Способ повышения трещиностойкости толстолистового проката

Изобретение относится к области металлургии. Для повышения трещиностойкости толстолистового проката, который может быть использован при производстве магистральных газо- и нефтепроводов и в судостроении на листовом прокате создают упрочненные и неупрочненные полосы, ограниченные линиями в соответствии с уравнением: где а - параметр, составляющий (0,2-0,3) от длины листа, м; b - ширина листа, м; k=1, 2, 3, …, N; N=b/c=(6-7); с - ширина упрочненных и неупрочненных полос, м. 1 з.п. ф-лы, 3 ил.

 

Способ относится к области черной металлургии, в частности, к производству толстолистового проката для изготовления труб высокого давления для магистральных газо- и нефтепроводов и в судостроении.

Любой материал под действием эксплуатационных нагрузок накапливает повреждения и в конечном итоге разрушается.

Способность металла сопротивляться разрушению называется трещиностойкостью [1]. Процесс разрушения состоит из двух стадий:

1. Образование и рост зародышевой трещины до критического размера (способного самостоятельно распространять за счет запасенной упругой энергии).

2. Распространение трещины по материалу конструкции.

Различные способы повышения трещиностойкости стали заключаются в увеличении критической длины раскрытия трещины (когда трещина начинает распространяться за счет запасенной упругой энергии) и увеличения работы распространения трещины (это приводит к торможению движения трещины) [2].

Поэтому задача повышения трещиностойкости состоит в том, чтобы минимизировать последствия разрушения конструкции. В реальном металле всегда существуют готовые центры для образования зародышевых трещин, которые под действием эксплуатационных нагрузок достигают критического размера, а затем превращаются в магистральную.

В механике разрушения основными критериями оценки трещиностойкости являются: критическое значение интенсивности напряжения, критическое напряжение раскрытия берегов трещины, работа, затрачиваемая на образование трещины критического размера [2].

Практическим критерием оценки трещиностойкости является длина разрушенной части конструкции [3]. Повышение работы распространения трещины приводит к уменьшению пути ее распространения по конструкции.

Повышение работы зарождения и распространения трещины достигается легированием стали и термической обработкой листового проката. Однако, применение легирования ограничено ухудшением свариваемости, что является одним из показателей для конструкционных свариваемых сталей. Для хорошо свариваемых сталей углеродный эквивалент, определяемый по формуле ГОСТ 27772-88

должен составлять не более 0,35.

Кроме того, легирование стали повышает ее стоимость.

Термическая и термодеформационная обработка проката (закалка с отпуском, различные виды высокотемпературной деформационной обработки) также повышают трещиностойкость стали, но повышают затраты на термообработку.

Перечисленные выше способы повышения трещиностойкости металла позволяют только уменьшить длину разрушенной части, например, газо- и нефтепровода до определенного физически возможного уровня (например, вследствии получения минимально возможного размера дисперсности структуры).

Принципиальное уменьшение длины разрушенной части трубопровода возможно при управляемом изменении траектории движения трещины.

Создание условий для торможения трещины способствует повышению трещиностойкости стали. Известно ряд условий торможения распространяющихся трещин [2]:

- создание условий для ветвления магистральной трещины;

- учет напряженно-деформированного состояния эксплуатации изделия.

Наиболее близким к заявляемому техническому решению является патент на полезную модель «Способ упрочнения листового проката» [4]. В данном способе торможение и остановка трещины реализовано через создание условий для ветвления магистральной трещины.

Суть заявленного способа состоит в том, что для целенаправленного изменения траектории движения трещины на листовом прокате делают упрочненные участки в виде концентрических колец, наибольший диаметр которых равен ширине листа. Движущаяся магистральная трещина, проходя через упрочненную полосу ветвится с образованием двух (как правило) вторичных трещин, траектории которых отличаются от траектории магистральной трещины. При ветвлении магистральной трещины энергия распределяется между вторичными. Поэтому энергия и скорость вторичной трещины меньше, чем магистральной и движение ее быстро затухает.

Эффективность любого способа торможения трещины можно оценить коэффициентом γ [4], определяемый по соотношению:

где lo - расстояние, проходимое трещиной в однородном материале (без упрочненных полос);

l - расстояние, проходимое трещиной в материале с упрочненными.

Из формулы (2) следует, что чем меньше коэффициент γ, тем лучше трещиностойкость стали.

Для заявленного способа упрочнения листового проката коэффициент характеризующий эффективность торможения трещины составляет 0,34.

