Способ получения кварцевых тиглей



Способ получения кварцевых тиглей
C04B41/4539 - Последующая обработка строительных растворов, бетона, искусственных камней или керамики; обработка природного камня (кондиционирование материалов перед формованием C04B 40/00; нанесение жидких или других текучих материалов на поверхность вообще B05; шлифование или полирование B24; способы и устройства для изготовления и обработки отформованных изделий из глины или других керамических составов, шлака или смесей, содержащих вяжущие вещества B28B 11/00; обработка камня и т.п. материалов B28D; глазури, кроме холодных глазурей, C03C 8/00; составы для травления, поверхностного осветления или декапирования C09K 13/00)

Владельцы патента RU 2688705:

Акционерное общество "ГЕРМАНИЙ" (RU)
Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (RU)

Изобретение относится к огнеупорной промышленности, а именно к производству крупногабаритных керамических кварцевых тиглей для плавления и выращивания монокристаллов германия, применяемого в полупроводниковой промышленности. Способ получения кварцевых тиглей включает получение высококонцентрированной суспензии кварцевого стекла, ее стабилизацию, формование тигля литьем в пористую форму, сушку и отжиг. Согласно изобретению на внутреннюю поверхность высушенного тигля методом шликерного литья наносят слой следующего состава, мас.%: нитрид бора 25, кварцевое стекло 75. Отжиг тигля проводят в среде азота. Техническим результатом способа является получение кварцевых тиглей с однородным внутренним слоем (покрытием) при наименьшем смачивании расплавом германия внутреннего слоя тигля, что приводит к повышению качества кристаллов германия. 1 пр., 1 ил.

 

Изобретение относится к огнеупорной промышленности, а именно к производству крупногабаритных керамических кварцевых тиглей на основе кварцевого стекла для плавления и выращивания монокристаллов германия, применяемого в полупроводниковой промышленности.

В технологии получения монокристаллов германия важную роль играет материал тигля для расплава. Традиционно в этом качестве используется ультрачистый графит. Вместе с тем при использовании графитовых тиглей эффективный коэффициент распределения ряда примесей в германии, например, Al, В, Ga, при низком содержании приближается к единице и, соответственно, очистка от них не происходит. Одним из путей решения данной проблемы является применение новых материалов. К их числу относятся нитрид бора, материалы на основе оксида кремния, сапфир, стеклоуглерод, нитрид алюминия.

Наиболее широко в технологии германия в качестве контейнерного материала используется аморфный SiO2 в виде кварцевого стекла либо керамики.

В процессе выращивания монокристаллов германия важную роль играет фактор смачивания материала тигля расплавом: во-первых, контактный угол смачивания определяет форму мениска при выращивании монокристаллов, во-вторых, от его величины зависит кинетика растворения материала тигля в расплаве.

Детальные исследования смачивания твердых поверхностей расплавленным германием проведены авторами работы [Wetting angle and surface tension of germanium melts on different substrate materials / N. Kaiser, A. , F. R. Szofran et al.// Journal of Crystal Growth. - 2001. - Vol. 231. - P. 448-457]. Из приведенной работы следует, что менее всего расплавом германия смачивается нитрид бора.

Известен керамический материал на основе кварцевого стекла (А.с. 501052, опубл. 30.01.1976), применяемый в качестве огнеупорного материала, отличающийся тем, что с целью снижения температуры спекания и повышения механической прочности он дополнительно содержит нитрид бора в количестве 0,5-1 масс. %.

К недостаткам способа изготовления данного керамического материала относятся: высокая температура отжига в среде воздуха до 1300°С, при которой происходит рекристаллизация кварцевого стекла с образованием кристобаллита, наличие которого в керамическом изделии будет приводить к его разрушению; в ходе отжига в среде воздуха нитрид бора в составе керамической массы окисляется с образованием легкоплавкого оксида бора по реакции 4BN+3O2=2B2O3+2N2, таким образом, фазовый состав материала изменяется.

Наиболее близким по совокупности существенных признаков и достигаемому результату к заявляемому, является способ получения кварцевых тиглей, которые могут быть использованы в производстве полупроводниковых материалов (RU 2333900, С03В 20/00, от 18.12.2008, опубл. 20.03.2010). Способ включает получение высококонцентрированной суспензии на основе кварцевого стекла, ее стабилизацию, формование тигля литьем в гипсовую форму, его сушку и отжиг, отличающийся тем, что после литья в гипсовую форму на полученный кварцевый тигель методом шликерного литья дополнительно наносят суспензию синтетического диоксида кремния. В итоге на внутренней стенке тигля формируется внутренний слой (покрытие) из синтетического диоксида кремния, контактирующее с расплавом в процессе выращивания монокристаллов полупроводников.

Недостатком данного способа является взаимодействие расплава германия с материалом внутреннего слоя тигля в виде диоксида кремния, что приводит к загрязнению расплава.

Задачей изобретения является разработка способа получения кварцевых тиглей при наименьшем взаимодействии расплава германия с внутренним слоем покрытия тигля.

