производства биотоплива.

Изобретение относится к электроэнергетике на основе возобновляемых источников энергоресурсов и местных видов топлива, в частности биомассы, децентрализованному электроснабжению, а также к переработке и утилизации твердых органических, в том числе бытовых отходов.

Изобретение относится к электроэнергетике на основе возобновляемых источников энергоресурсов и местных видов топлива, в частности биомассы, децентрализованному электроснабжению, а также к переработке и утилизации твердых органических отходов.

Изобретение относится к области энергетики. Устройство получения электроэнергии, содержащее воздуховод, первый тепловой коллектор, нагревательные элементы, накопитель-радиатор, турбогенератор, второй тепловой коллектор, блок управления, аккумулятор, электроконвертор, при этом первый выход первого теплового коллектора соединен с нагревательными элементами, выход которых соединен с накопителем-радиатором, выход блока управления соединен с первым входом турбогенератора, первый выход которого является первым выходом устройства, выход аккумулятора соединен с входом электроконвертора, выход которого является вторым выходом устройства.

Изобретение относится к области теплоэнергетики. Вакуумная деаэрационная установка добавочной питательной воды тепловой электрической станции содержит вакуумный деаэратор с трубопроводом деаэрированной добавочной питательной воды, подключенным к трубопроводу основного конденсата турбины, с трубопроводами исходной воды и греющего агента, в которые включены подогреватели исходной воды и греющего агента с трубопроводами греющей среды, трубопроводом выпара.

Изобретение относится к станционной энергетике, конкретнее к энергосбережению при эксплуатации котлов электростанций, содержащих паротурбинные установки (ПТУ). В способе глубокой утилизации осуществляют подачу конденсата ПТУ в водогазовый теплообменник (ВГТ) на выходе из котла и нагрев конденсата за счет тепла продуктов сгорания (ПС), продукты сгорания в (ВГТ) охлаждают до температуры ниже точки росы на (5-10)°C, полученный конденсат (ПС) собирают, подвергают очистке по известной технологии и направляют в конденсатную линию и далее последовательно в подогреватель конденсата, деаэратор и котел.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях и котельных установках, работающих на природном газе для повышения их экономичности.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях и котельных установках, работающих на природном газе для повышения их экономичности.

Изобретение относится к энергетике. Способ конденсации отработавшего пара турбины включает в себя подачу части отработавшего пара в первичный конденсатор, охлаждаемый оборотной водой, в котором он конденсируется, после которого первичный конденсат по конденсатопроводу рабочим насосом подается в сопла мультиступенчатого эжектора, причем другая часть отработавшего пара подается в приемную камеру первой ступени мультиступенчатого эжектора, причем парожидкостная смесь после мультиступенчатого эжектора поступает во вторичный конденсатор, охлаждаемый воздухом, в котором происходит конденсация всего пара и удаление несконденсированных газов.

Изобретение относится к теплоэнергетике и экологии и может быть использовано для опреснения морской воды и выработки электроэнергии. Комплексная установка для опреснения морской воды и выработки электроэнергии содержит трубопровод 9 холодной морской воды, адиабатный многоступенчатый испаритель, внешний теплообменник 20, трубопровод отвода дистиллята 30, трубопровод отвода рассола 32, газотурбинную установку 1, паровой котел-утилизатор 6, противодавленческую паровую турбину 4 с регулируемыми отборами пара высокого и низкого давления, деаэратор 7, паропровод 3 перегретого пара, химводоочистку 33, трубопровод конденсата 27, трубопроводы подпиточной 16 и подогретой 18 морской воды, теплообменник 22 предварительного подогрева морской воды, конденсатор 26 вторичного пара, пароструйную эжекторную установку 19.
Изобретение может быть использовано на гальванических производствах в процессах хромирования, химического оксидирования, электрохимической полировки, травления и пассивации металлов и сплавов.

Изобретение относится к способу удаления натрия из технологического потока гидрометаллургического процесса, содержащего хлорид аммония, хлорид никеля, хлорид меди, хлорид кобальта и/или хлорид магния.

Изобретение относится к обессоливанию воды. Способ включает стадии, в которых пропускают подаваемый поток солевого раствора 2' в первую стадию обессоливания через обратноосмотическую мембранную опреснительную установку 3', включающую по меньшей мере один обратноосмотический опреснительный блок 4' с образованием потока 5' первого водного продукта, имеющего сниженную концентрацию соли относительно концентрации подаваемого потока солевого раствора 2', и потока 6' первого побочного продукта, имеющего повышенную концентрацию соли относительно концентрации подаваемого потока солевого раствора 2'.

Изобретение относится к области очистки сточных вод. Предложен способ биологической очистки сточных вод с переработкой выделенных осадков.

Изобретение относится к устройствам для очистки воды методом кристаллизации и может быть использовано в быту и промышленности. Аппарат для очистки воды включает термостатированную теплообменную емкость для очистки воды, средство для фильтрации и подачи исходной воды на очистку из водопровода, средство для слива очищенной воды и средство для слива жидкого концентрата примесей, средство для замораживания воды и плавления льда с термоэлементами 22 охлаждения и нагрева, электронный блок управления аппаратом.
Изобретение может быть использовано в производствах, где отработанные концентрированные растворы и сточные воды требуют очистки от соединений шестивалентного хрома, например при переработке токсичных отходов гальванического производства - отработанных электролитов хромирования.

Изобретение относится к водоочистке. Способ очистки водного потока, поступающего из реакции Фишера-Тропша, включает подачу части указанного водного потока в сатуратор, подачу части указанного водного потока в дистилляционную и/или отпарную колонну и подачу водного потока, выходящего из головной части указанной дистилляционной и/или отпарной колонны, в указанный сатуратор.

Изобретение относится к области водоподготовки. Артезианскую воду подают в конденсатор, нагревают до температуры от 21°C до 31°C, затем подают в систему предварительной очистки от нерастворенных примесей.

Изобретение относится к вариантам способа разрушения коллоидной системы посредством электрохимического разложения эмульсий, а также к установкам для их реализации.

Группа изобретений относится к области очистки сточных вод и может быть использована, преимущественно, в очистных сооружениях промышленных предприятий, стоки которых содержат высокие концентрации загрязняющих веществ различного происхождения.
Наверх