Основным недостатком данного способа является то, что явление ветвления трещины в стали требует сочетания ряда условий как внутреннего характера (микроструктура и ее распределение в металле, скорость трещины должны быть не меньше критической) так и внешнего (температура эксплуатации, вид напряженно-деформированного состояния). За время достижения магистральной трещиной критической скорости распространения, она проходит некоторое расстояние по конструкции т.е. ее разрушает.

Техническим результатом предлагаемого изобретения является увеличение трещиностойкости проката для труб магистральных газо- и нефтепроводов путем уменьшения длины ее распространения по металлической конструкции.

Технический результат достигается тем, что траекторию трещины поворачивают на угол вплоть до 90° по отношению к первоначальному направлению. Это достигается тем, что в отличии от известного технического решения на листовом прокате осуществляют избирательное упрочнение металла в форме полос, ограниченные линиями (Фиг. 1) в соответствии с уравнением:

где b - ширина листа, м;

с - ширина упрочненных и неупрочненных полос, м;

k=1, 2, 3, …, N, где N=b/c=(6-7);

а - параметр, определяемый в интервале (0,3-0,4) от длины листа, м.

Упрочненные полосы металла чередуются с неупрочненными т.е. с исходной структурой.

Упрочненные полосы наносятся в любой части листа относительно его длины.

После первой группы упрочненных полос (I, Фиг. 1) без промежутка наносят вторую группу таких же упрочненных полос, сдвинутых по ширине листа на величину с относительно полос первой группы (II, Фиг. 1).

Упрочнение достигается тем, что эти места на листе нагревают до температуры аустенитизации (AC3 + (30-50)°С), а затем подвергают ускоренному охлаждению со скоростью достаточной для получения более мелкозернистой феррито-перлитной структуры по сравнению с матричной (исходной).

Более мелкодисперсная микроструктура характеризуется большей прочностью и трешинастойкостью, чем матричная (исходная).

Суть предлагаемого способа состоит в том, что образовавшаяся магистральная трещина, распространяясь прямолинейно вдоль образующей трубы, попадает, например, в неупрочненную полосу. Впереди движущейся трещина распространяется упругая волна напряжений (акустическая волна). Более прочные микроструктуры имеют более искаженное кристаллическое строение (больше плотность дислокаций и других несовершенств), чем менее прочные. В более искаженных кристаллических структурах скорость распространения волн напряжений меньше, чем в исходной. Волны, независимо от их природы (акустические, электромагнитные, световые и т.д.) распространяются по направлению наименьшего сопротивления (где их скорость больше) [1].

Вследствие этого большая часть упругой энергии волн напряжений будет распространяться в неупрочненной полосе. При этом трещина, следуя за упругой волной будет отклоняться от своего первоначального направления, при этом траектория ее движения поворачивается на угол а вплоть до 90° (Фиг. 2а).

Если изначально магистральная трещина попадает в упрочненную полосу, то, пройдя первую группу полос (без существенного изменения направления, но с меньшей скоростью) она попадает в неупрочненную полосу второй группы полос. После этого механизм движения трещины был описан выше.

Трещина всегда раскрывается под действием нормальных напряжений. В стенке тонкой трубы (отношение диаметра трубы к толщине стенки составляет более 20 [5]), находящейся под избыточным внутренним давлением, действует плоское напряженное состояние (Фиг. 2а):

σ1 - окружное напряжение;

σ2 - продольное напряжение, причем σ1=2σ2.

Так как σ12, то магистральная трещина будет раскрываться под действием окружных напряжений и в данном случае будет раскрывающим напряжением (σp).

Окружное напряжение направлено нормально (перпендикулярно) к образующей трубы, поэтому трещина будет распространяться вдоль образующей трубы При повороте трещины на произвольный угол а на нее действует в нормальном направлении (n, Фиг. 2б) напряжение раскрытие (σp) равное:

Анализ уравнения (4) показывает, что величина напряжения раскрытия трещины изменяется от максимального значения равного σ1 (при α=0°) в исходном состоянии до минимального значения равного 0,5 σ1 при α=90°. Т. е. величина напряжения раскрытия трещины изменяется в пределах:

или с учетом, что σ2=0,5σ1 получим:

Из опыта эксплуатации труб, находящихся под действием избыточного внутреннего давления известно, что магистральная трещина распространяется вдоль длины трубы, т.е. разрушение идет под действием окружных напряжений. Поэтому при повороте трещины снижается величина напряжений раскрытия трещины, в следствии чего, трещина затормаживается и останавливается.

Пример конкретного опробования предлагаемого способа.