Достигается это тем, что, готовят высококонцентрированную суспензию на основе кварцевого стекла, стабилизируют ее перемешиванием, формируют керамический тигель литьем в пористую форму с дальнейшей сушкой и отжигом тигля, согласно изобретению, после формования керамического тигля наносят методом шликерного литья внутренний слой следующего состава, масс. %: нитрид бора - 25, кварцевое стекло - 75, с дальнейшим отжигом тигля в среде азота.

Предельная концентрация нитрида бора обусловлена тем, что при увеличении содержания нитрида бора, внутренний слой получается неоднородным и растрескивается, либо в ходе сушки изделия, либо при отжиге.

Техническим результатом способа является получение кварцевых тиглей с однородным внутренним слоем (покрытием) на основе плавленого кварца при наименьшем смачивании расплавом германия внутреннего слоя тигля, что приводит к повышению качества кристаллов германия.

Применение кварцевого тигля с внутренним слоем, содержащим нитрид бора - 25 масс. %, кварцевое стекло -75 масс. %, обеспечивает уменьшение смачивания тиглей расплавом германия, соответственно, уменьшение взаимодействия расплава с материалом внутреннего слоя, что приводит к повышению качества кристаллов германия, выращиваемых методом Чохральского. Отжиг в среде азота предотвращает окисление нитрида бора до оксида бора.

Сущность способа получения кварцевых тиглей заключается в следующем:

готовили шликер, на основе кварцевого стекла, проводили его стабилизацию перемешиванием в течение 12 ч, после чего осуществляли его заливку в гипсовую форму и формовали тигель за счет отбора жидкой фазы шликера гипсом. После формования тигля избыток шликера сливали, тигель сушили при комнатной температуре, затем методом шликерного литья на его внутреннюю поверхность наносили слой следующего состава, масс. %: нитрид бора (BN) - 25, кварцевое стекло (SiO2) - 75; полученный тигель сушили и отжигали при 1100-1200°С в атмосфере азота.

Предлагаемый способ позволяет получить качественные тигли с однородным внутренним слоем, содержащим кварцевое стекло и нитрид бора.

Микроструктура покрытия представлена на рисунке, плотность материала покрытия составляет (1,95-1,99 г/см3), пористость ~ 11,0%, размер зерен составляет от ~ 1 до ~ 100 мкм.

Конкретный пример осуществления способа.

Для получения кварцевого тигля кварцевое стекло загружали в шаровую мельницу, добавляли деионизированную воду, исходя из концентрации твердой фазы, равной 65%. Соотношение массы шаров и массы загрузки составляло 3:1. Для стабилизации шликера добавляли раствор однопроцентного поливинилового спирта в количестве 0,03 г на 100 г сухой массы. После помола в течение 48 ч проводили стабилизацию шликера в течение 12 ч путем перемешивания с помощью лопастной мешалки. После перемешивания получали готовый литьевой шликер. Шликер заливали в гипсовую форму и проводили формование тигля за счет отбора жидкой фазы шликера гипсом в течение 10-15 минут, далее избыток шликера сливали, тигель сушили при комнатной температуре в течение 24 ч.

Для приготовления шликера с целью нанесения на тигель внутреннего слоя в готовый литьевой шликер на основе кварцевого стекла при постоянном перемешивании добавляли нитрид бора (BN) и деионизированную воду до достижения концентрации плавленого кварца и нитрида бора в твердой фазе 75 и 25 масс. %, соответственно, содержание твердой фазы в шликере составляло 65%. Затем проводили сушку тигля при температуре 550-570°С в течение 1 ч и отжигали при 1100-1200°С в атмосфере азота.

Способ получения кварцевых тиглей, включающий получение высококонцентрированной суспензии на основе кварцевого стекла, ее стабилизацию, формование тигля литьем в пористую форму, сушку и отжиг, отличающийся тем, что после формования тигля на внутреннюю его поверхность методом шликерного литья наносят слой, состоящий из 25 мас.% нитрида бора и 75 мас.% кварцевого стекла, дальнейший отжиг тигля проводят в среде азота.



 

Похожие патенты:

Изобретение относится к ламинатам «подложка-керамика», функциональным слоем которых является керамика, и касается детали с функциональной поверхностью и ее применения.

Изобретение относится к технологии создания ультравысокотемпературо- и окислительностойких углерод-углеродных волокнистых композиционных материалов, применяемых в конструкциях при создании деталей летательных аппаратов, эксплуатируемых в экстремальных условиях.

Изобретение относится к защите элементов, изготовленных из тугоплавких композиционных материалов, содержащих кремний, в частности SiC с армированием волокнами. Элементы представляют собой горячие части газовых турбин, такие как стенки камеры сгорания, или кольца газовых турбин, или турбинные сопла, или турбинные лопатки для авиационных двигателей или промышленных турбин.
Глазурь // 2642608
Изобретение относится к технологии силикатов, в частности к составам глазурей, которые могут быть использованы для нанесения на изделия из фаянса, майолики. Глазурь содержит, мас.