Для опробования предлагаемого способа использовали модель трубы, изготовленной из листа бумаги размером 200×230 мм с плотностью 160 г/м2. Имитацию упрочненных полос проводили нанесением пентафталиевого лака на определенные участки бумаги (Фиг. 1). Два подготовленных листа бумаги закрепляли в специальных зажимах и между листами вставляли трубу диаметром 120 мм. Захваты закрепляли на разрывной машине FM-500 и прикладывали растягивающую силу. Такая схема обеспечивала в листах бумаги плоское напряженное состояние [6]. Постоянное растягивающее напряжение составляло (0,8-0,9)σB, где σB - предел прочности обработанной лаком бумаги. Затем делали надрез вдоль образующей трубы длиной 20 мм. с радиусом закругления 0,05 мм. После некоторого времени выдержки (15-20 минут) под постоянной нагрузкой происходило разрушение. На Фиг. 3 представлено разрушение бумаги. Видно, что трещина распространяться внутри необработанной полосы - повторяя ее форму. При этом угол поворота трещины α до остановки составлял 65°. Коэффициент γ, определяющий эффективность торможения трещины составляет 0,28-0,30 т.е. меньше, чем по способу прототипа (0,34). Это количественно подтверждает большую эффективность предлагаемого способа, чем по прототипу.

На основании проделанных экспериментов установлено, что предлагаемый способ торможения имеет преимущества по сравнению с прототипом Предлагаемый способ торможения трещин основан на принципе в соответствии с которым трещина выбирает то направление, где сопротивление распространению меньше (наличие более равновесной структуры, менее жесткое напряженно-деформированное состояние). Поэтому трещина будет всегда распространятся в неупрочненной полосе.

По прототипу, торможение трещины основано на ветвлении. Для инициирования ветвления необходимо соблюдение ряда условий, в частности, достижение критического значения скорости распространения трещины.

Таким образом, используя более универсальный принцип торможения трещины эффективность предлагаемого способа больше, чем прототипа.

Список использованной литературы

1. Лопухин П.И., Горелик С.С., Воронцов В.К. Физические основы пластической деформации. М. Металлургия. 1982. - 584 с.

2. Финкель В.М. Физика разрушения. Металлургия, 1970. - 375 с.

3. Максимов А.Б. Распространение трещин в трубах из неоднородного материала. Изв. вузов. Черная металлургия. №7. 2013. С. 53-56.

4. Способ упрочнения листового проката. Патент на полезную модель №63929 (Украина). Максимов А.Б. Опубл. 25.10.2011. Бюл. №20.

5. Беляев Н.М. Сопротивление материалов. М: Изд. Наука. 1976. - 608 с.

6. Патент на полезную модель №64777 (Россия). Зорин А.Е., Зорин Е.Е. Образец для испытания металла труб при двухосном напряженном состоянии. Опуб. июль, 2007.

Способ упрочнения толстолистового проката для труб, включающий создание упрочненных и неупрочненных областей, отличающийся тем, что упрочненные и неупрочненные области изготавливают в форме полос, ограниченных линиями в соответствии с уравнением:

,

где b - ширина листа, м;

a - параметр, составляющий (0,2-0,3) от длины листа, м;

k=1, 2, 3, …, N; N=b/c=(6-7);

с - ширина упрочненных и неупрочненных полос, м.

2. Способ по п. 1, отличающийся тем, что после создания первой группы упрочненных и неупрочненных полос создают вторую группу полос, сдвинутых по ширине листа на величину с относительно первой системы полос.



 

Похожие патенты:

Изобретение относится к способу получения высокопрочного стального листа с покрытием, имеющего предел текучести YS по меньшей мере 800 МПа, предел прочности на разрыв TS по меньшей мере 1180 МПа, общее удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%.

Настоящее изобретение относится к способу получения высокопрочного стального листа с покрытием, имеющего предел текучести YS по меньшей мере 800 МПа, предел прочности TS по меньшей мере 1180 МПа, полное удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%, а также к высокопрочному стальном листу с покрытием, полученному предлагаемым способом.

Изобретение относится к области металлургии, а именно к элементу из термообработанного стального листа и способу его производства, и может быть использовано в автомобильной промышленности, в частности для изготовления таких противоударных частей автомобиля, как бампер и центральная стойка.

Изобретение относится к области металлургии, а именно к элементам из термообработанного стального листа, и может быть использовано при изготовлении ударопрочных деталей автомобилей.

Изобретение относится к способу изготовления высокопрочного стального листа с покрытием, имеющего улучшенную пластичность и формуемость, при этом стальной лист с покрытием имеет предел текучести YS по меньшей мере 800 МПа, предел прочности при растяжении TS по меньшей мере 1180 МПа, общее удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%, посредством термической обработки и нанесения покрытия на лист, выполненный из стали, имеющей следующий химический состав, мас.

Изобретение относится к получению стальных деталей, упрочненных под прессом и изготавливаемых из листов, содержащих покрытие на основе алюминия и цинковое покрытие, и обладающих хорошими характеристиками в отношении фосфатирования и, следовательно, хорошим сцеплением с краской.

Группа изобретений относится к листу из аустенитной нержавеющей стали, покрывному элементу из данной стали и способу производства листа. Лист, подвергнутый дрессировке с использованием валка с матовой поверхностью после финишной холодной прокатки и светлого отжига, имеет среднеарифметическую шероховатость Ra поверхности в направлении, перпендикулярном к направлению прокатки, составляющую от 0,2 мкм до 1,2 мкм, долю площади переноса, которая является долей площади той части поверхности стального листа, на которую переносится матовый рисунок, составляющую от 15% до 70%, микроуглубления, которые сформированы на поверхности стального листа с глубиной от 0,5 мкм или более, сечением раскрыва от 10 мкм2 и более, имеющие плотность 10,0 и менее на 0,01 мм2 и долю сечения раскрыва 1,0% и менее на поверхности стального листа.

Изобретение относится к стальному листу с покрытием, изготовленным из стали, имеющей химический состав, включающий в себя, мас. %: 0,34% ≤ C ≤ 0,40%, 1,50% ≤ Mn ≤ 2,30%, 1,50 ≤ Si ≤ 2,40%, 0,35% ≤ Cr ≤ 0,45%, 0,07% ≤ Мо ≤ 0,20%, 0,01% ≤ Al ≤ 0,08% и 0% ≤ Nb ≤ 0,05%, остальное Fe и неизбежные примеси, при этом стальной лист с покрытием имеет структуру, включающую в себя по меньшей мере 60% мартенсита и 12-15% остаточного аустенита, причем стальной лист с покрытием является оцинкованным, а также стальной лист с покрытием имеет предел прочности по меньшей мере 1470 МПа и общее удлинение по меньшей мере 16%.

Настоящее изобретение относится к стальному листу, имеющему предел прочности более 1100 МПа, предел текучести более 700 МПа, однородное удлинение UE по меньшей мере 8,0% и общее удлинение ТЕ по меньшей мере 10,0%, при этом лист выполнен из стали, имеющей химический состав, содержащий в массовых процентах: 0,1% ≤ C ≤ 0,25%, 4,5% ≤ Mn ≤ 10%, 1 ≤ Si ≤ 3%, 0,03 ≤ Al ≤ 2,5%, остальное Fe и неизбежные примеси, при этом химический состав таков, что CMnIndex = Cx(1 + Mn/3,5) ≤ 0,6, при этом стальной лист имеет структуру, содержащую по меньшей мере 20% остаточного аустенита и по меньшей мере 65% мартенсита, а сумма содержания феррита и бейнита составляет менее 10%.

Изобретение относится к стальному листу для горячей штамповки, способу его производства и изделию, полученному горячей штамповкой. Стальной лист имеет состав, включающий по меньшей мере С: от 0,100 мас.% до 0,600 мас.%, Si: от 0,50 мас.% до 3,00 мас.%, Mn: от 1,20 мас.% до 4,00 мас.%, Ti: от 0,005 мас.% до 0,100 мас.%, B: от 0,0005 мас.% до 0,0100 мас.%, P: 0,100 мас.% или меньше, S: от 0,0001 мас.% до 0,0100 мас.%, Al: от 0,005 мас.% до 1,000 мас.% и N: 0,0100 мас.% или меньше, с остатком из железа и примесей, шероховатость поверхности стального листа удовлетворяет условию Rz>2,5 мкм.

Изобретение относится к области машиностроения, в частности к обработке лазером при изготовлении и ремонте различных машин и механизмов. Способ упрочнения режущего инструмента из карбидсодержащих сплавов методом непрерывного лазерного воздействия, включающий лазерную обработку с использованием лазера непрерывного воздействия при плотности мощности лазерного излучения 2⋅106 Вт/м2, скорости распространения лазерного луча в пределах 2⋅10-2±1⋅10-2 м/с, при этом диаметр луча выбирают от 1,5⋅10-3 до 2,5⋅10-3 м, а расстояние от режущей кромки до места облучения от 1 до 1,5 мм, причем перед непрерывным лазерным воздействием производят карбонитрацию в ванне карбонитрации при температуре от 540°С до 580°С в расплаве солей на основе 20% цианата калия KCNO и калия углекислого CK2O3 - 80% поташа К2СО3 с выдержкой в течение 30 мин.