Изобретение относится к технологии силикатов, а именно к составам стекловидного покрытия на изделия из керамики, металлов. Покрытие содержит, мас.

Изобретение относится к огнеупорной промышленности, а именно к производству огнеупорных изделий и футеровок, устойчивых к воздействию расплавов металлов, шлаков, штейнов, цементного клинкера и т.д.

Предлагаемое изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды и может быть использовано в химической, нефтехимической и химико-металлургической отраслях промышленности.
Изобретение относится к защитным противоокислительным покрытиям для углеродных и углерод-керамических материалов. Технический результат – повышение окислительной стойкости покрытия.

Изобретение относится к технологии получения керамических и стеклокерамических изделий, работающих в условиях высоких тепловых и силовых нагрузок при одностороннем нагреве.

Изобретение относится к области покрытий керамических материалов, в частности к керамическим покрытиям, и может быть использовано для защиты керамических материалов, применяемых в авиакосмической технике.
Изобретение относится к области получения металлических покрытий на керамических изделиях и может найти применение в электронной, электротехнической и радиотехнической промышленности.

Изобретение относится к способам получения пенокерамических фильтров (ПКФ) для очистки жидкого алюминия и его сплавов. Может использоваться в металлургии, литейном производстве.

Изобретение относится к покрытию, покрывающему двигатель или другую часть воздушного судна, в частности покрытию, защищающему двигатель или другую часть от высокотемпературной окислительной окружающей среды.

Изобретение относится к технологии создания ультравысокотемпературо- и окислительностойких углерод-углеродных волокнистых композиционных материалов, применяемых в конструкциях при создании деталей летательных аппаратов, эксплуатируемых в экстремальных условиях.

Изобретение относится к применению водной многостадийной полимерной дисперсии, полученной путем радикально инициируемой водной эмульсионной полимеризации, содержащей мягкую и жесткую фазы с соотношением жесткой фазы к мягкой фазе 25-95 мас.% к 75-5 мас.%, причем температура стеклования (Tg) мягкой фазы, полученной на первой стадии, составляет от -30 до 0°C и жесткой фазы, полученной на второй стадии - от 20 до 60°C, и содержащей звенья по меньшей мере одного мономера общей формулы (I), в которой n означает число от 0 до 2, R1, R2, R3 независимо друг от друга означают водород или метильную группу, X означает кислород или NH, и Y означает водород, щелочной металл или NH4+, для нанесения покрытий на профилированные металлические кровельные элементы.

Изобретение относится к технологии получения изделий из кварцевой керамики методом шликерного литья с последующим упрочнением за счет химической и низкотемпературной обработки.

Изобретение относится к технологии изготовления металлокерамических изделий, в частности к металлизации корундовой керамики, и может быть использовано в радиоэлектронной промышленности, вакуумной технике, электротехнике и других областях техники при пайке керамики с металлами.

Изобретение относится к технологии ремонта футеровок тепловых агрегатов. Техническим результатом изобретения является повышение адгезионной прочности ремонтного покрытия из мелкозернистого жаростойкого бетона к огнеупорной футеровке, упрощение технологического процесса производства ремонтных работ, расширение функциональных возможностей мелкозернистой жаростойкой бетонной смеси, позволяющих производить ремонт футеровок из различных материалов.

Изобретение относится к огнеупорному изделию на основе бета-глинозёма, которое выполнено в виде блока формования стеклянного листа путем переливания. Огнеупорное изделие имеет общее содержание Al2O3 приблизительно от 50 до 97%, причем Al2O3 содержит альфа-Al2O3 и бета-глинозем.

Изобретение относится к защите элементов, изготовленных из тугоплавких композиционных материалов, содержащих кремний, в частности SiC с армированием волокнами. Элементы представляют собой горячие части газовых турбин, такие как стенки камеры сгорания, или кольца газовых турбин, или турбинные сопла, или турбинные лопатки для авиационных двигателей или промышленных турбин.

Изобретение относится к способам получения пенокерамических фильтров (ПКФ) для очистки жидкого алюминия и его сплавов. Может использоваться в металлургии, литейном производстве.

Изобретение относится к огнеупорной промышленности, а именно к производству крупногабаритных керамических кварцевых тиглей для плавления и выращивания монокристаллов германия, применяемого в полупроводниковой промышленности. Способ получения кварцевых тиглей включает получение высококонцентрированной суспензии кварцевого стекла, ее стабилизацию, формование тигля литьем в пористую форму, сушку и отжиг. Согласно изобретению на внутреннюю поверхность высушенного тигля методом шликерного литья наносят слой следующего состава, мас.: нитрид бора 25, кварцевое стекло 75. Отжиг тигля проводят в среде азота. Техническим результатом способа является получение кварцевых тиглей с однородным внутренним слоем при наименьшем смачивании расплавом германия внутреннего слоя тигля, что приводит к повышению качества кристаллов германия. 1 пр., 1 ил.

Наверх