Изобретение относится к обработке и отделке полосового проката, в частности ленты, предназначенной для упаковки рулонного металла и листов в пачках. Для обеспечения в упаковочной ленте требуемого уровня физико-механических свойств в широком диапазоне толщин от 0,45 до 1,30 мм в условиях высокопроизводительного агрегата обработке подвергают холоднокатаную ленту с содержанием 0,28-0,50 мас.% углерода, при этом ленту нагревают со скоростью 4,5-8,0°С/с до температуры 930-950°С, выдерживают в расплаве свинца в течение 20-50 с при температуре 460-500°С, окрашивают поверхность и сушат, а затем осуществляют покрытие ленты воском в водно-восковой эмульсии, содержащей 20% парафина, с последующим охлаждением воздухом, имеющим температуру 60-70°С.

Изобретение относится к способу получения высокопрочного стального листа с покрытием, имеющего предел текучести YS по меньшей мере 800 МПа, предел прочности на разрыв TS по меньшей мере 1180 МПа, общее удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%.

Настоящее изобретение относится к способу получения высокопрочного стального листа с покрытием, имеющего предел текучести YS по меньшей мере 800 МПа, предел прочности TS по меньшей мере 1180 МПа, полное удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%, а также к высокопрочному стальном листу с покрытием, полученному предлагаемым способом.

Изобретение относится к области металлургии, а именно к элементу из термообработанного стального листа и способу его производства, и может быть использовано в автомобильной промышленности, в частности для изготовления таких противоударных частей автомобиля, как бампер и центральная стойка.

Изобретение относится к области металлургии, а именно к элементам из термообработанного стального листа, и может быть использовано при изготовлении ударопрочных деталей автомобилей.

Изобретение относится к области упрочняющей термической обработки, а именно плазменной термической и химико-термической обработки поверхностного слоя деталей. Плазменную обработку ведут рабочей плазменной дугой прямой полярности, горящей между плазмообразующим соплом - катодом и изделием - анодом.

Изобретение относится к области металлургии. Для обеспечения отличных магнитных свойств листа из неориентированной электротехнической стали способ включает использование стального сляба, содержащего мас.%: C не больше 0,01, Si не больше 6, Mn 0,05-3, P не больше 0,2, Al не больше 2, N не больше 0,005, S не больше 0,01, Ga не больше 0,0005, Fe и неизбежные примеси остальное, горячую прокатку сляба, необязательно отжиг, декапирование, холодную прокатку, окончательный отжиг и нанесение изоляционного покрытия, причем средняя скорость нагрева от 500 до 800°C в процессе нагрева во время окончательного отжига составляет не менее чем 50°C/с.
Изобретение относится к области машиностроения, в частности к термической обработке колец подшипников. Способ обработки подшипникового кольца из стали включает ступенчатый нагрев в вакууме в замкнутой камере b, последующее охлаждение азотом под давлением в замкнутой камере и трехкратный отпуск.

Изобретение относится к способу изготовления высокопрочного стального листа с покрытием, имеющего улучшенную пластичность и формуемость, при этом стальной лист с покрытием имеет предел текучести YS по меньшей мере 800 МПа, предел прочности при растяжении TS по меньшей мере 1180 МПа, общее удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%, посредством термической обработки и нанесения покрытия на лист, выполненный из стали, имеющей следующий химический состав, мас.

Изобретение относится к области металлургии. Для обеспечения требуемых механических свойств проволоки за счет создания однородной структуры осуществляют отжиг проволоки, при непрерывном процессе производства, после волочения, при этом нагрев проволоки проводят пучком лазерных лучей мощностью 0,1-1 кВт/см2 продолжительностью от 1 до 20 с до температуры 550-750°С, затем наматывают проволоку на катушку и охлаждают. 1 ил.

Изобретение относится к области металлургии. Для повышения трещиностойкости толстолистового проката, который может быть использован при производстве магистральных газо- и нефтепроводов и в судостроении на листовом прокате создают упрочненные и неупрочненные полосы, ограниченные линиями в соответствии с уравнением: где а - параметр, составляющий от длины листа, м; b - ширина листа, м; k1, 2, 3, …, N; Nbc; с - ширина упрочненных и неупрочненных полос, м. 1 з.п. ф-лы, 3 ил.

Наверх